
Received: September 9, 2023. Revised: November 4, 2023. 343

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Dynamic Allocation of Weights Using the Minimally Connected Method to

Augment Load Equilibrium in Distributed Systems

Mahdi S. Almhanna1* Tariq A. Murshedi1 Ahmed M. Al-Salih1 Rafah M. Almuttairi2

1Department of Information Networks, College of Information Technology, University of Babylon, Babylon, Iraq

2Collage of Information Technology Engineering, Al-Zahraa University for Women, 56001, Karbala, Iraq
Corresponding author’ Email: mahdi.almhanna@uobabylon.edu.iq

Abstract: Load balancing is critical to managing server resources efficiently and ensuring optimal performance in

distributed systems. The weighted round robin (WRR) algorithm is commonly used to allocate incoming requests

among servers based on their assigned weights. However, static weights may not reflect the changing demands of

servers, leading to imbalanced workloads. To address this issue, this study proposes a dynamic mechanism for

assigning weights to servers in the WRR algorithm based on the data rate and incorporates the least connection

approach for the best result. The dynamic mechanism considers each server's real-time data rate, representing its

current load. Servers with higher data rates are assigned higher weights to attract a larger share of incoming requests,

while those with lower data rates receive lower weights to manage their loads effectively. This dynamic weight

assignment allows the algorithm to adapt to varying workloads and achieve better load balancing across servers. To

further refine the distribution of requests, the least connection approach is employed to handle tie-breaking situations

and for more fairness in distributing the loads. The proposed algorithm is a hybrid of data rate and the least connection,

it is evaluated through simulations and real-world experiments. The results demonstrate its superiority in achieving

improved load balance compared to other algorithms, such as round-robin RR and traditional static-weight WRR

algorithms. By dynamically adjusting weights based on data rate and employing the least connection approach, the

algorithm optimizes server resource usage, minimizes response times, and enhances overall system performance in

distributed environments.

Keywords: Distributed system, Cloud computing, Grid computing, Load balancing, Weighted round-robin algorithm.

1. Introduction

Data network management has become

increasingly important due to the growing demand

for services related to big data applications.

Traditional routing strategies, while effective in the

past, have now become prohibitively expensive to

implement and maintain [1]. Additionally, with the

rise of distributed data storage that generates vast

amounts of data, the process has become time-

consuming and burdensome.

To address these challenges, a robust load

balancer is a viable solution for efficiently managing

big data in such data centers.

Various methodologies have been proposed to

optimize data network management by leveraging

load-balancing techniques and capitalizing on the

inherent advantages of the data network [2]. Among

the standard routing policies offered by a grid load

balancer, the weighted round-robin stands out [3].

However, for this policy to be truly effective,

determining appropriate weights for each server in

the system is crucial. To address this concern, we

propose to employ dynamic programming methods

that can intelligently distribute the workload among

servers, considering specific characteristics that

influence the volume of data to be processed.

The primary objective of our research is to devise

an efficient strategy that assigns appropriate weight

factors to each server within the system, thereby

ensuring a balanced distribution of heavy data loads

and optimizing resource utilization at every location.

By achieving a fair distribution of data and workload,

Received: September 9, 2023. Revised: November 4, 2023. 344

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

our proposed approach seeks to maximize the

benefits derived from the available resources,

providing a more sustainable and effective data

network management solution.

Load balancer helps servers transfer data

efficiently, improves application delivery resource

utilization, and prevents server overload [4]. several

load-balancing algorithms differ from each other in

terms of simplicity and complexity, it can be

mentioned some in general.

In a data grid environment, the schemes of

dynamic load balancing of storage management are

very effective in system performance during

assigning work to available servers at run time [5].

The literature proposed several ideas to improve

distributed load-balancing schemes. Considered the

central processing unit CPU, main memory, or both

CPU and memory [6]. The aim of enhancing policies

of load balancing schemes in distributed sites and the

data grids is to increase resource utilization [7]. In the

current work, a developed load-balancing algorithm

is proposed to improve the performance of the system.

One common routing policy in load balancing is

a weighted round-robin algorithm used in cloud and

grid computing load balancing [8]. However,

effective mechanisms are needed to determine the

weights assigned to each server to achieve the best

balance of the system.

Most balancing algorithms rely on a single

feature to decide to distribute a job among servers.

For example, the round robin algorithm distributes a

load of jobs evenly on servers, regardless of the

different features of available servers. Whereas in the

weighted round robin algorithm, the difference is, the

size of the memory was taken into account. Based on

the current traffic characteristics and by using a fixed

weight for a weighted round-robin at the start of each

base station round the weight of each queue in

different categories is dynamically guessed. There

are many difficulties in designing a system to control

congestion which causes significant delays in data

transmission which usually leads results in a

mismatch between network resources and acceptable

traffic.

Accordingly, it is necessary to adopt all or at least

most of the characteristics that will be the main

reason for affecting the amount of data transfer in the

network, such as bandwidth, bit rate, processing

speed, and attempts to use some processors to reduce

CPU idle time [9].

Data grids aim to reduce latency and transfer files

quickly enough [10]. Load balancing aims to

distribute network traffic across several servers. As a

result, this will ensure that no single server loads all

or most of the requests and therefore may result in the

server being unable to meet those requests.

By distributing work fairly (may not evenly), load

balancing will improve server responsiveness, reduce

idle time, and maximize throughput, moreover, If the

client cannot access the backend server through the

load balancer, the backend server will be declared

unhealthy, it is the efficient and regular distribution

of network traffic across multiple servers. As for the

load balancer site, it is between the client and the

servers, receives incoming requests, and then

distributes them to a specific available server so that

it can process that request.

Load balancers detect the robustness of servers'

resources and do not send tasks to any server unable

to fulfill the request. For greater consistency and to

keep up with the increasing demands of sustainability,

all server resources have to be available and balanced

in applications layer 4 or layer 7 of (OSI).

2. Related work

The two primary categories of load distribution

techniques are static and dynamic load balancing.

Static techniques are used for predictable workloads

and do not require prior knowledge of the system

state. On the other hand, dynamic techniques are

designed for unpredictable workloads and consider

the current system state before distributing loads.

Adekunbi A. Adewojo and Julian M. Bass [11],

proposed study addresses challenges associated with

conventional load balancing methods by integrating

crucial server and cloud resource metrics into the

algorithm. The identified metrics include CPU

utilization, memory utilization, network bandwidth,

number of threads running, and network buffers,

chosen for their influence on real-time server

behavior. Leveraging these server metrics within a

load-balancing algorithm allows for the efficient

distribution of load according to a server's present

capacity, resulting in optimized resource utilization.

Each VM is assigned a weight based on its current

utilization and capacity, allowing for dynamic

adjustments to the probability of utilizing a VM

during runtime as its state is evaluated.

Chen and team [12] proposed an architecture and

algorithm for dynamic load balancing in cloud

services, specifically targeting the uneven

distribution of workload on servers. Their approach

takes into account both the processing power of

servers and their current load, leading to improved

response times for digitally load-balanced

applications in the cloud.

Ahmed Mohammed and team [13] introduced

different scheduling algorithms that are evaluated for

quality of service (QoS) in terms of throughput, end-

Received: September 9, 2023. Revised: November 4, 2023. 345

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

to-end delay, and queuing metrics using a network

simulator with 50 mobile nodes.

Shafiq and colleagues [14] introduced an

algorithm for dynamic load balancing, focusing on

optimizing the allocation of resources and balancing

the load of virtual machines (VMs) in the

infrastructure as a service (IaaS) cloud model. Their

algorithm gives priority to VMs, quality of service

(QoS) task parameters, and resource allocation,

resulting in a significant enhancement in resource

utilization compared to existing dynamic load

balancing algorithms.

Preecha Somwang [15] introduces an efficient

load-balancing technique using HA proxy in cloud

computing, focusing on workload distribution and

resource sharing. Round-robin scheduling optimizes

cloud storage management, leading to effective load

balancing and dynamic replication. Evaluation based

on requests per second and failed requests

demonstrates a 1,000 request / 6.31-sec performance

improvement in cloud computing with fewer false

alarms.

In another study, Cruz and colleagues [16]

presented the EagerMap algorithm, designed to

optimize task mappings and mitigate the issue of a

single point of failure in load balancing

A notable limitation of these studies is their

oversight regarding the current server load, a crucial

factor in load balancing. Disregarding this factor

could potentially result in algorithmic failures, as the

workload may not be fairly distributed across servers.

Additionally, these studies do not ensure an even

distribution of workloads due to the deferral of load

request sizing. For instance, if the algorithm assigns

weights of 3 and 1 to two servers, and server 1 is

already burdened with a load of 3 requests, and if

three new requests arrive, the algorithm would direct

all three requests to server 1. As a result, server 1

would process a total of 6 requests, leaving server 2

idle without any requests. Moreover, even if the

number of existing connections is the same, the first

three requests might be smaller while the fourth one

could be considerably larger. In this scenario, a server

with higher capacity may be assigned a smaller task,

while a server with lesser capacity could be allocated

a disproportionately large workload.

Drawing upon insights from the referenced

research, this study introduces a dynamic load-

balancing algorithm that strategically employs

specific key server metrics to calculate server weights.

The proposed algorithm and architecture effectively

address performance degradation stemming from

flash crowds, resource failures, and vulnerabilities

such as single points of failure. Furthermore, this

algorithm harmonizes with auto-scaling mechanisms

in cloud and grid data centers, facilitating the

achievement of its intended goals. In contrast to prior

research that had a narrow focus on server metrics,

this study delves into server metrics that have a direct

impact on applications deployed in the cloud.

Additionally, the algorithm takes into account both

the current server state, indicated by the number of

connections, and the server's capacity to handle loads.

This adaptability enables the algorithm to operate

seamlessly in multiple environments.

3. Load balancing schemes

3.1 Round robin

Round robin is a soft mechanism to make sure

that every client request is redirected to a different

server in a circular motion. A defect of this algorithm

is that It does not care how many uploads are already

on the server that was previously uploaded by users.

and considers that all servers have the same

characteristics and capabilities, in addition to paying

no attention to the location of those servers or even

the size of the data directed to the server, as the nature

and size of the data vary from one request to another,

there is, therefore, no fairness in the distribution of

the load, and as a result, this may cause some servers

to fail.

3.2 Weighted round robin

Each server is assigned a weight based on criteria

chosen by the site administrator; the most widely

used criterion is the ability to process traffic on the

server. The more weight, the higher the percentage of

client requests that the server receives. It is

considered a good method and almost devoid of

problems. But this depends on how you choose the

right weight for the server, also, this technology

requires the ability to guess processor engagement

which is not possible to guess in networks due to the

difference in packet sizes. [3].

3.3 Least connection method

Although round robin doesn't take into

consideration the existing load on the server [17], the

least connected method does this assessment; the

servers with the least active connection will be

selected to send requests. Typically, this method

provides a good performance.

One of the disadvantages of this technique is that

it does not take into account the connections to the

server, for example, server S1 has 10 connections,

and server S2 has 12. The next request will be sent to

the S1 server because it has fewer connections, the S1

Received: September 9, 2023. Revised: November 4, 2023. 346

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

server may have 50 connection capacity while the S2

server connection capacity is 150, making the S1

server more likely to fail.

3.4 Least response time

Response time is the time between sending a

request packet and receiving the first packet. In this

way, the server with the lowest average latency and

the least number of active connections, the

opportunity to redirect the request to it will be

increasing.

This method cannot be considered a good

indicator of the capacity and specifications of the

server as many factors may be the reason for not

communicating with this server, including the

inability to provide extensive services or the presence

of congestion in the path connecting the client and

this server, or perhaps poor bandwidth between the

client and the server at a specific time. Also, the

response time varies according to the request, the

more complex the application, the greater the

response time, in addition to the presence of server

components near it or at different remote places.

3.5 Least bandwidth method

With this method, the route with the least amount

of traffic will be chosen. Since bandwidth is a limited

hosting resource, bandwidth consumption should be

maintained. When the available bandwidth is used up

in most cases your site will be suspended and the

following error “Bandwidth limit exceeded 509” will

appear.

One of the disadvantages of this method is that

the Internet speed or connection speed depends on the

rate of data transfer over a network wire or its devices,

it is a measure of the speed of data transfer over a

wired or wireless connection, measured in bits per

second, the greater the bandwidth, the faster the

information is transmitted and received. Bandwidth

restrictions affect the data transfer rate. In low-

bandwidth systems, there are restrictions on the

amount of data that can be transferred, low bandwidth

means slow network performance. So, choosing a

low bandwidth will affect the speed of sending and

receiving data .

In this research, in the first stage, the weighted

round-robin method will be used by suggesting a new

method on how to choose the right weight for each

server. Also, in the second stage, the slightest

connection strategies are adopted to ensure more

fairness in distributing the jobs on the servers taking

into account the number of connections which is

already connected with the servers.

The proposed algorithm introduces a dynamic

weighting mechanism based on request size, server

capacities, and consideration of waiting connections

from the last round. It optimizes the distribution of

requests by assigning appropriate weights to each

server, aiming for a more balanced load distribution.

The main advantages of the proposed algorithm

are:

• Dynamic weighting: The algorithm dynamically

adjusts server weights based on real-time request

sizes and server capacities. This adaptability

allows for efficient load distribution by

considering the varying workload demands on

each server.

• Fair load distribution: By factoring in waiting for

connections from the last round, the algorithm

strives for a more equitable distribution of the load

across servers. It addresses the issue of potential

overloading on specific servers and ensures a

balanced allocation of requests.

• Optimized resource utilization: The algorithm

optimizes resource utilization by carefully

distributing requests to servers based on their

current workload and capacity. This promotes

efficient usage of server resources and enhances

overall system performance.

• Improved scalability: The algorithm's flexible

approach to load balancing accommodates

changes in the network's size and configuration. It

can easily adapt to varying numbers of servers,

making it a scalable solution for evolving server

infrastructures.

• Enhanced responsiveness: By considering real-

time data rates and matrix diameters, the

algorithm can respond dynamically to shifts in

workload demands. This responsiveness ensures

that the load balancing remains effective and

responsive to fluctuations in request patterns.

Dynamic programming is a powerful algorithmic

technique used to solve complex problems by

breaking them down into smaller overlapping sub-

problems and efficiently solving each sub-problem

only once, storing its solution for future reference.

The approach is often used in optimization and

combinatorial problems where the solution space is

vast and contains overlapping sub-problems.

The main idea behind dynamic programming is to

avoid redundant calculations and optimize the time

complexity [18] of the algorithm by utilizing

previously computed solutions. This is achieved

through the use of memorization, which involves

storing the results of sub-problems in a data structure

(like an array or a hash table) so that they can be

Received: September 9, 2023. Revised: November 4, 2023. 347

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

easily accessed and reused when needed.

The basic steps involved in solving a problem

using dynamic programming are as follows:

• Identify the problem's recursive nature: Determine

if the problem can be broken down into smaller,

overlapping sub-problems. This often involves

finding a recursive relationship between the

original problem and its sub-problems.

• Define the base cases: Identify the simplest sub-

problems that can be solved directly without

further decomposition. These base cases provide

the termination condition for the recursive calls.

• Formulate the recurrence relation: Express the

solution to a given problem in terms of solutions

to its sub-problems. This recurrence relation is

crucial for implementing dynamic programming

efficiently.

• Memorization or bottom-up approach: Implement

the algorithm using memorization, where the

results of sub-problems are stored and reused to

avoid redundant calculations or use a bottom-up

approach, starting from the base cases and

iteratively building up to the solution of the

original problem.

Dynamic programming is widely used in various

fields, including computer science, operations

research, artificial intelligence, economics, and

bioinformatics, to solve problems that exhibit

overlapping substructures. It helps reduce the time

complexity of algorithms and enables efficient

solutions to problems that would otherwise be

computationally infeasible using naive approaches.

3.6 Data rate and disk usage

Each network connection has a data rate, which is

the amount of data sent over a specified period over

the network; it is the speed of data transfer from one

device to another. Whereas, bandwidth refers to the

ability of a link to send or receive a number in several

seconds, measured generally in bits or megabytes per

second (Mbps).

Usually, the slowest component inside a

computer or server is long-term storage, which

includes hard drives, often causing a bottleneck in the

computer. Disk bytes per second is the rate at which

bytes are moved to or from the disk during write or

read operations. This provides information about the

speed of the disk system, and how busy it is.

The speed at which a certain amount of data is

transferred over a given period is called the data

transfer rate. Data rate is not directly equivalent to

any single factor, it can be influenced by several

Table 1. Proposed algorithm vs. RR and WRR

Aspect

Round

Robin

(RR)

Weighted

Round

Robin

(WRR)

Proposed

Algorithm

Load

Balancing

Approach

Sequential
Based on

weights

Dynamic

weighting

based on CPU

utilization,

request size,

server

capacities,

and waiting

connections

Considers

Server

Weights

No Yes Yes

Considers

Waiting for

Connections

from the Last

Round

No No

Yes

(Optimizes

distribution

considering

waiting for

connections)

Even Load

Distribution

Not

guaranteed

Depending on

weights

Strives for

even

distribution

based on

weights,

request sizes,

and waiting

connections

Potential for

Overloading

a Server

Yes Yes

Attempts to

minimize

overloading

by

considering

various

factors

factors, including bandwidth, CPU speed, memory

speed, congestion, selected path, quality of network

equipment, data compression techniques, signal

interference, and the distance between the sender and

receiver in wireless communication. Thus, the sum of

these parameters together can determine the amount

of data rate.

Knowing the transfer rate If some files are

downloaded online or data transferred from one

source to another is very important in giving a

perception of two situations, The first refers to the

speed of data transfer within the network, where the

bandwidth component is the influencing component,

and the second refers to the processing speed inside

the computer transmitting data, where the disk usage,

CPU processing speed, and response time are

Received: September 9, 2023. Revised: November 4, 2023. 348

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Table 2. Symbols utilized in this article
R Number of servers

n number of different tasks

p total return

CPU Central Processing Unit

MB/S Megabyte per second

S server

m number of servers

N index within the range 1 to (n - (i + j) + 1).

CC current connections

NRs New requests per server

NC New connections

SW Server weight

TC Total connection

TNR Total new request

TNC Total new connections

TW Total weights

SW Servers weights

CPW Connections per weight

influential factors, in both cases, it is directly

proportional to the transmission speed between two

sources.

3.7 CPU utilization

CPU utilization or CPU usage refers to the

amount of work that the CPU does. Actual CPU

usage varies according to the amount and type of

managed computing tasks. Some tasks require longer

CPU time, while others require less time due to

resource requirements other than CPU.

The following Table 1 compares the round robin

(RR) algorithm, the weighted round robin (WRR)

algorithm, and the proposed algorithm, considering

various aspects.

Table 2 below illustrates the symbols utilized in

this article.

3. Formulation of dynamic programming

problems

Suppose we have R servers that will be

distributed among n number of different tasks. The

yield P depends on the tasks and the amounts of

resources allocated to them and the goal is to

maximize the total return.

Pi (Ri) denotes the return from the task “i” with

the resource Ri then the total return is the same as

P (R1, R2…RN) = P1(R1) +

P2(R2) + PN (Rn)… (1)

R = R1 + R2 + R3 +......Rn (2)

Ri > = 0 and I=1,2,3,, n (3)

The problem is to maximize the total return given

by Eq. (1), subject to the constraint Eq. (3),

If fn (R) = MAX

0 < = Ri< = R [P (R1, R2, R3, ... Rn)] = Max

[P1(R1) +P2(R2) +P3(R3) + ... Pn (Rn)] ... (4)

Then fn (R) is the maximum return from the

distributed R to the n tasks If Rn is the quantity of

resource allocated to the nth task such that

0<=Rn<=R, Regardless of the values of Rn, a

quantity (R-Rn) of the resource will be distributed

amongst (n-1) tasks.

Let fn-1 (R-Rn) denote the return from the (n-1)

tasks. Then the total return from the total tasks will

be: Pn (Rn)+ f n-1 (R-Rn)

So the optimal choice of Rn will be the maximum

of the above function and thus the fundamental

dynamic programming model may be expressed as:

Fn (R) = Max [Pn (Rn) + f n-1 (R-Rn), n=2,3. (5)

Where f1(R), when n= 1 is obtained from (3) as

F1(R) = P1(R) (6)

Eq. (5) gives the return from the first task when

the whole of resource R is allotted to it.

4. Proposed idea

The amount of work that will be assigned to a

server depends on that server's ability to process and

the amount of data that can reach it [19]. For example,

a server can handle 2 megabytes per second, but the

amount of data flowing to it does not exceed one

megabyte per second, this means that the server will

Received: September 9, 2023. Revised: November 4, 2023. 349

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Table 3. Performance

DISK MB/S CPU utilization %

0.4 15.2

0.7 22.2

0.8 38.5

0.9 71.4

1 78.5

1,2 85.6

1.3 92

Figure. 1 Relations between data and CPU utilization

operate at half its capacity, On the other hand, it

cannot handle a data stream of more than 2

megabytes as a maximum. This means that if we

know the server's ability to process, we can limit the

amount of data flowing to it to obtain the highest

productivity.

Typically, the CPU runs about 30 to 40 percent

during non-peak hours, during peak hours, the CPU

runs at approximately 60 to 70 percent. In any case,

the CPU should not exceed 90 percent [20, 21]. The

report summarizes the CPU utilization percentage of

all CPU cores used in the system during the specified

period. Thus, information can be collected about

CPU usage during previous specified periods, which

will show us the state of the CPU and the percentage

of work during those periods and within a specified

amount of data rate. After we get that information, we

can use the dynamic programming method to get the

highest percentage of CPU usage.

Here are some readings in Table 3 about the

amount of data sent in MB/S, the amount of use of

the corresponding CPU, and the relationship between

them. Fig. 1 illustrates the relationship between data

rate and CPU utilization.

5. Proposed algorithm

Fig. 2 illustrates the proposed flowchart, and the

steps of the algorithm as shown.

5.1 (first stage)

1. Start: // The algorithm begins.

2. Read n: // Read the number of data rate cases (n)

from some input source. In this case study, there

are 10 data rate cases.

3. Create an array of (i * i), // i = n: Create an array

of size (n * n), where n is the number of data rate

cases, to store intermediate results.

4. Read the data rate for each server S1, S2, ..., Sm;

// m = number of servers: Read the data rate for

each server (S1, S2, ..., Sm), where m is the total

number of servers in the network.

5. For all i: // Start a loop over each data rate case

(i).

6. For all j, // j = server number: Within the loop for

each data rate case, iterate over each server (j).

7. Read the total data rate for (S1 + S2): // Read and

compute the total data rate when combining

servers S1 and S2. This will be useful for further

calculations.

8. Read the maximum value of Matrix diameters for

S1 and S2, and keep the index of the value of i

and j for them: // Read the maximum values of

matrix diameters for servers S1 and S2, and

record their corresponding indices i and j. These

indices will be helpful in the subsequent steps.

9. For each N where 1 < N < (n - (i + j) + 1): // Start

another loop over each N value, where N is an

index within the range 1 to (n - (i + j) + 1).

10. Read the value of data rates of S3 and keep the

value index i, j, and N: // Within this N loop, read

the data rate value for server S3 and record its

corresponding indices i, j, and N.

11. Add the value at step 10 with the total score at

step 8: // Add the data rate value obtained in step

10 with the total data rate score obtained in step

8 (from combining servers S1 and S2).

12. Maximum search value with index i, j, N: //

Perform a search to find the maximum value

among all the N values calculated in step 11, and

record the corresponding indices i, j, and N.

13. Impose I, j, and N values to the servers S1, S2,

and S3, respectively, as a new weight: // Once the

maximum value and its indices are found, assign

the values of i, j, and N to servers S1, S2, and S3,

respectively, as their new weights. These weights

are chosen to optimize the data distribution

across the network.

14. The end.

5.2 Algorithm 2 (second stage)

for distributing the new requests based on the

"least connection" approach with proper tie-breaking

using the "round-robin" method:

1. Initialize the lists and read the inputs:

0

50

100

0.4 0.7 0.8 0.9 1 1,2 1.3

D
at

a
ra

te

Disk MB/S

Received: September 9, 2023. Revised: November 4, 2023. 350

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Figure. 2 Proposed flowchart (first stage)

o Number of servers (m)

o Server weights (server’s weights []) - An

array of size n containing the weights of each

server.

o Current connections (CC []) - An array of size

n containing the current connections on each

server.

o Number of new requests (New requests)

2. Calculate the total connections: TC = sum of all

elements in CC [].

3. Read the number of new requests to distribute

(New requests).

4. Calculate the total new connections after

distributing the new requests: Total new

connections (TNC) = TC + New requests.

5. Calculate the total weights: TW = sum of all

elements in servers weights: SW [].

6. Calculate the connections per weight:

Connections per weight (CPW) = TNC / TW

(rounded down to the nearest integer).

7. Initialize the list for each server: NRs [] = [_, _, ...,

_] (An array of size n, initially empty).

8. Calculate the number of new requests to be

assigned to each server: For each server i from 1

to m.

o NRs[i] = round (CPW * SW [i]) – CC [i].

9. If there are remaining new requests (Total new

connections are not reached): Choose multiple

servers with the highest weights equal to the

number of remaining requests.

o Sort the servers in descending order based on

their weights.

o For each remaining new request, assign it to

the server with the highest remaining capacity

and decrease NRs [] for that server by 1.

10. Calculate the new total connections for each

server: For each server i from 1 to n:

11. NC [i] = CC[i] + NRs[i].
12. Print the new total connections for each server

from the NC [] list.

In situations where multiple servers can handle

one more request before reaching their maximum

capacity, the tie-breaking step (step 5) uses the

"round-robin" method to distribute the requests

among the tied servers in a sequential and balanced

manner. This ensures that the load is evenly

distributed among all capable servers and prevents

overloading any individual server, resulting in an

efficient and responsive load-balancing strategy.

5.2.1. Example usage:

Let's consider an example where we have 4

servers with their respective weights and current

connections:

Number of servers (m) = 4, Server weights (SW

[]) = [2, 3, 5, 4], Current connections (CC []) = [1, 1,

4, 2], and the number of new requests (New requests)

= 7

Now, apply the updated algorithm to distribute

the new requests:

1. Total connections (TC): 1 + 1 + 4 + 2 = 8.

2. Total new requests (TNR): 7.

3. TC + TNR: 8 + 7 = 15.

4. Total weights (TW): 2 + 3 + 5 + 4 = 14.

5. Connections per weight: 15 / 14 ≈ 1.07 ≈ 1.

6. Number of new requests to be assigned to each

server:

o For Server 1: round ((1 * 2) - 1) = round (2 -

1) = 1 new request.

o For Server 2: round ((1 * 3) - 1) = round (3 -

1) = 2 new requests.

o For Server 3: round ((1 * 5) - 4) = round (5 -

4) = 1 new request.

o For Server 4: round ((1 * 4) - 2) = round (4 -

2) = 2 new requests.

7. Distribute the new requests:

o New request 1: Assign to Server 1.

o New request 2: Assign to Server 2.

o New request 3: Assign to Server 2.

o New request 4: Assign to Server 3.

o New request 5: Assign to Server 4.

o New request 6: Assign to Server 4.

o New request 7: Assign to Server 3. (the

highest weight)

Received: September 9, 2023. Revised: November 4, 2023. 351

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Table 4. Relations between data and CPU Utilization

Data

Rate

(Mbps)

CPU

utilization

Server1

CPU

utilization

Server2

CPU

utilization

Server3
0 1 2 3

1 10 12 15

2 20 25 30

3 30 45 50

4 40 50 65

5 50 55 75

6 60 65 85

7 70 75 96

8 90 95 100

9 95 100 100

10 100 100 100

Figure. 3 Relations between data and servers

Table 5. The data rate and CPU utilization for server1

Data

rate

(Mbp

s.)

0 1 2 3 4 5 6 7 8 9. 1

0 CPU

utiliz

ation

Serve

r1

1 1

0

2

0

3

0

4

0

5

0

6

0

7

0

9

0

9

5

1

0

0
CPU

utiliz

ation

Serve

r 2

2 1

2

2

5

4

5

5

0

5

5

6

5

7

5

9

5

1

0

0

1

0

0

After distributing the seven new requests as

described, the new total connections on each server

will be:

• Server 1: 2 connections.

• Server 2: 4 connections.

• Server 3: 6 connections.

• Server 4: 4 connections.

Now, there are no remaining new requests to

distribute, and the algorithm ensures that the

distribution takes into account the server weights and

the last request is correctly assigned to Server 3 as it

has the highest weight.

5.3 The time complexity of the algorithm

In the given problem context, where n represents

the number of data rate cases and m represents the

number of servers, the time complexity is expressed

as O (n2 + m).

6. Study case

Suppose we have "n" data rate cases, where n =

10 in our study, and three different servers with

different CPUs, denoted as Server1, Server2, and

Server3. The corresponding data rates and CPU

utilizations for these cases are presented in Table 4.

It is observed that when the data rate is 0, the CPU

utilization for Server1 is 1, for Server2 is 2, and for

Server3 is 3. Similarly, when the data rate is 10, the

CPU utilization for all three servers is 100. This

pattern continues for other data rate values.

Additionally, Fig. 3 illustrates the relationships

between the data rates and the servers, providing a

visual representation of the data distribution among

the servers.

Furthermore, Table 5 displays the specific data

rate and CPU utilization values for Server 1 and

Server 2 respectively. These values demonstrate the

CPU utilization of Server 1 and Server 2

corresponding to different data rate cases.

In summary, the provided information highlights

the data rates and CPU utilization values for various

cases involving three different servers. The

relationships between data rates and servers are

depicted in Fig. 4, and Table 6 focuses on the data

rate and CPU utilization specific to Server 1 and

Server 2. Figs. 4, and 5 illustrate the relationships

between the data rates with Server 1 and Server 2

respectively.

Figure. 4 Relations between data rate and CPU utilization

(server 1)

Figure. 5 Relations between data rate and CPU utilization

(server 2)

0
100
200
300
400

C
as

e
 0

C
as

e
 1

C
as

e
 2

C
as

e
 3

C
as

e
 4

C
as

e
 5

C
as

e
 6

C
as

e
 7

C
as

e
 8

C
as

e
 9

C
as

e
 1

0

D
at

a
R

at
e

CPU utilization
Server 1 Server 2 Server 3

0

20

40

60

80

100

0

10

20

30

40

50

Data Rate CPU utilization

0 50 100 150

Case 0

Case2

Case 4

Case 6

Case8

Case 10

CPU utilization

D
at

a
R

at
e

Received: September 9, 2023. Revised: November 4, 2023. 352

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Table 6. CPU utilization for Server 1 and Server 2

 server1

server2

I=0 I=1 I=2 I=3 I=4

1 10 20 30 40

J=0 2 3* 12 22 32 42

J=1 12 13* 22 32 42 52

J=2 25 26* 35 45 55 65

J=3 45 46* 55* 65* 75* 85*

J=4 50 51 60 70 80 90

J=5 55 56 65 75 85 95

J=6 65 66 75 85 95 105

J=7 75 76 85 95 105

J=8 95 96* 105* 115*

J=9 100 101 110

J=10 100 101

I=5 I=6 I=7 I=8 I=9 I=10

50 60 70 90 95 100

52 62 72 92 97 102

62 72 82 102 107

75 85 95 115*

95 105* 115*

100 110

105

Table 7. CPU utilization for all servers

Data rate cases 0 1 2 3 4

MAX value

(X1) = (S1+S2)

3 13 26 46 55

Index of CPU

utilization of

server 2 and

server 1 (i-j)

0-0 1-0 2-0 3-0 3-1

Server 3 Data

Rate cases

10 9 8 7 6

CPU

utilization

server 3

(X2)

100 100 100 96 85

X1+X2 103 113 126 142 140

Data rate

cases

5 6 7 8 9 10

MAX value

(X1) =

(S1+S2)

65 75 85 96 105 115

Index of CPU

utilization of

server 2 and

server 1 (i-j)

3-2 3-3 3-4 8-0

3-6

8-2

2-8

3-7

8-2

Server 3 Data

Rate cases

5 4 3 2 1 0

CPU

utilization

server 3

(X2)

75 65 50 30 15 3

X1+X2 140 140 135 126 120 118

Table 8. Remaining CPU utilization for maximum values

of servers

Data rate cases 4 5 6 7 9

MAX value (X1) =

(S1+S2)

55 65 75 85 105

Index of CPU

utilization of

server 2 and server

1 (i-j)

3-1 3-2 3-3 3-4 3-6

8-2

Server 3 Data Rate

cases

6 5 4 3 1

CPU utilization

server 3

(X2)

85 75 65 50 15

X1+X2 140 140 140 135 120

The following (I*J) array (I, J= number of study

data rate cases.) shows the summation of utilization

for server 1 and server 2. The maximum values can

be read along the diameter which is specified by a

marker * from adding CPU utilization for Server 1

and Server 2.

The CPU usage values of Server 2 and Server 1

can be found in the maximum value index of Table 4.

Neglect each column with index zero for I or J or

both, and also neglect each column with zero data rate,

so will remove the first, second, third, fourth, ninth,

and eleventh columns, the result is shown in Table 7

and the remaining CPU utilization for maximum

values of servers shows in Table 8.

From the provided Table 6, there are three

instances where the maximum value reaches 140.

While many of these options can be considered, the

most favorable choice is the second one. This

preference is justified by its capability to encompass

the peak state effectively. Additionally, it offers a

higher level of safety compared to the initial option,

where the processor operates at a high power level,

potentially leading to overheating and, consequently,

processor failure.

Furthermore, the second case surpasses the third

case due to its potential to avoid reaching the peak

state. Consequently, we collect the results from the

fourth row of Table 6 for server 3 and from the index

within the third row for server 2 and server 1.

Received: September 9, 2023. Revised: November 4, 2023. 353

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Figure. 6 Proposed weight of servers

• Option 1:

o 6 to Server 3, 3 to Server 2, and 1 to Server 1 or

• Option 2:

o 5 to Server3, 3 to Server2, and 2 to Server1 or

• Option 3:

o 4 to Server3, 3 to Server2, and 3 to Server1.

The second option is therefore the best that gives

maximum throughput without any risks to the state of

the CPU as a result of the voltage that may cause high

temperatures in the working State at or near the

maximum power. So, the weight of servers 1, 2, and

3 will be 5, 3, and 2 respectively. Fig. 6 illustrates the

weight of the servers.

The number of connections will be taken into

account, for example, now suppose we have ten

requests. This calculation of orders is divided by the

total weight, 10 /2+3+5 = 10 /10 =1 this means one

request per one weight, so that, two requests to server

1, three requests to server 2, and five requests to

server 3, and so on. Also, the algorithm of the second

stage will take care of the old connection as

illustrated in the above example 6.1.

7. Result and discussed

While having the same data rate request job and

working with 100% CPU utilization might indicate

similar workload characteristics, it does not

necessarily mean that the servers have the same

properties. Several other factors can affect server

performance and properties:

1. Hardware specifications: The servers might have

different hardware specifications, such as CPU

type, number of cores, memory size, storage type,

and network interfaces. These variations can lead

to different levels of performance even when

working at full CPU utilization.

2. Network latency: The servers could be located in

different geographical locations, and network

latency between them and the clients can vary.

This can affect response times and overall user

experience.

3. Software configuration: Differences in software

configurations, operating systems, and software

versions can impact server performance.

Additionally, variations in how the software is

optimized and configured can lead to different

results.

4. Load balancing and traffic distribution [22, 23]:

Even if all three servers are handling the same

data rate request job, the load balancing and

traffic distribution algorithms in place might

differ, which can affect how requests are

distributed among the servers.

5. Power and cooling: The servers might be housed

in different environments with varying power

and cooling capabilities. This can influence their

reliability, stability, and long-term performance.

6. Scalability: The ability of each server to scale and

handle increased loads in the future might differ.

Some servers might have better scalability

options than others.

7. Redundancy and fault tolerance: The level of

redundancy and fault tolerance built into the

server infrastructure can be different, impacting

the overall reliability and availability.

8. Security features: Servers may have different

security measures implemented, which can affect

their vulnerability to attacks and their ability to

protect data [24].

While having a similar data rate request job and

100% CPU utilization might indicate comparable

performance under the current conditions, it's

essential to consider these other factors to understand

the overall properties and capabilities of the servers.

Proper benchmarking and performance testing can

help in assessing the differences and similarities

between the servers more accurately.

To determine which server might have a better

classification for the given data rate and CPU

utilization, we need to analyze the data and

understand the relationship between the two variables.

One common approach to analyzing such data is to

plot it on a graph and observe the trends. As in Fig. 4.

The resulting plot will show three lines representing

the CPU utilization for each server at different data

rates. By observing the plot, we can make some

general observations:

1. Server 1: It shows a relatively linear increase in

CPU utilization with data rate, but the slope of

the line is less steep compared to the other servers.

2. Server 2: It also shows a linear increase in CPU

utilization with data rate, and the slope of the line

is steeper than that of Server 1.

3. Server 3: It demonstrates a nearly constant CPU

Received: September 9, 2023. Revised: November 4, 2023. 354

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

utilization, which remains close to 100%

regardless of the data rate.

Based on the plot, it seems that Server 3 has the

highest CPU utilization consistently, indicating that it

might be processing the data rate requests more

efficiently than the other servers. However, the

classification of which server is "better" might

depend on specific criteria or requirements for the

system. For example, if the goal is to maximize CPU

utilization, then Server 3 would be considered the

best. On the other hand, if the goal is to have more

linear scalability with data rate, Server 1 or Server 2

might be preferred. this analysis is based solely on the

data provided, and other factors such as the specific

workload, server hardware, and software

configurations should also be taken into account to

make a more informed decision about server

classification.

The fact that Server 3 reached 100% CPU

utilization earlier than the other servers could be due

to several reasons. While Server 3 might have

achieved higher CPU utilization faster, it doesn't

necessarily mean it is better in all scenarios. Some

potential reasons for this behavior:

1. Processing efficiency: Server 3 could have a

more efficient processing mechanism, allowing it

to handle data rate requests more quickly and

consume CPU resources at a faster rate. This

efficiency might be advantageous in certain

situations where high-speed processing is

required.

2. Limited resources: Server 3 might have fewer

CPU cores or overall computing resources

compared to the other servers. As a result, it

reaches 100% CPU utilization sooner because it

has fewer resources available to handle the

increasing data rate requests.

3. Optimization differences: Each server may have

different software configurations and

optimizations. Server 3 might be configured to

prioritize speed over scalability, leading to faster

CPU utilization saturation.

4. Load balancing: The system might be using a

load balancing algorithm that directs a higher

proportion of data rate requests to Server 3. This

can lead to faster CPU utilization saturation on

that particular server.

5. Workload characteristics: The data rate requests

might have certain patterns or characteristics that

make Server 3's processing capabilities

particularly suitable for handling them efficiently.

6. Bottlenecks: Server 3 could be facing other

bottlenecks, such as memory limitations or disk

I/O constraints, which cause the CPU to reach

maximum utilization earlier even though there

might still be processing capacity left.

Higher CPU utilization does not always equate to

better performance or efficiency. A server operating

at 100% CPU utilization is typically running at full

capacity, leaving little room for handling additional

spikes in workload or processing unexpected events.

In some cases, having some headroom in CPU

utilization can improve system responsiveness and

robustness.

Determining which server is "better" depends on

the specific use case, workload requirements, and

overall system design. While Server 3 might excel in

certain situations, Servers 1 and 2 could be more

suitable for other scenarios where linear scalability

and flexibility are essential. A comprehensive

analysis of the servers' performance under different

workloads and scenarios is necessary to make a more

informed decision about which server is truly better

for a particular use case.

In this proposed paper, the data rate is a basis for

assigning weights to the servers in a weighted round-

robin algorithm. In a weighted round-robin approach,

servers are assigned different weights based on their

capabilities and performance characteristics. The

higher the weight assigned to a server, the more

frequently it will receive requests in comparison to

servers with lower weights.

Using the data rate as a factor to determine the

weights can be a reasonable strategy, especially if

you want to take into account the current load and

processing capacity of each server. The data rate can

be a proxy for the current workload or demand on

each server. Servers that can handle higher data rates

might be assigned higher weights to receive more

requests, while servers with lower data rates might

have lower weights and receive fewer requests.

The general outline of how can incorporate the

data rate into the weighted round-robin.

1. Calculate weights: Calculate the weights for each

server based on their data rate. One simple way

to do this is to assign weights proportionally to

the data rate. For example, if Server A has a data

rate of 50 and Server B has a data rate of 100, you

could assign a weight of 1 to Server A and a

weight of 2 to Server B. but the drawback of this

way is not considered the ability of the servers of

other parameters and data rate may change over

time.

2. Dynamic updates: Since the data rate may change

over time due to varying workloads, you might

want to consider dynamically updating the

Received: September 9, 2023. Revised: November 4, 2023. 355

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

weights at regular intervals. This way, the server

selection adapts to the changing data rates and

load distribution, as in our proposed way.

Using the data rate alone as the sole criterion for

assigning weights might not cover all relevant server

performance aspects. Other factors, such as server

capacity, CPU utilization, memory availability, and

response times, should also be taken into account for

a more comprehensive load-balancing strategy.

therefore, employing the least connection algorithm

with the data rate is a perfect criterion for assigning

weights and will cover most of the relevant server

performance aspects.

Overall, utilizing the data rate to assign weights

in a weighted round-robin algorithm can be a useful

approach to achieve load balancing based on the

current workload and capacity of the servers.

However, it's essential to monitor and fine-tune the

weights based on real-world performance and usage

patterns to optimize the load-balancing strategy for

specific use cases.

8. Conclusion

Numerous researchers have dedicated their

efforts to designing specialized weight metrics for

groups of servers to ensure a fair distribution of

workloads, aligning these weights with the capacity

of each server. Different studies have explored

diverse metrics, including memory size, CPU

processing speed, and the number of links associated

with the servers. Each metric has aimed to address the

load-balancing challenge effectively. The availability

of sufficient bandwidth plays a pivotal role in

determining the efficiency of data transfer within the

network. Additionally, factors such as server

processing speed, response time, disk usage, and

latency speed within the server itself significantly

impact overall performance. These crucial

determinants ultimately influence the data transfer

rate. In this research, we adopt the data transfer rate

as the primary metric to calculate the server weights.

By doing so, we aim to create weights that accurately

reflect the actual operational environment of the

servers. This approach ensures a well-balanced and

realistic representation of the workload distribution,

optimizing the overall performance of the data

network.

To enhance the least connection algorithm for

distributing requests among several servers, we

prioritize selecting the server with the fewest active

connections while also ensuring that the current

connections on the servers are taken into account. By

doing so, we can achieve a more balanced load

distribution, avoiding any neglect of the existing

connections on the servers.

Conflicts of interest

There is no conflict of interest regarding the

publication of this paper.

Author contributions

1. Mahdi S. Almhanna proposed the methodology,

authored the main manuscript text, and prepared

all figures except (the flowchart in Fig. 3), as well

as all the tables.

2. Tariq A. Murshedi provided valuable insights

into the proposed methodology, prepared Fig. 3,

and reviewed the manuscript.

3. Ahmed M. Al-Salih contributed the idea for

Algorithm 2.

4. Rafah M. Almuttairi conducted all the

experiments. Also, checked and improved the

English language throughout the manuscript, and

also supervised the various steps of its

development.

Acknowledgements

The authors express their gratitude to the editors

and reviewers for their valuable and constructive

feedback. Additionally, we would like to extend our

thanks and appreciation to the University of Babylon

and the College of Information Technology for their

unwavering support of the staff.

References

[1] A. A. Neghabi, N. J. Navimipour, M.

Hosseinzadeh, and A. Rezaee, "Load Balancing

Mechanisms in the Software Defined Networks:

A Systematic and Comprehensive Review of the

Literature", IEEE Access, Vol. 6, pp. 14159-

14178, 05 March 2018.

[2] D. K. Patel, D. Tripathy, and C. R. Tripathy,

“Survey of load balancing techniques for Grid”,

Journal of Network and Computer Applications,

Vol. 65, pp. 103-119, 24 February 2016.

[3] W. Wang and G. Casale, "Evaluating Weighted

Round Robin Load Balancing for Cloud Web

Services", In: Proc. of 2014 16th International

Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, Timisoara,

Romania, pp. 393-400, 2014.

[4] A. Gajbhiye and D. S. Singh, “Global Server

Load Balancing with Networked Load

Balancers for Geographically Distributed Cloud

Data-Centers”, International Journal of

Received: September 9, 2023. Revised: November 4, 2023. 356

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.31

Computer Science and Network, Vol. 6, No. 6,

pp. 682-688, 2017.

[5] R. M. Almuttairi, R. Wankar, A. Negi, R. R.

Chillarige, and M. S. Almahna, "New replica

selection technique for binding replica sites in

Data Grids", In: Proc. of 2010 1st International

Conference on Energy, Power, and Control,

Basrah, Iraq, pp. 187-194, 2010.

[6] X. Zhang, Y. Qu, and L. Xiao, "Improving

distributed workload performance by sharing

both CPU and memory resources", In: Proc. of

20th IEEE International Conference on

Distributed Computing Systems, Taipei, Taiwan,

pp. 233-241, 06 August 2002.

[7] A. Jangra and N. Mangla, "An efficient load

balancing framework for deploying resource

scheduling in cloud based communication in

healthcare", Measurement: Sensors, Vol. 25, p.

100584, 2023.

[8] S. Afzal and G. Kavitha, “Load balancing in

cloud computing – A hierarchical taxonomical

classification”, Journal of Cloud Computing,

Vol. 8, No. 1, 2019.

[9] M. S. Almhanna, F. S. A. Turaihi, and T. A.

Murshedi, “Reducing waiting and idle time for a

group of jobs in the grid Computing”, Bulletin of

Electrical Engineering and Informatics, Vol. 12,

No. 5, pp. 3115-3123, 2023,

[10] M. S. Almhanna, "Minimizing server idle time",

Annual Conference on New Trends in

Information & Communications Technology

Applications, Baghdad, Iraq, pp. 128-131, 2017.

[11] A. A. Adewojo and J. M. Bass, “A novel weight-

assignment load balancing algorithm for cloud

applications”, SN Computer Science, Vol. 4,

2023.

[12] S. L. Chen and Y. Y. Chen, and S. H. Kuo, “Clb:

A novel load balancing architecture and

algorithm for cloud services”, Computers and

Electrical Engineering, Vol. 58, No. 4, PP. 154-

60, February 2017.

[13] A. Mohammed, N. F. Abdullah, S. Alani, O. S.

Alheety, M. M. Shaker, M. A. Saad, and S. N.

Mahmood, "Weighted Round Robin Scheduling

Algorithms in Mobile AD HOC Network", In:

Proc. of 2021 3rd International Congress on

Human-Computer Interaction, Optimization and

Robotic Applications (HORA), Ankara, Turkey,

pp. 1-5, 2021.

[14] D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah, and M.

A. Alzain, "A Load Balancing Algorithm for the

Data Centres to Optimize Cloud Computing

Applications", IEEE Access, Vol. 9, pp. 41731-

41744, 2021.

[15] P. Somwang, “Efficient Load Balancing for

Cloud Computing by Using Content Analysis",

International Journal of Communication

Networks and Information Security, Vol. 12, No.

2, August 2020.

[16] E. H. M. M. Cruz, M. Diener, L. L. Pilla, and P.

O. A. Navaux, "EagerMap: A Task Mapping

Algorithm to Improve Communication and Load

Balancing in Clusters of Multicore Systems",

ACM Transactions on Parallel Computing, Vol.

5, No. 4, pp 1–24, 2019.

[17] H. Son, S. Lee, S. Kim, and Y. Shin, "Soft Load

Balancing Over Heterogeneous Wireless

Networks", IEEE Transactions on Vehicular

Technology, Vol. 57, No. 4, pp. 2632-2638,

2008.

[18] H. Babbar, S. Parthiban, G. Radhakrishnan, and

S. Rani, "A genetic load balancing algorithm to

improve the QoS metrics for software-defined

networking for multimedia applications",

Multimedia Tools and Applications, Vol. 81, No.

7, pp. 9111-9129, 2022.

[19] A. Tarek, H. Elsayed, M. Rashad, M. Hassan,

and P. E. Kafrawy, "Dynamic Programming

Applications: A Survey", In: Proc. of 2020 2nd

Novel Intelligent and Leading Emerging

Sciences Conference (NILES), Giza, Egypt, pp.

380-385, 2020.

[20] S. A. Abbas and M. S. Almhanna, “Distributed

Denial of Service Attacks Detection System by

Machine Learning Based on Dimensionality

Reduction”, 2021 J. Phys.: Conf. Ser, Babylon-

Hilla City, Iraq, Vol. 1804, pp. 1-13, March

2021.

[21] J. Zhou, Y. Zhang, L. Sun, S. Zhuang, C. Tang

and J. Sun, "Stochastic Virtual Machine

Placement for Cloud Data Centers Under

Resource Requirement Variations", IEEE

Access, Vol. 7, pp. 174412-174424, 2019.

[22] J. C. Patni and M. S. Aswal, "Distributed load

balancing model for a grid computing

environment", In: Proc. of 2015 1st

International Conference on Next Generation

Computing Technologies, Dehradun, India, pp.

123-126, 2015.

[23] M. H. Balter and A. B. Downey, A.: “Exploiting

process lifetime distributions for dynamic load

balancing”, ACM Transactions on Computer

Systems, Vol. 15, No. 3, pp. 253–285, 1997.

[24] M. Balanici and S. Pachnicke, "Classification

and forecasting of real-time server traffic flows

employing long short-term memory for hybrid

E/O data center networks", IEEE/OSA Journal

of Optical Communications and Networking,

Vol. 13, pp. 85-93, February 2021.

https://www.sciencedirect.com/journal/computers-and-electrical-engineering
https://www.sciencedirect.com/journal/computers-and-electrical-engineering

