
Received:  August 20, 2023.     Revised: October 30, 2023.                                                                                             263 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.25 

 

 
Enhancing Brain Tumor Detection and Classification with Reduced Complexity 

Spatial Fusion Convolutional Neural Networks  

 

O. Homa Kesav1          Rajini G. K1* 

 
1School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India 

* Corresponding author’s Email: rajini.gk@vit.ac.in 

 

 
Abstract: In this study, we propose a novel enhanced deep learning method for the detection and classification of 

brain tumours known as the reduced complexity spatial fusion CNN (RCSF-CNN) method. This approach integrates 

complexity feature extraction, which improves the quality of feature extraction from brain tumour pictures. To capture 

crucial detection properties, image variables such as mean, standard deviation, entropy, variance, smoothness, energy, 

contrast, and correlation are extracted. These attributes are then employed by the RCSF-CNN to detect and categorise 

brain cancers. When paired with the discrete orthogonal stockwell transform (DOST) as an intermediary stage, the 

suggested method illustrates the effectiveness and superiority of the augmented deep learning methodology for brain 

cancer identification. The studies were carried out using the BRATS dataset via Kaggle, with the network trained on 

32 samples and the features of five sample pictures assessed. The RCSF-CNN stands out for its efficient architecture, 

which includes spatial fusion as well as a critical normalisation step. The addition of class activation mapping (CAM) 

increases transparency and interpretability, highlighting the model's innovation. The MATLAB simulation tool was 

used for implementation, and the experimental investigations were carried out on the free-source brain tumor image 

segmentation benchmark (BRATS) dataset. The results obtained in brain tumour identification reveal an entropy value 

of 0.008, an energy value of 0.8155, and a contrast value of 0.354. These entropy, contrast, and energy values are 

critical in the detection of brain tumors. Furthermore, in terms of accuracy, specificity, and sensitivity, the new 

technique beats earlier methods such as conventional CNN, deep learning with modified local binary patterns, and ML 

algorithms such as SVM in brain Tumour detection. The achieved accuracy of 98.99% indicates a high level of total 

correct classifications. The specificity of 99.76% illustrates the methodology's capacity to correctly identify non-tumor 

regions, while the sensitivity of 98.43% demonstrates its ability to correctly detect cancer locations. 
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1. Introduction 

Brain tumor is one of the most prevalent and 

devastating forms of cancer, accounting for a 

significant number of cancer-related deaths 

worldwide. Biopsy is an invasive procedure that 

carries some risks [1]. It involves the removal of a 

small sample of tissue from the body, which can 

cause bleeding, infection, or damage to surrounding 

structures. In some cases, the location of the tumor 

may make it difficult or impossible to obtain a biopsy 

sample. On the other hand, MRI is non-invasive 

procedure mostly utilized by the clinicians [2]. It can 

provide information about the size, location, and 

characteristics of a tumor. MRI is particularly useful 

for detecting brain tumors because it can detect even 

small tumors and can provide information about the 

tumor's location and relationship to other structures 

in the body [3]. MRI can also act as a repetitive 

process in order to evaluate the effectiveness of 

treatment [4] making MRI has become the mainstay. 

Early detection and accurate classification of 

these cancers are critical for timely intervention and 

improved patient outcomes [5]. One of the major 

advancements in recent years is the use of deep 

learning techniques, particularly CNNs [6]. CNNs 

are capable of automatically learning hierarchical 

features, making them highly effective in detecting 

subtle patterns and features that may not be easily 

discernible by human observers [7-8]. Moreover, 
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deep learning models can be trained on large datasets, 

which has become increasingly available with the 

advancements in data collection and storage [9-10]. 

Our proposed methods' strengths include their ability 

to extract complex features from medical images 

using complexity feature extraction and GLCM. 

Furthermore, the use of CNNs enables automated and 

efficient analysis, allowing the detection of subtle and 

critical patterns. By incorporating the DOST as an 

intermediate stage, we improve the feature extraction 

process by capturing time-frequency characteristics 

of the input images. The availability of large-scale 

medical image datasets, as well as continuous 

advancements in deep learning techniques, provide 

an opportunity to develop robust models for accurate 

cancer detection. By leveraging these advancements 

and incorporating innovative techniques, our 

proposed methods aim to provide medical 

professionals with valuable tools for early and precise 

cancer diagnosis, ultimately improving patient care 

and outcomes. 

The following is how the paper is organised: 

Section 1 contains the introduction, which provides 

an overview of the topic and highlights the strengths 

of the proposed work. Section 2 is divided into two 

sections: the first discusses the review of brain 

tumour detection methods, including previous 

methods and their limitations, emphasising the 

shortcomings of previous methods. Section 3 

presents the improved methodology, which include 

block diagrams, algorithms, and the necessary 

equations for detecting brain tumours, section 4 is 

devoted to experimental investigations, which cover 

both subjective and objective evaluations, with 

extracted features tabulated in tables and graphs 

provided for greater comprehension. Section 5 

summarises the key findings and contributions, 

suggests future research directions, and concludes 

with a references section listing the works cited. 

2. Related works 

Because of their potential to enhance early 

diagnosis and treatment results, image processing and 

deep learning approaches for detecting and 

classifying brain tumours have received a lot of 

interest. In this section, a analysis of the current 

literature on image processing and some of the latest 

deep learning techniques for the considered two 

specific applications is carried out. 

The authors Lamrani et al. [11] proposed a CNN 

procedure for detecting brain tumours. Their work, 

however, did not address CNNs' limitations in 

handling complex spatial information and extracting 

fine-grained features, and statistically, this model 

provided good accuracy but a specificity of 75%, 

which is considered very low. Hasanah et al. 

developed a machine learning-based algorithm that 

used an SVM model as an intermediate stage [12]. 

While this method has potential, it is limited because 

of reduced accuracy of 82 % at Validation phase and 

also by its reliance on handcrafted features and may 

not capture the full complexity of brain tumour 

characteristics. Biratu et al. concentrated on the use 

of skull stripping and region growing procedures in 

the detection of brain tumours [13]. The accuracy 

achieved here is 99.7%, which is better, but the 

sensitivity is very low at 86.7%. The initial seed point 

selection is critical in determining the segmentation 

outcome. If the seed point is placed or chosen 

incorrectly, it can lead to significant errors in the 

segmentation results. This sensitivity is difficult to 

deal with, especially when dealing with complex or 

noisy images, because it necessitates careful manual 

intervention or human judgement to select 

appropriate seed points. While segmentation 

techniques can improve performance, this study did 

not investigate the capabilities of deep learning 

models in capturing intricate patterns and textures in 

brain tumour images. For feature extraction from 

brain MR scans, Kaplan et al. proposed using 

histogram patterns of local binary patterns (LBP) [14]. 

In image analysis, LBP is used as a texture descriptor. 

LBP takes texture into account only in local 

neighbourhoods and does not take into account 

spatial information between different local patterns. 

The spatial arrangement of textures in medical 

images can be critical for diagnosis. Although this 

method has proven to be effective, it may be lacking 

in the ability to capture high-level abstract features 

that are critical for accurate tumour detection. 

Abiwinanda et al. used a convolutional neural 

network (CNN) to classify tumours [15]. However, 

their approach is limited by the validation accuracy 

of 84 % and the lack of advanced feature extraction 

techniques and the possibility of overfitting due to the 

small dataset size. Malathi et al., [16] proposed brain 

tumour segmentation using convolutional neural 

network with tensor flow, with a low sensitivity of 

82%, which is considered a significant limitation. 

This method makes many low-level decisions, which 

can be disadvantageous for high-level abstraction 

researchers. Nabil et al. [17] proposed a U-Net 

architecture for multimodal biomedical image 

segmentation with an accuracy of 91.65%, which is 

very low when compared to current scenarios. Amin 

et al. [21] proposed deep convolutional neural 

networks for brain tumour detection with a sensitivity 

of 95%, but they did not discuss validation accuracy 

well, which is a limitation of their work. The same 
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authors proposed brain tumour detection using 

statistical and machine learning methods [20], 

achieving 90% accuracy and specificity and 91% 

sensitivity, which is good but low when compared to 

current algorithms. Sharif et al [23-24] proposed two 

research articles: particle swarm optimisation (PSO) 

with feature fusion for brain tumour detection and 

active deep neural network features selection for 

segmentation and recognition of brain tumours using 

MRI images, where the researchers provided good 

results with better metrics. However, the 

performance of PSO is heavily dependent on 

parameter tuning, and the deep learning article 

provided a lower average accuracy of 92%. For the 

semantic segmentation of brain tumours from 

multimodal MRI scans, the authors, Ceena Mathews 

et al. [25], proposed a Nested U-Net architecture with 

an enhanced attention gate and compound loss. This 

method captures both low-level and high-level 

features effectively, improving segmentation 

precision and achieving sensitivity of 96.56%. 

However, the computational complexity of nested U-

Net architectures, as well as potential computational 

efficiency issues, can be limiting factors. 

Ahmed Aldhahab et al. [26] presented a 

framework based on stacked sparse autoencoders and 

a Softmax classifier for the classification of MRI 

brain tumour images with a 98.8% accuracy. While 

this method effectively performs image classification, 

it focuses on classification tasks and may necessitate 

a large amount of labelled data, which is often 

difficult to obtain in medical imaging.  

The SDA-UNET2.5D, a shallow dilated with 

attention UNet2.5D architecture for brain tumour 

segmentation, was presented by the authors, Agus 

Subhan Akbar et al. [27]. This method provides a 

promising balance between depth and receptive field 

size, which may reduce computational requirements. 

However, there are some limitations, such as the 

emphasis on 2.5D MRI images and the lack of 

explicit discussions on computational efficiency. The 

authors also concentrated solely on dice score, with 

no comparison to sensitivity and specificity. 

The authors, HPA Tjahyaningtijas et al. [28], 

proposed a brain tumour classification method with 

an accuracy of 95.5% using En-CNN (ensemble 

convolutional neural networks) applied to MRI 

images. While this method improves classification 

performance through ensemble methods, it is limited 

to classification and does not support tumour 

segmentation or localization. Furthermore, the 

computational cost of training and maintaining an 

ensemble of CNNs can be a limiting factor. The paper 

by Nyo MT et al. [20] adds to the growing body of 

literature on Otsu's thresholding technique's 

application in medical image analysis, specifically 

for brain tumour segmentation in MRI images. While 

Otsu's method is automated and simple, it has 

limitations in dealing with noise, multi-modal 

intensity distributions, and complex tumour 

boundaries. 

Table 1 summarises brain tumour detection 

methods and their limitations. Traditional CNNs have 

good accuracy but low specificity. SVM validation 

accuracy is low and relies on handcrafted features. 

Region growing with skull stripping is sensitive in 

complex or noisy images. Local binary pattern (LBP) 

texture descriptors lack spatial information between 

local patterns. Validation accuracy limits a simple 

CNN architecture. CNNs with TensorFlow in 

Anaconda Frameworks have low sensitivity. 

Multimodal image-processing software 

MultiResUNet has low accuracy. Deep CNNs, which 

patch images, are sensitive but lack clarification on 

validation accuracy. Machine learning (ML) has 

good accuracy and specificity but lower sensitivity. 

Tuning parameters is difficult in integral particle 

swarm optimisation (PSO). Active DNNs have 

average accuracy. Nested U-Nets are 

computationally complex and inefficient. Though 

effective in classification, autoencoders may struggle 

with data labelling. SDA-UNET2.5D, for 2.5D MRI 

images, only discusses dice score and not 

computational efficiency. Finally, En-CNN and 

thresholding approaches strive to improve 

classification but not tumour segmentation or 

localization. 

3. Proposed method  

The proposed block diagram shown in Fig. 1, 

begins with obtaining the input image from a brain 

tumour database. The open source brain tumour 

image segmentation benchmark (BRATS) dataset 

[18] contains medical images of brain tumours. The 

proposed deep learning model was trained on an 

augmented dataset of 3000 samples generated from 

the BRATS dataset's initial 300 images [18]. To train 

the model to recognise complex tumour features, 

80% of the augmented dataset, or 2400 samples, was 

used for training. The remaining 20%, totaling 600 

samples, served as the test set, allowing the model's 

performance on data it had not encountered during 

training to be evaluated. After acquiring the input 

image, it is pre-processed with a Weiner filter. The 

Weiner filter is a type of linear filter used to reduce 

noise and enhance image features. This step produces 

a filtered image. After that, the filtered image is 

subjected to pixel normalisation and elimination. 

This procedure entails normalising the image's pixel  
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Table 1. A review on literature 

Techniques Used  Mechanism Limitations 

CNN [11] Traditional CNN procedure for detecting brain 

tumours. 

this model provided good accuracy but a 

specificity of 75%, which is considered 

very low. 

SVM [12] a machine learning-based algorithm that used an 

SVM model as an intermediate stage 

it is limited because of reduced accuracy 

of 82 % at Validation phase and also by 

its reliance on handcrafted features and 

may not capture the full complexity 

Region Growing + 

Skull stripping 

[13] 

The region growing algorithm either manually or 

semi-manually initialises the seed point, which 

influences the segmentation result. 

sensitivity is very low at 86.7% and This 

sensitivity is difficult to deal with, 

especially when dealing with complex or 

noisy images 

LBP [14] LBP is used as a texture descriptor in Image Analysis LBP only considers texture in local 

neighbourhoods, not spatial information 

between local patterns. Texture placement 

in medical images can aid diagnosis. 

CNN [15] Simple CNN architecture without any previous 

trained models has been used here.  

approach is limited by the validation 

accuracy of 84 % and the lack of advanced 

feature extraction techniques 

CNN + Tensor 

Flow [16] 

Anaconda Frameworks were used by the 

Researchers. 

a low sensitivity of 82%, which is 

considered a significant limitation. 

MultiResUNet 

[17] 

Used for multimodal images. accuracy of 91.65%, which is very low 

when compared to current scenarios 

Deep CNN [21] They divided the image into multiple patches in pre-

processing stage. 

detection with a sensitivity of 95%, but 

they did not discuss validation accuracy 

well 

ML [20] Used statistical based Machine Learning 90% accuracy and specificity and 91% 

sensitivity, which is good but low when 

compared to current algorithms 

Integral PSO [23] PSO with feature fusion for brain tumour detection PSO is heavily dependent on parameter 

tuning which can be a limitation 

Active DNN [24] deep neural network features selection for 

segmentation and recognition of brain tumours 

lower average accuracy of 92%. 

Nested U-Net [25] Nested U-Net architecture with an Enhanced 

Attention Gate and Compound Loss. 

Computational Complexity and 

Computational Efficiency are the 

limitations 

Autoencoders 

[26] 

While this method effectively performs image 

classification, it focuses on classification tasks  

This method   may necessitate a large 

amount of labelled data, which is often 

difficult to obtain in medical imaging. 

SDA-UNET2.5D 

[27] 

a shallow dilated with attention UNet2.5D 

architecture for brain tumour segmentation 

emphasis on 2.5D MRI images and 

the lack of explicit discussions on 

computational efficiency. The authors 

also concentrated solely on dice score, 

with no comparison to Sensitivity and 

Specificity. 

 

En-CNN [28] improves classification performance through 

ensemble methods 

it is limited to classification and does 

not support tumour segmentation or 

localization. 

Otsu [29] It is a Thresholding approach based on Classic Otsu 

method. 

it has limitations in dealing with 

noise, multi-modal intensity distributions, 

and complex tumour boundaries. 
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Figure. 1 Proposed brain tumor detection method 

 

values to a standard range and removing any pixels 

that fall below a certain threshold value. This step 

produces a normalised and cleaned image. DOST is 

then fed the normalised and cleaned image. The 

DOST transform converts an image from the attained 

phase of the spatial domain to the corresponding 

value of the frequency domain. This aids in 

identifying the image's key features. DOST's output 

is then subjected to feature extraction. Identifying and 

extracting the image's important features is what 

feature extraction is all about. For tumour detection, 

the salient form of the features that have been 

extracted from the processed and transformed brain 

tumor images are fed to the CNN, which is 

considered as one of the finest and standard type of a 

deep neural network which is most often used for 

object recognition. 

The algorithm described in this work aims to 

improve image quality and aid in the detection of 

brain tumors. The process begins with acquiring 

images from a medical database and applying a 

Wiener filtering procedure to pre-process the images. 

The pixel normalization elimination process is then 

initiated to normalize the pixels in the image. Next, 

the discrete orthogonal stockwell transform (DOST) 

is introduced as a transformation process to represent 

the image in the frequency domain. Features are then 

extracted using a complexity feature process. Finally, 

a RCSF-CNN process is applied, which is subtractive 

spatial light-weight-based, to detect brain tumors 

based on a trained dataset. The blocks in Fig. 1 are 

discussed briefly, and a description of the proposed 

deep learning approach with its novelty in technical 

terms is provided.  

Pre-processing using weiner filter: 

The Weiner filter is used in this approach to 

address the challenges posed by noise and artefacts in 

brain images, ultimately improving the quality and 

reliability of the images before further analysis. The 

Weiner filter is a critical step in the preprocessing 

pipeline, aiming to reduce noise while preserving 

important details in brain images. 

Pixel normalization and elimination: 

Pixel normalisation is the process of 

manipulating the pixel values of an image in order to 

enhance or remove certain features that disrupt the 

image's integrity. This section is also intended to 

normalise and fuse two input images using wavelet 

decomposition and the fusion methods specified. The 

function is flexible in terms of input arguments and 

output options, and it makes image normalisation and 

fusion operations simple. 

Discrete orthogonal stockwell transform: 

The discrete orthogonal stockwell transform is 

applied to the resulting image after the pixel 

normalisation and fusion steps. The DOST is a time-

frequency representation that gives information about 

a signal's time and frequency components. The 

DOST coefficients represent the energy of the signal 

in various time and frequency domains. These 

coefficients can then be used as features in further 

analysis. 

Feature extraction process: 

The images are subjected to complexity-based 

feature extraction, which is based on a feature 

extraction process known as "Local Central 

Prominent." This method entails convolving an input 

image with a set of predefined filter kernels and then 

analysing the results to extract features that represent 

the image's local prominent patterns. 

Reduced complexity spatial fusion CNN (RCSF-

CNN) model : 

The "Reduced Complexity Spatial Fusion CNN 

(RCSF-CNN)" method is a novel approach for 

accurately classifying brain tumours using medical 

images. The method is built around a lightweight 

CNN architecture that is strategically designed to 

reduce computational complexity while maintaining 

competitive performance. This efficiency is 

augmented by the incorporation of spatial fusion 

techniques, in which information from multiple 

sources, including potentially MR-based images, is 

combined using wavelet-based fusion. Notably, the 

method includes an important normalisation step that 

improves data fusion and interpretation. The model 

incorporates class activation mapping (CAM) to 

provide transparent insights into classification 

decisions, making it more understandable to medical 
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professionals. Its innovative use of lightweight 

design, spatial fusion, normalisation, and 

interpretability techniques. The approach's tailored 

design to address brain tumour classification 

challenges demonstrates its potential to yield 

accurate, efficient, and clinically meaningful results, 

advancing the field of medical imaging in healthcare 

applications. 

The "Reduced Complexity Spatial Fusion CNN 

(RCSF-CNN)" introduces a significant innovation in 

accurately classifying brain tumours using medical 

images. The approach is built around a strategically 

designed lightweight CNN architecture that 

effectively balances computational efficiency with 

competitive performance. This efficiency is 

enhanced further by the incorporation of spatial 

fusion methodologies. Using wavelet-based fusion 

techniques, this fusion process combines information 

from various sources, including MR-based images. A 

notable addition is the inclusion of a critical 

normalisation step that improves data fusion quality 

and facilitates interpretation. The inclusion of class 

activation mapping (CAM) strengthens the model's 

explanatory power by providing medical 

professionals with transparent insights into 

classification rationale. The approach distinguishes 

itself through its unique combination of lightweight 

design, spatial fusion, normalisation, and 

interpretability techniques. Its personalised design 

aimed at addressing the complexities of brain tumour 

classification highlights its potential to generate 

precision, computational efficiency, and clinically 

significant outcomes.   

Algorithm of reduced complexity spatial fusion 

CNN (RCSF-CNN) 

 

Step i. Image acquisition from medical database and 

pre-process by means of Wiener filtering 

procedure. 

 

𝐹(𝑢, 𝑣) =
𝐺(𝑢,𝑣)𝐻(𝑢,𝑣)

(|𝐻(𝑢,𝑣)|2𝑆(𝑢,𝑣)+ 𝑁(𝑢,𝑣))
                     (1) 

            

Where F(u,v) denotes the estimated image, G(u,v) 

depicts about the observed image, H(u,v) conveys the 

process of  transfer function, H*(u,v) is referred as the 

complex conjugate  values of H(u,v) function, S(u,v) 

denotes power spectral density, N(u,v) is considered 

as the PSD (power Spectrum) of the noise in the 

image. 

Return the filtered image to the spatial domain. 

To obtain the filtered image in the spatial domain, use 

the inverse Fourier transform (IFFT). P (i,j) 

represents the pre-processed brain MRI scan using 

the Wiener filtering procedure. 

Step ii. Initiate the pixel normalization elimination 

process 

a. Calculate the mean value of pixel values in an 

image using the formula: 

 

𝜇 =  (
1

(𝑀 ⨯ 𝑁)
)  𝛴 𝑃(𝑖, 𝑗)                               (2) 

 

standard deviation : 

 

 𝜎2  =  
1

(𝑀 ⨯ 𝑁)
 ∑(𝑃(𝑖, 𝑗)–  𝜇)2                       (3) 

 

b. Normalize the pixel values in P(i, j) using the 

mean and standard deviation. 

For each pixel P(i, j), apply the normalization 

formula given by 

 

𝑃𝑛𝑜𝑟𝑚(𝑖, 𝑗) =
(𝑃(𝑖,𝑗)− 𝜇)

𝜎
                                (4) 

 

The resulting image after pixel normalization is 

denoted as 𝑃𝑛𝑜𝑟𝑚(𝑖, 𝑗) where each pixel value 

represents the normalized value of the corresponding 

pixel in the pre-processed brain MRI scan. 

 

Step iii. Introduce the DOST as a Transformation 

process 

 

a. calculate the corresponding DOST coefficient 

C(t, f) using the formula: 

 

𝐶(𝑡, 𝑓) =  ∑[𝑃𝑛𝑜𝑟𝑚(𝑖, 𝑗) 𝐾(𝑖 −  𝑡, 𝑗 −  𝑓)]   (5) 

 

where: 

Normalize the DOST coefficients and is given by 

 

𝐶𝑛𝑜𝑟𝑚(𝑡, 𝑓) =
𝐶(𝑡,𝑓)

∑|𝐶(𝑡′,𝑓′)|
                                (6) 

 

Step iv. Extraction of features via complexity feature 

process 

Step v. Involvement of CNN process which is 

reduced complexity spatial fusion CNN (RCSF-

CNN) based to detect the brain tumors based on 

trained dataset. 

4. Experimental investigations 

The proposed deep learning model was trained on 

an augmented dataset of 3000 samples generated 

from the BRATS dataset's initial 300 images [18]. 

The aim was to improve the model's ability to detect 

brain tumours in medical images. By applying 

various transformations to the original images, data 

augmentation techniques expanded the dataset, 

enhancing the model's ability to recognise tumor- 
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Figure. 3 Input brain scan 

 

 
Figure. 4 Resized image 

 

 
Figure. 5 Subtractive pixel extracted image 

 

related patterns effectively. 80% of the augmented 

dataset (2400 samples) was used for training, 

allowing the model to recognise intricate tumour 

features. The remaining 20% (600 samples) 

comprised the test set, which evaluated the model's 

performance on previously unseen data. The input 

Brain scan, depicted in Fig. 3, is resized for optimal  
 

 
Figure. 6 Pre-processed image 

 

 
Figure. 7 Pixel noise ratio elimination 

 

processing and depicted in Fig. 4, and its matching 

subtractive pixel extracted image, depicted in Fig. 5, 

is a critical component of the overall enhanced 

process. 

Following that, Wiener filtering is used to remove 

any extraneous noise. The noise in the input image is 

analysed at this stage to determine its characteristics, 

such as the type of noise and the noise power 

spectrum. The PSD of the input image is estimated 

using an appropriate method that provides 

information about the image's frequency content. 

After that, the estimated PSD is used in the Wiener 

filtering algorithm to remove noise and improve the 

image. The Wiener filter is intended to minimise the 

mean square error between the filtered image and the 

original image while taking noise and signal 

characteristics into account. Finally, the filtered 

image is subjected to post-processing to remove any 

artefacts and improve the image's features. The final 

image in Fig. 6 shows the resultant images of the pre-

processed image, and the pixel noise ratio has been 

reduced, as shown in Fig. 7. 

After that, the stages that are involved in the 

extraction and elimination of subtractive spatial 

information. Next, the complexity feature extraction 

process is started. This process involves extracting 

the key image features such as mean, energy, contrast, 

and so on, which are essential in the detection process 

Fig. 8, and thus engaging RCSF-CNN to label the 

features. Afterwards, the detection process is  
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(a)                                              (b)        

Figure. 8 (a) & (b) Complexity feature extraction  

 

 
Figure. 9 Brain tumor detected area 

 

completed. 

When these extracted features are run through a 

RCSF-CNN and subjected to the trained dataset, the 

result is a brain tumour detection area, which, as Fig. 

9 demonstrates, is an indication that a brain tumour 

has been found. 

The proposed deep learning model underwent 

training on an augmented dataset comprising 3000 

samples, which were generated from the original 300 

images available in the BRATS dataset [18]. The 

primary objective was to equip this model with the 

ability to accurately detect brain tumors within 

medical images. Through data augmentation 

techniques, the initial dataset was expanded by 

applying diverse transformations to the original 

images, enhancing the model's capacity to generalize 

and identify tumor-related patterns effectively. 

Within this augmented dataset, 80% of the samples 

(2400 samples) were allocated for training, enabling 

the model to learn and internalize the intricate 

features associated with brain tumors. The remaining 

20% (600 samples) were dedicated to the test set, 

evaluating the model's performance on unseen data. 

For feature extraction, the complexity technique was 

employed, involving the analysis of texture, spatial 

relationships, and other relevant attributes within the 

images. It's noteworthy that Table 2 presented a 

comprehensive summary of the features extracted 

from a subset of 5 samples, providing insights into 

the model's decision-making process for identifying 

brain tumors across the entire dataset. 

The features that were extracted are provided 

with following equations: 

Mean: The mean of an image is the average pixel 

value  

 

𝜇 = (
1

𝑁
) ∑ 𝐼(𝑖)𝑛

𝑖=1                                        (7) 

 

Here, N is considered as the over-all quantity of 

pixels in the image and I(i) denoted as the intensity 

value of the ith pixel. 

Standard deviation: The standard deviation of 

an image is a measure of the amount of variation in 

the pixel values and is calculated as: 

 

𝜎 = √((
1

𝑁
) ∑   (𝐼(𝑖) − 𝜇)2𝑛

𝑖=1 )                (8) 

 

Entropy: Entropy is a measure of the 

randomness or uncertainty in the pixel values of an 

image and is calculated as: 

 

𝐻 = − ∑ 𝑝(𝑖)𝑙𝑜𝑔2(𝑝(𝑖))𝐿
𝑖=1                        (9) 

 

L is denoted as the  number of gray level values 

in the concerned image p(i) is considered as the 

normalized histogram of the image, and log2 is 

known to be the base-2 logarithm. 

Variance: Variance is a measure of how far the 

pixel values are from the mean and is calculated as: 

 

𝜎2 = (
1

𝑁
) ∑ (𝐼(𝑖) − 𝜇)2𝑛

𝑖=1                          (10) 

 

Smoothness: Smoothness is a measure of how 

uniform the pixel values are and is calculated as: 

 

𝑆 =
1

1+𝜎2                                                       (11) 

 

Contrast: Contrast is a measure of the difference 

between the pixel values in different regions of the 

image and is calculated as: 

 

𝐶 =
𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛

𝜇𝑚𝑎𝑥+𝜇𝑚𝑖𝑛
                                             (12) 

 

where 𝜇𝑚𝑎𝑥  and 𝜇𝑚𝑖𝑛  are the maximum and 

minimum pixel values in the image, respectively. 

Correlation: Correlation is a measure of the  
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Table 2. Features extracted for samples of brain tumor 

images 

 Sample Brain Tumor Images 

Features 

Extracted  

Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Mean 0.0038 0.0046 0.00371 0.00432 0.0033 

Standard 

Deviation 

0.089 0.082 0.094 0.087 0.097 

Entropy  0.0080 0.0074 0.0069 0.0076 0.0077 

Variance 2.531 2.468 2.439 2.431 2.447 

Smoothness 0.934 0.941 0.929 0.928 0.931 

Contrast 0.354 0.347 0.348 0.366 0.358 

Correlation  0.1067 0.1102 0.1123 0.1089 0.1094 

Energy 0.8155 0.8321 0.8187 0.8167 0.8164 

 

 

 
Figure. 10 Mean feature 

 

 
Figure. 11 Standard deviation feature 

 

 
Figure. 12 Entropy feature  

 

 
Figure. 13 Variance feature 

 

 
Figure. 14 Smoothness and energy features for brain 

tumor detection 

 

 
Figure. 15 Contrast feature  

 

 
Figure. 16 Correlation feature 

 

similarity between the pixel values in different 

regions of the image and is calculated as: 
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𝑅 =
(

1

𝑁
) ∑ (𝐼(𝑖)−𝜇𝑥)(𝐽(𝑖)−𝜇𝑦)𝑛

𝑖=1

𝜎𝑥𝜎𝑦

                        (13) 

 

Energy: Energy is a measure of the total amount 

of energy in the image and is calculated as: 

 

𝐸 = ∑ 𝐼(𝑖)2 𝑛
𝑖=1                                            (14) 

 

The features which were tabulated are also 

represented in corresponding graphical plots where 

mean is drawn for 5 samples as shown Fig. 10, 

standard deviation in Fig. 11, entropy in Fig. 12, 

variance in Fig., 13, smoothness and energy in Fig. 

14, contrast feature in Fig.15, and finally correlation 

in Fig 16 for the easy perception to see the behavior 

of features for each sample in the detection.  

 

C. Performance evaluation 

The BRATS-2015 dataset served as a common 

ground for comparing the proposed method to other 

existing methods in the context of the research being 

discussed. This ensures that the proposed method's 

evaluation and comparison are carried out under 

similar conditions and with the same dataset as the 

other methods. A standardised approach like this is 

critical in research because it allows for a fair and 

meaningful comparison of the effectiveness and 

performance of different algorithms. The BRATS-

2015 dataset is a well-known and widely used dataset 

in medical image analysis, particularly for brain 

tumour segmentation and detection tasks. The 

BRATS-2015 dataset contains a diverse collection of 

brain magnetic resonance imaging (MRI) scans, 

including images of both normal brain tissue and 

tumor-affected brain regions. This dataset is thought 

to be useful for benchmarking and evaluating the 

performance of various algorithms and methods for 

brain tumour detection and segmentation. 

In the context of brain tumour detection, accuracy 

is critical in determining the efficacy of developed 

methodology. A high accuracy value indicates that 

the proposed methods can correctly identify and 

classify tumour or cancer instances, whereas a low 

accuracy value indicates the presence of 

misclassifications or false predictions. 

The accuracy of the brain tumor detection   can 

be calculated using the following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
              (15) 

 

Here TP – true positive (identified Tumors),  

TN – true negative, FP – false positive, 

 FN – false negative (not identified) 

Specificity is the proportion of true negatives  
 

Table 3. Accuracy parametric comparison for brain tumor 

detection 

Year  Techniques used  

 

Accuracy 

(%) 

2021 Enhanced Region Growing 

(ERG) [13] 

98 

2021 En-CNN [28] 95.5 

2022 CNN [11] 96 

2022 Thresholding [22] 95.559 

 Proposed Method 98.99 

 

 

identified correctly by the model. It indicates the 

model's ability to correctly classify non-tumor or 

non-cancer cases. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
                           (16) 

 

Sensitivity is the proportion of true positives that 

were identified by the model. It indicates the model's 

ability to correctly classify tumour or cancer cases. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                    (17) 

 

Table 3 is a comparison table that shows the 

performance metrics of various methods for detecting 

brain tumours. The proposed methodology achieves 

98.99% accuracy, 99.76% specificity, and 98.43% 

sensitivity. These metrics are compared to the 

findings of previous studies mentioned in the 

literature review.  

Table 3 provides a comprehensive analysis of the 

accuracy of various brain tumour detection 

techniques conducted on the BRATS dataset. The 

method proposed in this study demonstrated a notable 

accuracy rate of 98.99%, surpassing the performance 

of all other recent studies listed in the table.  

In general, the tabulated findings indicate that the 

proposed methodology has attained the highest level 

of accuracy, specifically 98.99%, when compared to 

other recent studies conducted on the BRATS dataset. 

This observation underscores the efficacy and pre-

eminence of the proposed methodology in the 

identification of brain tumours compared to other 

cutting-edge techniques utilised in the same dataset. 

The superior accuracy achieved by the method 

proposed in this study suggests its potential to 

enhance performance and precision in the detection 

of brain tumours. This promising development 

contributes to the advancement of medical image 

analysis and the diagnosis of brain tumours. 

Fig. 17 illustrates a graphical representation that 

allows for a visual comparison of the accuracy 

achieved by different brain tumour detection methods  
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Figure. 17 Comparison plot for accuracy 

 

Table 4. Specificity parametric comparison for brain 

tumor detection 

Year Techniques used  

 

Specificity 

(%) 

2020 Active Deep Learning 

(Active -DL) [24] 

96.06 

2021 Enhanced Region Growing 

(ERG) [13] 

99.7 

2021 SVM [12] 96.87 

2021 En-CNN [28] 96.97 

2022 CNN [11] 75.72 

 Proposed Method  99.76 

 

 

when applied to the BRATS dataset. The plot 

demonstrates the efficacy of various methodologies, 

with the proposed approach exhibiting the highest 

level of accuracy at 98.99%. This exceptional 

performance distinguishes it as the most precise 

method when compared to other recent studies 

conducted on the BRATS dataset. The plot 

incorporates various additional methods which were 

reported in recent years The comparison plot 

provides clear evidence that the accuracy of the 

proposed method surpasses that of all other methods 

by a significant margin. The graphical depiction of 

accuracy values highlights the significant 

enhancement attained by the proposed methodology 

in the detection of brain tumours, as compared to the 

most advanced techniques employed on the BRATS 

dataset. The BRATS -2015 benchmark was used all 

the methods compared and also the proposed method 

also used similar data for a proper comparison. The 

increased level of accuracy attained by the method  
 

 
Figure. 18 Comparison plot for specificity 

 

proposed in this study serves to strengthen its 

potential for enhanced precision and dependability in 

the detection of brain tumours. Consequently, it 

represents a promising and valuable addition to the 

domain of medical image analysis and the diagnosis 

of brain tumours. The utilisation of a comparison plot 

effectively presents a visually persuasive 

demonstration of the exceptional performance 

exhibited by the proposed method. This substantiates 

the method's efficacy in accurately detecting brain 

tumours and emphasises its significance in advancing 

the field of brain tumour diagnosis research. 

The specificity values for different brain tumour 

detection methods, exclusively evaluated on the 

BRATS dataset, are comprehensively illustrated in 

Table 4. The specificity parameter quantifies the 

capacity of a methodology to accurately detect 

instances that are truly negative, a critical aspect in 

the prevention of false positive outcomes during the 

diagnosis of brain tumours. The table presents a 

compilation of various methodologies, including the 

proposed approach, as well as several recent studies. 

After careful examination of the table, it is apparent 

that the proposed method demonstrates a remarkable 

specificity of 99.76%. The exceptional level of 

specificity observed in this study demonstrates the 

considerable accuracy in correctly classifying healthy 

brain images as negatives, thereby reducing the 

likelihood of misdiagnosis or unnecessary 

interventions. Significantly, the specificity of the 

proposed method exceeds that of all other recent 

studies, thereby establishing its superiority in 

accurately discriminating between brain regions that  
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Table 5. Sensitivity parametric comparison for brain 

tumor detection 

Year Techniques used  Sensitivity 

(%) 

2021 Enhanced Region Growing 

(ERG) [13] 

86.7 

2021 En-CNN [28] 97.03 

2022 Thresholding [22] 68.79 

2022 CNN [11] 95 

2022 Nested U-Net [25] 96.56 

 Proposed Method  98.43 

 

 

 
Figure. 19 Comparison plot for sensitivity 

 

are healthy and those affected by tumours. 

Fig. 18 depicts the comparison of specificity 

values for brain tumour detection methods on the 

BRATS dataset. The proposed method outperforms 

other recent works reported in literature in recent 

years. The visualisation of specificity values in Fig. 

18 strengthens the proposed method's credibility and 

potential as a valuable tool in advancing medical 

image analysis for brain tumour detection. 

Table 5 compares the sensitivity values for brain 

tumour detection methods on the BRATS dataset in 

detail. The proposed method's sensitivity of 98.43% 

outperforms other recent works that were tested on 

the same dataset. This high sensitivity value confirms 

the proposed method's accuracy in detecting tumor-

affected regions, as well as its potential as a valuable 

tool in advancing medical image analysis for brain 

tumour detection. The findings in Table 5 

demonstrate the proposed method's credibility and 

promise in contributing to the field of brain tumour 

detection and, ultimately, improving patient 

outcomes. 

Fig. 19 depicts the sensitivity values for brain 

tumour detection methods using the BRATS dataset. 

The sensitivity of the proposed method is 

prominently displayed as the highest in the plot, 

clearly indicating its superiority over other recent 

works. This high sensitivity value reaffirms the 

proposed method's ability to detect brain tumours 

accurately, as well as its importance in contributing 

to improved patient care and medical decision-

making in the field of neuroimaging. 

5. Conclusion  

To summarise, detecting and classifying brain 

tumours within medical images is a critical and 

intricate task. Image data's complexity and diversity 

frequently pose significant challenges to accurate 

analysis. In order to address this, we developed the 

reduced complexity spatial fusion CNN (RCSF-

CNN), a novel approach that combines complexity 

feature extraction with a CNN-based detection and 

classification framework tailored for brain tumour 

identification. Notably, our model uses the discrete 

orthogonal stockwell transform (DOST) as an 

intermediate stage, which improves the robustness 

and precision of detection and classification 

processes. The effectiveness of our model has been 

demonstrated through extensive training and testing 

on a large dataset. We used 3000 samples, which 

were thoughtfully supplemented from the existing 

300 images in the BRATS dataset [18]. This large 

dataset, which includes a wide range of brain tumour 

cases, underpins the model's dependability and 

versatility. 80% of the dataset was used for training, 

with the remaining 20% reserved for rigorous testing. 

It is worth noting that the proposed methodology 

achieved a remarkable accuracy rate of 98.99% for 

brain tumour detection, demonstrating its utility in 

real-world scenarios. This methodology emerges as a 

strong and dependable tool for the early detection and 

classification of brain tumours, resulting in improved 

therapeutic strategies and patient outcomes. 

Surprisingly, the high accuracy rates achieved 

highlight the efficacy of our proposed methodology 

across a wide range of cases. This study not only 

shows how our improved deep learning algorithm has 

the potential to revolutionise medical image 

processing, but it also emphasises the importance of 

a carefully curated and augmented dataset in 

improving model performance. Furthermore, the 

planned direction includes the development of user-

friendly software or tools that incorporate these 

advanced deep learning techniques, making them 
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more accessible to healthcare professionals. By 

incorporating such tools into clinical workflows, they 

can play an important role in early brain tumour 

detection and classification, raising patient care and 

outcomes to new heights. 

Notations list : 

• Image pre-processing: 

• I(i, j): Pre-processed  cancer image 

pixel at coordinates (i, j) 

• L: Number of possible intensity 

values (typically 256 for an 8-bit 

image) 

• Histogram computation: 

• h(k): Number of pixels with intensity 

'k' 

• MN: Total number of pixels in the 

image 

• cdf(k): Cumulative distribution 

function of the histogram 

• Intensity transformation: 

• T(k): Transformation function that 

maps intensity value k to its new 

value in the output image 

• Segmentation: 

• g(x, y): Output image obtained by 

applying the transformation function 

to each pixel in the input image 

• f(x, y): Input image pixel at 

coordinates (x, y) 

• M, N: Dimensions of the image 

• GLCM computation: 

• G(i, j, dx, dy): GLCM element at 

position (i, j) for displacement (dx, 

dy) 

• I(m, n): Pixel value at position (m, n) 

in the pre-processed image 

• P (i, j, dx, dy): Normalized GLCM 

element 

• Texture features: 

• Contrast: Measure of difference 

between pixel values in different 

regions 

• Energy: Measure of total amount of 

energy in the image 

• Entropy: Measure of randomness or 

uncertainty in pixel values 

• Homogeneity: Measure of similarity 

between pixel values in different 

regions 
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