
Received:  August 21, 2023.     Revised: October 4, 2023.                                                                                               149 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.15 

 

 
Uninhibited Positional and Contextual Attention in Spectral-Based (SPT) 

Transformer with Multi-head Shortcut for Improved Remaining Useful Life 

Forecasting in Industry 4.0  

 

Abhishek Dwivedi1*          Nikhat Raza Khan2 

 
1Department of Computer Science & Engineering, IES University, Bhopal, India 

2Department of Computer Science & Engineering, IES College of Technology, Bhopal, India 

* Corresponding author’s Email: psit.abhishek@gmail.com 

 

 
Abstract: This research paper aims to forecast equipment's remaining useful life (RUL) to improve maintenance 

planning and reduce costs. This paper presents the spectral-based transformer (SPT) model, designed for predicting 

the remaining useful life (RUL) in the evolving maintenance landscape of industry 4.0. Proactive maintenance is 

becoming increasingly important as it improves performance and reduces losses. SPT utilizes advanced attention 

mechanisms and innovations, which have been evaluated on the C-MAPSS dataset to simulate various operations. The 

contributions include discrete cosine transform attention (DCTA), uninhibited positional and contextual attention 

(UPCA), multi-head shortcuts, and bidirectional structures. Component efficacy is rigorously assessed through 

ablations. The results demonstrate that SPT exhibits superior performance compared to other methods, with a notable 

advantage on the challenging FD002 and FD004 sub-datasets within the C-MAPSS dataset. The proposed method 

decreases the root mean square error (RMSE) by 14% and enhances the performance scores of FD002 and FD004 by 

10% and 24%, respectively. Additionally, it reduces the RMSE of FD004 by 15%. The model outperforms current 

methods, showing stability and generalization across different subsets of data. SPT demonstrates proficiency in 

capturing degradation patterns, which shows the potential for accurate remaining useful life (RUL) prediction. This 

tool is designed for time-series regression and has potential applications in various industries. Future research could 

focus on expanding the system's capabilities to process higher frequencies and broader contexts effectively. The SPT 

method provides a thorough approach for predicting the remaining useful life (RUL). It can potentially improve 

maintenance decisions and system performance in the context of Industry 4.0. 

Keywords: Transformer, Remaining useful life, Multi-head shortcut, Spectral and temporal attention. 

 

 

1. Introduction 

The maintenance decision-making process has 

been transformed in the context of Industry 4.0 [1]. 

Maintenance planning, equipment failure threshold 

assessment, and machinery inspection have gained 

significance in industrial settings. The prompt 

deactivation of machines upon failure is now 

recognized as a preventive measure to reduce further 

damage. The modifications demonstrate the changing 

nature of Industry 4.0, highlighting the growing 

importance of proactive maintenance strategies and 

equipment monitoring. The integration of 

maintenance applications in factory environments is 

essential for fostering innovation. Monitoring 

machine conditions is essential for optimizing 

operations, predicting failures, and estimating 

remaining useful life (RUL) for maintenance 

planning. 

Maintenance strategies can be categorized as 

proactive or reactive. Proactive maintenance aims to 

optimize system performance and minimize financial 

losses, while reactive maintenance addresses issues 

after failure. Maintenance strategies have 

transitioned from diagnostic-based error correction to 

a more comprehensive approach called prognostics 

[2]. Prognostics refers to predicting the remaining 

useful life (RUL) of systems or subsystems, primarily 

regarding time. The main objective of this initiative 
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is to set operational thresholds and anticipate 

maintenance needs in advance [3]. Estimating 

Remaining Useful Life (RUL) is essential for timely 

decision-making, cost reduction, and improved on-

site maintenance effectiveness. This improves the 

system's overall health and safety. Remaining useful 

life (RUL) estimation is a valuable technique in 

prognosis and health management (PHM). It has 

gained recognition for its effectiveness in enhancing 

performance and minimizing financial losses. The 

term "RUL" denotes the operational lifespan of an 

asset until it becomes inoperable. This concept offers 

planning, cost efficiency, and operational 

performance advantages. 

RUL prediction methods can be categorized into 

three groups: data-driven, physics model-based, and 

hybrid methods that integrate both approaches [3]. 

Data-driven methods leverage historical system data 

and fault records to extract insights and detect 

patterns. Physics model-based methods leverage 

expert knowledge and may not rely on historical data. 

Hybrid strategies combine elements from both 

approaches. This study uses data analysis to estimate 

turbofan jet engines' remaining useful life (RUL). 

The analysis employs NASA's C-MAPSS simulator-

generated dataset for turbofan engine degradation 

simulation. SVM and similarity-based methods are 

appropriate for scenarios with limited or extensive 

historical failure data [5]. Predictive maintenance 

encompasses two main tasks: classification and 

regression. Classification algorithms categorize 

system states, while regression algorithms predict 

remaining useful life (RUL) values. 

In industry 4.0 environments, accurate and timely 

forecasting of machinery and equipment's remaining 

useful life (RUL) is a critical challenge. Existing 

predictive maintenance methods often struggle to 

fully harness the potential of advanced machine 

learning techniques. The research problem is to 

improve the precision and reliability of RUL 

forecasting in Industry 4.0 by exploring the 

integration of uninhibited positional and contextual 

attention mechanisms within the spectral-based 

transformer (SPT) model, coupled with multi-head 

shortcut connections. Integrating maintenance 

decision-making, remaining useful life (RUL) 

estimation, and predictive maintenance strategies in 

the Industry 4.0 framework aims to enhance system 

performance, minimize operational disruptions, and 

mitigate economic consequences. 

Our contribution are as follows: 

 

• Spectral attention modules based on discrete 

cosine transform attention (DCTA): We 

propose using DCTA instead of traditional 

attention methods that rely on weights and bias. 

DCTA utilizes the computationally efficient 

discrete cosine transform (DCT) to compute 

attention, resulting in a real frequency 

spectrum using fourier transform (FFT). 

• Uninhibited positional and contextual 

attention (UPCA): We introduce UPCA to 

separate positional and contextual embeddings, 

reducing noise from positional embedding and 

enhancing attention performance. 

• Multi-head shortcut (MHS) mechanism: We 

introduce a multi-head shortcut mechanism to 

improve feature representation and prevent 

feature collapse, ultimately enhancing the 

overall effectiveness of the model. 

• Bidirectional structure: To enhance feature 

extraction along the temporal dimension, we 

incorporate a bidirectional structure into the 

model, leading to more accurate and effective 

RUL predictions. 

 

The subsequent sections of this paper are 

organized as follows: Section 2 reviews the literature 

on RUL prediction. Section 3 proposes Spectral-

based (SPT) Transformer model using multi-head 

shortcut and UPCA mechanism for RUL prediction. 

Section 4 describes the experimental setups, technical 

details, and model evaluation metrics. Section 5 

presents the results of the proposed approaches and 

compare with state-of-art techniques. Finally, section 

6 conclusion of the study. 

2. Related works 

Numerous studies have examined the application 

of machine learning algorithms to estimate the 

remaining useful life (RUL) and enable predictive 

maintenance for turbofan jet engines. Mathew et al. 

[7] found that the random forest algorithm 

outperformed others in estimating the remaining 

useful life (RUL). Ahsan et al. [8] developed an 

autoregressive model based on NASA's turbofan 

engine dataset for classification and regression tasks. 

Mosallam et al. employed classification and 

regression techniques to calculate the Remaining 

Useful Life (RUL) [9]. 

Ensemble learning is a vital technique for 

enhancing performance. Soni et al. [3] used LSTM 

and CNN deep learning techniques to forecast gas 

turbines' remaining useful life (RUL). The CNN 

approach demonstrated superior reliability in 

comparison to LSTM. Al-Dulaimi et al. [10] utilized 

LSTM and CNN algorithms to improve the 

performance of their hybrid neural network model for 

predicting remaining useful life (RUL). Ellefsen et al. 
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proposed a semi-supervised model to investigate the 

impact of limited labeled training data on estimating 

remaining useful life (RUL). Several studies have 

recognized the superior performance of the 

convolutional neural network (CNN) approach 

compared to the long short-term memory (LSTM) 

method [12-14].  

Attention mechanisms have been suggested as an 

alternative to conventional CNN architectures in 

LSTM-based research on predictive maintenance. 

Citations [15] and [16] are referenced. CNNs excel at 

capturing local patterns in time-series data. However, 

they may face challenges in managing long-term 

dependencies and accurately identifying crucial 

segments for precise predictions. Attention is a 

mechanism that assigns importance to segments of an 

input sequence based on their relevance to 

predictions. Recent studies have shown that 

attention-based LSTM models improve performance 

in industrial settings for fault detection and failure 

prediction [9, 17]. 

Zhang et al. presents the dual aspect self-attention 

based on the transformer (DAST) method, 

specifically developed for efficient remaining useful 

life (RUL) prediction. DAST employs dual parallel 

encoders to extract sensor and time step information 

through self-attention without using RNN/CNN 

components [20]. Wang et al. introduces a novel joint 

deep learning architecture that combines a 

transformer encoder with a temporal convolution 

neural network (TCNN). The transformer model can 

capture long-range dependencies, while the TCNN 

model focuses on extracting local features. The two 

parts are trained in a regression module, which sets 

them apart from traditional ensembles. The model 

performs exceptionally well on the C-MAPSS [19] 

dataset, particularly in challenging scenarios. 

Limitations can occur in more straightforward 

situations due to transformer overfitting [21]. Xu et 

al. presents an improved Transformer-based method 

for predicting remaining useful life (RUL). The 

method is designed to handle diverse operating 

conditions and high-dimensional sensor data. This 

approach incorporates attention mechanisms and 

deep learning to consider spatio-temporal 

characteristics and conditions. Data preprocessing 

techniques such as clustering and standardization 

eliminate variations caused by different conditions. 

Self-attention effectively captures spatio-temporal 

features while preserving the integrity of the original 

sequences [22]. Zhou et al. highlights the importance 

of integrating domain knowledge about equipment 

degradation into machine learning models to improve 

the accuracy of remaining useful life (RUL) 

predictions. The approach consists of three steps. The 

study involves the identification of knowledge 

sources, formalization using Piecewise and Weibull 

expressions, and integration into the machine 

learning pipeline [23]. 

3. Proposed methodology 

The spectral-based transformer (SPT) uses 

Transformer and BiLSTM architectures to estimate 

Remaining Useful Life (RUL) efficiently. To capture 

complicated temporal correlations in time series data 

while resolving transformer constraints. 

Our transformer variation, uninhibited positional 

and contextual attention (UPCA) captures temporal 

attention via a 2D-tensor representation. Contextual 

embedding and residual connections preserve input 

sequence temporal information. Due to time series 

data noise sensitivity, we avoid absolute pooling 

encoding (APE) [18], unlike the transformer. 

Contextual embedding uses discrete cosine 

transformation and multi-head shortcuts. 

Concatenation, addition, and normalization before a 

fully connected feed-forward layer integrates output 

with temporal attention. This layer employs the 

exponential linear unit (ELU) activation function for 

smoother differentiation than rectified linear unit. 

 

𝐸𝐿𝑈(𝑦) = {
𝑦𝑀𝐻𝑆 ,                   𝑥 > 0

𝛼(𝑒𝑦𝑀𝐻𝑆 − 1),   𝑥 ≤ 0
            (1)  

 

where α is a negative multiplication factor while  

𝑦𝑀𝐻𝑆 represents the result obtained from the multi-

head shortcut (MHS). 

The positional and contextual attention paradigm 

gives consecutive encoders temporal attention to 

encoder output. The encoder outputs a two-

dimensional tensor matching input embedding 

dimensions. Multi-head self-attention, addition, and 

normalization follow in the decoder module. The first 

encoder outputs keys and values for the second multi-

head attention. The decoder uses the encoder's 

contextual embedding. Before linear layers, the 

decoder output flattens. Self-attention and contextual 

embedding improve decoder understanding and 

output. 

Transformer and BiLSTM architectures are 

combined with contextual embedding and attention 

processes in our UPCA technique to estimate RUL, 

shown in Fig. 1. 

3.1 Spectral attention (using discrete cosine trans-

form attention) 

The encoder of our model utilizes discrete cosine 

transform attention (DCTA) for its attention 
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mechanism. DCTA employs the discrete cosine 

transform (DCT) for converting the signal from the 

temporal domain to the spectral domain, akin to the 

Fourier transform. The discrete cosine transform 

(DCT) utilizes real cosine kernels instead of complex 

exponential kernels, leading to a real spectrum and 

adequate energy compaction. A one-dimensional 

discrete cosine transform (DCT) manages the 

embedding dimension, denoted as 𝐷𝑒𝑚𝑏 . Then, we 

employ a second one-dimensional DCT, referred to 

as 𝐷𝑠𝑒𝑞, to manage the sequence dimension. 

 

𝑦 = 𝐷𝑠𝑒𝑞(𝐷𝑒𝑚𝑏(𝑞))       (2)  

 

where q represents query and 𝑦 denoted as DCTA 

output. 

The attention mechanism based on discrete 

cosine transform (DCT) does not possess any 

learnable parameters, unlike the mechanisms based 

on fast Fourier transform (FFT). Reducing 

parameters improves models' learning capability and 

practicality when dealing with limited datasets such 

as C-MAPSS. Additionally, it enhances the 

efficiency of DCT computation algorithms. 

3.2 Uninhibited positional and contextual atten-

tion (UPCA) 

The incorporation noise, sensor data, and 

positional information in the UPCA model 

dramatically improves the Transformer's ability to 

recognize patterns in long-term sequences. Fig. 2 

depicts the temporal attention mechanism of the 

model, which is designed to focus on ordered 

sequences. Like the discrete cosine transform 

attention (DCTA), the spectral attention mechanisms 

incorporate positional encoding into the attention 

model rather than relying on contextual embedding. 

This approach maintains the sequential order of the 

input sequence while considering the surrounding 

context. One notable characteristic of the UPCA 

model is its ability to compute temporal attention 

once and reuse it in subsequent encoders, thereby 

reducing the computational burden. The two-

dimensional temporal attention structure preserves 

the input and output dimensions, ensuring that time 

series compression is avoided and that information 

and order are maintained throughout propagation. 

The model utilizes a feed-forward network to 

produce contextual embeddings by utilizing sliding 

windows of input sensor data and applying temporal 

attention. Contextual embedding is a technique that 

increases the dimensionality of sensors in order to 

capture complex patterns. Spectral attention  

 

 
Figure. 1 Proposed frameworks (spectral based 

transformer) 

 

 
Figure. 2 3.2 Uninhibited positional and contextual 

attention (UPCA) mechanism 

 

techniques, such as discrete cosine transform 

attention (DCTA), improve contextual embedding 

and incorporate a multi-head shortcut mechanism. 

The merging of enhanced contextual embedding and 

temporal attention occurs through concatenation 

along the temporal dimension. Fused the refined 

contextual embedding with temporal attention by 

concatenation in temporal dimension: 

 

𝐶𝑜𝑛𝑐𝑎𝑡 (
𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔,

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
) 𝑤𝐹      

(3) 

 

where 𝑤𝐹 fusion's weight matrix. 
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3.3 Multi-head shortcuts  

This study presents a new method to effectively 

handle feature diversity and temporal collapse 

challenges in time series data. Our motivation stems 

from the desire to utilize an augmented shortcut 

technique that integrates a multi-head shortcut with a 

conventional residual connection. The aim is to 

improve the accuracy of predicting the remaining 

useful life (RUL) by including various features and 

maintaining important temporal patterns.  

Our approach addresses the problem of low 

dimensionality in raw sensor data by utilizing a multi-

head shortcut with a linear projection layer. This 

process reduces the loss of information and aids in the 

identification of subtle patterns that may otherwise go 

unnoticed. The multi-head shortcut consists of three 

main components: spectral attention using discrete 

cosine transformation attention (DCTA), an adjusted 

residual connection, and a linear layer for feature 

projection. The integration of these components is 

achieved through the summation of their outputs. The 

integration of these components is achieved through 

the summation of their outputs. The multi-head 

shortcut (𝑦𝑀𝐻𝑆) is  

 

𝑦𝑀𝐻𝑆 = 𝑦 + 𝑥 + 𝑤𝑆           (4)  

 

where spectral attention's output, input and 

weight matrix are denoted by 𝑦  , x, and 𝑤𝑆 

respectively. 

Our approach enhances remaining useful life 

(RUL) prediction accuracy by incorporating the 

multi-head shortcut mechanism and emphasizing the 

diversity of features. This highlights the significance 

of including a diverse range of attributes and 

preserving meaningful patterns over time in the 

dataset, thereby enhancing the overall accuracy of 

predictions. 

3.4 Bidirectional transformer 

Bidirectional recurrent neural networks (RNNs) 

have demonstrated efficacy in sequence modeling 

through their ability to process input sequences in 

both forward and reverse directions. This approach 

improves data understanding by integrating 

information from both the original and reversed 

sequences. Two distinct Transformers are 

implemented, one for forward sequences and another 

for reversed sequences. The outcomes are aggregated 

and forwarded through a fully connected layer that 

utilizes exponential linear unit (ELU) activation and 

batch normalization. The given representation  

 

 
Figure. 3 Multi-head shortcut (MHS) 

 

undergoes a linear layer transformation, resulting in 

an equivalent sliding window length output. This 

output estimates the remaining useful life (RUL) for 

each interval. Fig. 4 illustrates the architecture of the 

model. 

In brief, our methodology employs bidirectional 

Transformers to capture information from both ends 

of the input sequence effectively. The aggregated 

outputs are subjected to additional processing to 

calculate the remaining useful life (RUL) for specific 

time intervals. 

4. Experimental setups 

4.1 Dataset description and preparation 

The C-MAPSS dataset [19] is frequently used in 

prognostic research and provides valuable insights 

for developing predictive algorithms. This study 

entails conducting run-to-failure tests on aircraft 

engines with different initial wear levels. Data from 

21 sensors were collected throughout each cycle until 

engine failure. The dataset's comprehensive sensor 

information renders it suitable for algorithm 

development and evaluation. Table 1 summarizes the 

four sub-datasets, namely FD001, FD002, FD003, 

and FD004. These sub-datasets offer unique 

information that enhances the understanding of the 

overall dataset, shown in Table 1. 

4.2 Implementation details  

In this study, an embedding dimension of 48 was 

selected, slightly surpassing the input sensor count of 

less than 20. The increased input dimensionality 

enhances the capacity to store and transmit 

information. The discrete cosine transform algorithm 

(DCTA) utilizes a query size of 128 and employs a 

multi-head attention mechanism with two heads to 

preserve the model size. The encoder and decoder  
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Figure. 4 Transformer with bidirectional input and 

concatenation 

 

Table 1. Dataset description 

Sub-Datasets 
FD00

1 
FD002 FD003 FD004 

Train Size 100 260 100 249 

Test Size 100 259 100 248 

Length 40 60 40 60 

Operational 1 6 1 6 

Fault 1 1 2 2 

Training Size 20,631 53,759 24,720 61,249 

Test Size 100 259 100 248 

 

consist of two layers, including an embedded input 

with a dropout rate of 0.2. The model undergoes 100 

training epochs using an Adam optimizer with a 

learning rate 1e-5 while following Transformer 

norms. The batch size is 64. The proposed Hybrid 

model is a more efficient variant of the Transformer 

architecture, where the encoder component utilizes 

only one-third of the traditional self-attention 

mechanism. 

Implementation details cover embedding 

dimension, DCTA query size, multi-head attention 

headcount, encoder and decoder layers, dropout rate, 

training optimizer, learning rate, and batch size, all 

aligned with transformer criteria. 

4.3 Evaluation  

A piecewise linear function generates the ground-

truth RUL for a time series. This function uses linear 

interpolation to predict the remaining cycles until 

failure (𝑟𝐿𝑖𝑛𝑒𝑎𝑟) from the current cycle based on 𝑟𝑚𝑎𝑥. 

 

𝑟𝐿𝑖𝑛𝑒𝑎𝑟 = 𝑟𝑚𝑎𝑥 − 𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡      (5) 

 

where 𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 denotes the current cycles. 

The piecewise RUL is 

 

𝑟 = 𝑚𝑖𝑛 (𝑟𝐿𝑖𝑛𝑒𝑎𝑟 , 𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)      (6) 

 

where 𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set to 120. 

There are two commonly used evaluation metrics 

for RUL are RMSE and Score. 

Root mean squared error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑟�̂� − 𝑟𝑖)2𝑁

𝑖=1       (7) 

 

𝑆𝑐𝑜𝑟𝑒 = {
∑ (𝑒

−𝑟�̂�−𝑟𝑖
13 − 1) , 𝑖𝑓𝑟�̂� < 𝑟𝑖

𝑁
𝑖=1

∑ (𝑒
−𝑟�̂�−𝑟𝑖

10 − 1) , 𝑖𝑓𝑟�̂� ≥ 𝑟𝑖
𝑁
𝑖=1

      (8) 

 

where N denotes the quantity of samples, i 

denotes a specific sequence,𝑟�̂�  and 𝑟𝑖  represent the 

predicted RUL and the actual RUL, respectively. 

5. Experimental result analysis 

5.1 Result analysis of the spectral attention 

Table 2 presents a comparison between the 

"Embedding > Temporal" and "Temporal > 

Embedding" transformations in the context of 

Spectral Attention analysis applied to the C-MAPSS 

dataset. The embedding method consistently 

produces lower root mean square errors (RMSEs) and 

scores than the temporal method. For example, in the 

FD001 dataset, the RMSE for the embedding method 

is 12.01, with a score of 216, while the temporal 

method has an RMSE of 12.91 and a score of 233. 

This trend is also observed in FD002, FD003, and 

FD004. The results of this study emphasize the 

superiority of the "Embedding > Temporal" approach 

in improving the performance of models for 

predicting Remaining Useful Life (RUL). This 

highlights the significance of the order of 

transformations in optimizing the processing of 

features. 
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Table 2. Spectral attention 

Datasets 
Embedding > 

Temporal 

Temporal > 

Embedding 

FD0

01 

RMSE 12.01 12.91 

Score 216 233 

FD0

02 

RMSE 12.31 13.21 

Score 831 3387 

FD0

03 

RMSE 11.69 12.83 

Score 226 253 

FD0

04 

RMSE 12.78 14.34 

Score 1121 1693 

5.2 Ablation study 

As presented in Table 3, the research outcomes 

provide significant insights derived from 

experimental findings. 

The substitution of the discrete cosine transform 

attention (DCTA) mechanism with conventional self-

attention decreased the model's performance. The 

modification led to a 9% increase in the root mean 

square error (RMSE) and a 19% increase in the score. 

The omission of the uninhibited positional and 

contextual attention (UPCA) and the fusion model 

resulted in a significant 60% improvement in score 

and a 12% decrease in RMSE. The UPCA algorithm 

can efficiently encode time-series data while 

effectively reducing the impact of signal embedding 

noise. Nonparametric positional embedding offers 

computational benefits in comparison to self-

attention. 

The system's performance deteriorates when a 

separate input embedding is used for decoding 

instead of sharing weights with the encoder. The root 

mean square error (RMSE) exhibited a 9% increase, 

whereas the score demonstrated a 72% improvement. 

The inclusion of input embedding in the initial 

encoder resulted in improved performance and 

training outcomes. 

Implementing the multi-head shortcut has 

significantly enhanced the model's performance. The 

removal of this shortcut resulted in an 11% increase 

in the root mean square error (RMSE) and a 71% 

decrease in the score. The multi-head shortcut is a 

helpful technique that effectively mitigates the 

problem of feature collapse in deep Transformers. It 

also enhances the diversity of features in shallow 

Transformers. This could potentially alleviate the 

need for extensive manual feature engineering. 

The removal of the bidirectional ensemble 

significantly impacted the score, resulting in a score 

of 131% after its removal. The mitigation of variation 

and bias in Bidirectional Transformers is achieved 

through an ensemble approach, wherein predictions 

from two lightweight Transformers are averaged. 

Including additional encoder and decoder layers 

did not yield a substantial improvement in the 

model's performance. Including a more intricate 

model resulted in a slight enhancement in 

performance within the C-MAPSS dataset while 

acknowledging that the existing model's capability 

was already deemed satisfactory. The absence of any 

observed performance decline highlights the model's 

resilience. 

These findings emphasize the importance of 

carefully choosing suitable attention mechanisms in 

discrete transform and cosine attention (DTCA). The 

study highlights the importance of UPCA in encoding 

time-series data, the effectiveness of multi-head 

shortcuts and bidirectional ensembles, and the 

model's ability to predict remaining useful life (RUL) 

accurately. 

The Table 3 evaluates component contributions 

in the proposed CAMPSS dataset model. The 

"Proposed Model" establishes a baseline using 

RMSE and score. Substituting traditional Self 

Attention elevates both RMSE and score. The 

investigation involves UPCA removal, novel 

embedding, multi-head shortcut and bidirectional 

ensemble removal, and additional layers. Relative to 

the proposed model, percentage change quantifies the 

effects of each change on predictive accuracy and 

performance. The results provide crucial insights into 

each component's specific improvements to the 

model's outcomes. 

5.3 Comparison with other State-of-art methods 

This study compares the spectral-based 

transformer (SPT) model's remaining useful life 

(RUL) prediction with the results presented in the 

Table 4 and 5. We evaluate our methodology by 

comparing it to state-of-the-art methods on the 

complex C-MAPSS dataset, which simulates diverse 

operating conditions. Our research findings 

demonstrate that the SPT model excels in hard sub-

datasets such as FD002 and FD004. The DCTA 

mechanism in the novel SPT model significantly 

improves its performance. The FD002 and FD004 

sub-datasets present significant challenges. The SPT 

model demonstrates a 14% reduction in Root Mean 

Square Error (RMSE) and a 10% improvement in the 

complex FD002 dataset score. The SPT model 

achieves a 15% reduction in root mean square error 

(RMSE) and a 24% reduction in score on the 

challenging FD004 dataset. We conduct a 

comprehensive benchmark by comparing the SPT 

model with various state-of-the-art methods, each 

renowned for its distinct contributions. 
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Table 3. Contribution of each component and compare the results with respect of error (RMSE and Score) in proposed 

model 

  
Dataset  

FD001 FD002 FD003 FD004 Mean % Change 

Proposed Model  
RMSE 12.01 12.31 11.69 12.78 12.2 0 % 

Score 216 831 227 1124 599.5 0% 

Using traditional Self Attention  
RMSE 13.09 13.05 12.48 14.13 13.19 8% 

Score 287 1141 241 1181 712.5 19% 

Removed ICPA  
RMSE 13.03 14.04 12.69 15.12 13.72 12% 

Score 277 2019 229 1321 961.5 60% 

New Embedding  
RMSE 12.81 14.12 12.42 13.93 13.32 9% 

Score 235 2438 228 1214 1028.75 72% 

Removed multi-head shortcut  
RMSE 12.89 13.57 13.21 14.37 13.51 11% 

Score 281 2219 251 1351 1025.5 71% 

Removed Bidirectional  
RMSE 12.3 13.27 12.7 14.76 13.26 9% 

Score 232 3608 234 1457 1382.75 131% 

Adding the Layers  
RMSE 13.17 13.1 13.28 14.65 13.55 11% 

Score 264 781 247 1689 745.25 24% 

 

Table 4. Performance comparison based on RMSE 

Sub-Datasets FD00

1 

FD002 FD00

3 

FD004 

Embedded 

Attention [9] 
12.11 15.68 12.52 18.12 

Concurrent-

semisupervised 

[19] 

12.19 18.79 12.92 22.44 

DAST [20] 11.43 15.25 11.32 18.36 

Trans+TCNN 

[21] 
12.31 15.35 12.32 18.35 

MSTformer [22] 12.1 14.48 12.14 15.03 

IML Model [23] 12.42 14.03 13.39 15.10 

Our Proposed 12.01 12.31 11.69 12.78 

 
Table 5. Performance comparison based on score 

Sub-Datasets FD00

1 

FD002 FD00

3 

FD004 

Embedded 

Attention [9] 
245 1126 267 2051 

con-current-

semi super [19] 
208 2079 245 2599 

DAST [20] 203 925 155 1491 

Trans+TCNN 

[21] 
252 1267 296 2120 

MSTformer [22] 207 1099 248 1012 

IML Model [23] 226 876 227 970 

Our Proposed 216 831 227 1124 

 

The effectiveness of the transformer-based dual 

aspect self-attention (DAST) [20] technique for 

remaining useful life (RUL) prediction is enhanced 

by using dual parallel encoders. Our SPT model 

incorporates DCTA and UPCA techniques to 

improve temporal information propagation and 

effectively handle smaller datasets. Trans+TCNN 

[21] is a hybrid model that combines transformer and 

temporal convolutional neural network architectures. 

It aims to capture long-range dependencies and 

address overfitting issues in transformer models, 

particularly in more straightforward scenarios. The 

SPT model effectively addresses the issue by 

strategically integrating DCTA and UPCA, 

enhancing robustness and generality. 

MSTransformer [22] employs deep learning and 

attention mechanisms for processing sensor data and 

operational scenarios. The SPT model balances 

computing efficiency and performance using DCTA 

and multi-head shortcut (MHS) techniques. The IML 

[23] Model facilitates the integration of domain 

knowledge into RUL forecasts. The SPT model 

utilizes attention mechanisms to effectively forecast 

outcomes without requiring domain knowledge 

integration. 

The attention mechanisms and architectural 

intricacy of the SPT model improve its inherent 

advantages. The SPT model is well-suited for 

datasets with limited size. The parameter-free DCTA 

is a method that reduces memory and computing 

costs while still enabling accurate predictions with a 

smaller amount of data. In addition to DCTA, our 

model incorporates UPCA and MHS. This method 

enhances prediction accuracy by improving feature 

extraction, temporal information propagation, and 

feature representation. 

The spectral-based transformer (SPT) model 

significantly improves remaining useful life (RUL) 

prediction, particularly in challenging scenarios such 

as FD002 and FD004. The SPT model is a powerful 
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machinery prognosis tool due to its innovative 

attention mechanisms, effective management of 

restricted datasets, and unmatched performance. 

6. Conclusion 

This study presents the spectral-based 

transformer (SPT) architecture for predicting 

remaining useful life (RUL) using the C-MAPSS 

dataset. Our experiments demonstrate that the SPT 

model performs better than existing deep learning 

models, particularly on the challenging FD002 and 

FD004 sub-datasets. The SPT model is known for its 

strong stability and ability to generalize well across 

different sub-datasets, even when trained with limited 

data. This is due to its advanced components, 

including discrete cosine transform attention (DCTA), 

uninhibited positional and contextual attention 

(UPCA), multi-head shortcuts, and bidirectional 

ensemble. The SPT model incorporates these 

innovations to effectively capture complex 

degradation patterns and enhance the remaining 

useful life (RUL) prediction accuracy. This results in 

a 14% reduction in root mean square error (RMSE). 

Significant performance improvements of 10% for 

FD002 and 24% for FD004 have been observed. 

Moreover, the root mean square error (RMSE) for 

FD004 exhibits a decrease of 15%. Our research 

provides a comprehensive approach to predicting 

remaining useful life (RUL), which has the potential 

to improve maintenance decision-making and 

enhance system performance in the context of 

industry 4.0. Future research could involve 

improving the SPT model to accommodate higher 

sampling frequencies and expanding its usefulness to 

different time-series regression tasks. The spectral-

based transformer model shows promise for 

predictive maintenance in the Industry 4.0 era. 

Notation list  

Variable Description Variable Description 

�̂�𝑴𝑯𝑺 Multi-head 

Shortcut's 

output 

α Negative 

Multiplication 

Factor 

ELU Exponential 

Linear Unit 
𝑦 DCTA Output 

𝑫𝒆𝒎𝒃 Embedding 

Dimension 
q Query 

𝒘𝑭 Fusion's 

weight matrix 
𝑤𝑆 Spectral 

Attention 

Weight Matrix 

𝒓𝑳𝒊𝒏𝒆𝒂𝒓 Remaining 

Cycle 
r Piecewise RUL 

RUL Remaining 

Useful Life 
RMSE Root-Mean 

Square Error 
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