
Received: September 8, 2023. Revised: October 20, 2023. 1021

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

Time Loss Function-based Collaborative Filtering in Movie Recommender

System

Triyanna Widiyaningtyas1* Didik Dwi Prasetya1 Heru Wahyu Herwanto1

1Department of Electrical Engineering and Informatics, Universitas Negeri Malang, Indonesia

* Corresponding author’s Email: triyannaw.ft@um.ac.id

Abstract: Neighbor-based collaborative filtering is one of the prevalent recommendation approaches that apply

similarity algorithms. Using a similarity algorithm to improve the accuracy of the recommendation system is one

challenge in collaborative filtering. The computation of similarity now heavily relies on user rating and behavior

scores. Users' preferences for each product kind (genre) demonstrate the user behavior’s value. The algorithm's

weakness is that it only considers genre data when estimating user behavior, regardless of when the user rated the

item. Therefore, this study aims to develop a new similarity algorithm by considering the genre and the time weight

of the item rating, which is called time loss function-based similarity (TLFSim). Newly assessed items have a higher

weight than those estimated for a long time. Our experiment tested the TLFSim’s performance compared to the user-

score-probability-collaborative-filtering (UPCF) algorithm using the MovieLens 100k dataset. The experimental

results demonstrate that the TLFSim algorithm surpasses the prior approach regarding recommendation accuracy,

reducing mean absolute error (MAE) by 8.28% and root mean square error (RMSE) by 4.57%.

Keywords: Neighbor-based collaborative filtering, Similarity metric, TLFSim.

1. Introduction

Today, e-commerce is growing and is predicted

to become a significant trend. One of the major

benefits of e-commerce over traditional sales is the

simplicity with which the number of products made

available to users may be increased as no physical

display space is required. However, because so

many products are available on e-commerce systems,

customers eventually give in to information

overload [1–3]. For better outcomes, e-commerce

should allocate resources to overcome this challenge.

Due to the vast number of users and products,

recommender systems have been presented as a

solution to the problem of information overload [4,

5]. These systems help users by providing

personalized products they are more likely to be

interested in by filtering out undesirable products

and making suggestions based on their interests,

preferences, or historical behavior. The tremendous

sales of large e-commerce platforms like Amazon,

Netflix, etc., are primarily due to recommender

systems [6].

Various recommender systems, including

collaborative, content-based, knowledge-based,

demographic, utility-based, and hybrid filtering,

combine other techniques [7–10]. Collaborative

filtering is among the most well-known, practical,

and frequently applied algorithms among the several

recommender systems approach [4, 11, 12]. The

collaborative filtering strategy focuses on the

products that other users with similar preferences

have previously enjoyed. The taste similarity of

numerous users is specified based on the rating data

similarity (on a scale of 1 to 5 for movies) or the

history of users' browsing [13, 14].

Collaborative filtering contains two methods:

model-based and neighbor-based [15–17]. The

names of these two methods come from how they

perform the learning activity based on the users'

product preferences. The first method involves

learning formulas and rules to predict the unknown

preferences of the active user. The second method,

in contrast, calculates the preference similarity

Received: September 8, 2023. Revised: October 20, 2023. 1022

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

between each pair of users while offline [18]. The

traditional similarities frequently applied in

recommender systems are cosine, person correlation

coefficient (PCC), and Jaccard Coefficient [19].

Based on the learning activity of the two methods,

the model-based requires complex formulas in the

learning process. In contrast, the neighbor-based

method gives interpretability and simplicity to the

recommendation.

Several studies on neighbor-based collaborative

filtering have focused heavily on calculating the

similarity of interest between each pair of users

utilizing different approaches. Their objective is to

constantly enhance the effectiveness of neighbor set

identification for the active user to get better

recommendation accuracy. Some of these similarity

functions are proximity-significance-singularity

(PSS) [20], newPCC [21], Bhattacharyya-similarity

[22], PCCJaccard [23], multi-level-collaborative-

filtering [24], item-frequency-based-similarity [25],

triangle-multiplying-jaccard (TMJ) [26], and three-

impact-factors-based-similarity [27]. These

similarity functions only utilize the user rating data

to compute the similarity between each pair of users.

The user rating data indicate the score obtained from

users when they rate the products.

Recent studies have presented the similarity

functions by utilizing user behavior and rating data.

The user rating data represents the rating score

provided directly by users. Meanwhile, the user

behavior data denote an accumulated score obtained

from users indirectly in accessing genre data [28,

29]. The final similarity computation incorporates

the similarity calculation using user rating data and

the similarity calculation using user behavior data.

The similarity functions are user-score-probability-

collaborative-filtering (UPCF) [28] and user-profile-

correlation-based-similarity (UPCSim) [29]. The

evaluation of these similarity functions utilizes the

MovieLens 100k dataset. The UPCF results in mean

absolute error (MAE) and root mean square error

(RMSE) values of 0.7572 and 0.9588. While the

UPCSim results in MAE and RMSE values of

0.7408 and 0.9448. The results of these studies can

improve the recommendation performance

(especially in the accuracy of rating prediction,

MAE and RMSE) compared to the traditional

similarity (Cosine) that generates MAE and RMSE

values of 0.8074 and 1.0201). Based on the evaluation

results of these previous functions, there is still

room to improve prediction accuracy by exploring

other factors that influence prediction results.

The limitation with these similarity functions is

that the similarity calculation only considers the

genre data when attempting to estimate user

behavior value, regardless of when the user rates the

item. It means the predicted rating’s accuracy is still

high. Based on the limitation, our study proposes a

new similarity algorithm by considering the genre

and the time weight of the item rating. We assume

that the newly assessed items have a higher weight

than items that have been assessed for a long time.

Our proposed model is called time loss function-

based similarity (TLFSim).

The outline of this paper is organized as follows.

First, section 2 discusses related works in the

similarity algorithms in the recommender system.

Then, the detail of our proposed method is described

in section 3. Finally, experimental results are

illustrated and discussed in section 4, followed by a

conclusion section.

2. Related work

Neighbor-based methods employ historical user

rating data to calculate the similarity between users

or products. These methods aim to establish a

similarity function between users or products and

identify the most similar to suggest unrated products.

The similarity function is the primary key of the

neighbor-based method, which shows the user

correlation. A higher similarity value indicates a

higher correlation. The two conventional similarity

functions typically used in recommender systems

are cosine similarity and person correlation

coefficient (PCC). The similarity between 𝑢𝑠𝑒𝑟𝑥

(𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) utilizes cosine similarity and

PCC formulated in Eqs. (1) and (2), respectively.

𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝐶𝑂𝑆

=
𝑟𝑢𝑥 .𝑟𝑢𝑦

‖𝑟𝑢𝑥‖.‖𝑟𝑢𝑦‖
=

∑ 𝑟𝑢𝑥𝑝.𝑟𝑢𝑦𝑝𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦

√∑ 𝑟𝑢𝑥𝑝
2

𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦
 .√∑ 𝑟𝑢𝑦𝑝

2
𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦

 (1)

𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝑃𝐶𝐶

=

∑ (𝑟𝑢𝑥𝑝−�̅�𝑢𝑥)𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦
(𝑟𝑢𝑦𝑝−�̅�𝑢𝑦)

√∑ (𝑟𝑢𝑥𝑝−�̅�𝑢𝑦)
2

𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦
.√∑ (𝑟𝑢𝑦𝑝−�̅�𝑢𝑦)

2

𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦

 (2)

𝑟𝑢𝑥𝑝 and 𝑟𝑢𝑦𝑝 express the rating score to product

𝑝 from 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively. 𝑃𝑢𝑥

and 𝑃𝑢𝑦
 indicate the set of products rated by 𝑢𝑠𝑒𝑟𝑥

(𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively. 𝑝 is one of the

products rated by both users. �̅�𝑢𝑥
 and �̅�𝑢𝑦

 represent

the average rating of all products rated by 𝑢𝑠𝑒𝑟𝑥

(𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively.

In the last decade, some studies proposed the

similarity functions to enhance the recommender

Received: September 8, 2023. Revised: October 20, 2023. 1023

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

system performances. For example, Liu et al. [20]

presented a new similarity function composed of

three similarity factors (proximity, significance, and

singularity). The first factor computes the absolute

difference between the two ratings but also

considers whether or not they agree. The second

factor indicates that ratings have greater significance

when they are further apart than the median rating.

The third factor shows the variance between the two

ratings compared to other ratings. Thus, the

similarity function is called PSS similarity. Next,

Sheugh and Alizadeh [21] introduced an extension

of the PCC similarity function called newPCC

similarity. The similarity aims to reduce NaN results

for cases in which there is no similarity between

users. Saranya et al. [23] offered a PCCJac

similarity function that combined PCC similarity

and Jaccard Coefficient. Hereafter, Zhang et al. [25]

represented the item frequency-based PCC, which

improves PCC's similarity. The similarity considers

the weight of each item before calculating the

correlation coefficient between users. Feng et al.

[27] presented a novel similarity function by

integrating three impact factors. The first impact

factor aims to compute the similarity between users,

the second factor identifies the user rating

propensity, and the third factor describes each user’s

rating weight. Thus, the similarity function is named

three-impact factors-based similarity. In general,

these similarity functions only consider the user

rating data to compute the similarity between users.

Using only user rating data may cause the

recommender system to produce incorrect

inferences, thus affecting the recommendation’s

performance [29].

Furthermore, several studies have proposed the

similarity functions by combining the user rating-

based and behavior-based similarities. Their studies

assume that users give a low rating to a product title,

not necessarily that they dislike the product

type/genre. The user rating-based similarity

computes the similarity between users based on the

user rating data that utilized the cosine similarity.

The user behavior-based similarity calculates the

similarity between users considering the user

behavior data that adopted the PCC similarity (that

replaces the user rating data with the user behavior

data). The user rating data is the rating score given

directly to the product. Meanwhile, the user

behavior data is an accumulated score obtained

indirectly in accessing genre data.

After giving weight to each similarity, The final

similarity is computed with a combination of these

two similarities. Examples of these similarities are

user-score-probability-collaborative-filtering

(UPCF) [28] and user-profile-correlation-based-

similarity (UPCSim) [29]. These two similarities

have different ways of assigning similarity weights.

The UPCF similarity uses the threshold value for

weighting. The UPCSim utilizes the correlation

coefficient between user profile data (age, gender,

occupation, and location) and user rating/behavior

data. Eqs. (3) and (4) define these similarity

formulas.

𝑆𝑖𝑚(𝑢𝑥, 𝑢𝑦)
𝑈𝑃𝐶𝐹

=

𝛽. 𝑆𝑟(𝑢𝑥, 𝑢𝑦) + (1 − 𝛽). 𝑆𝑏(𝑢𝑥, 𝑢𝑦) (3)

𝑆𝑖𝑚(𝑢𝑥, 𝑢𝑦)
𝑈𝑃𝐶𝑆𝑖𝑚

=

𝛼. 𝑆𝑟(𝑢𝑥 , 𝑢𝑦) + 𝛿. 𝑆𝑏(𝑢𝑥, 𝑢𝑦) (4)

𝑆𝑟(𝑢𝑥, 𝑢𝑦) denotes the similarity based on user

rating data between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) that

utilized the cosine similarity, which is formulated in

Eq. (1). 𝑆𝑏(𝑢𝑥, 𝑢𝑦) states the similarity based on

user behavior data between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦

(𝑢𝑦) that adopted the PCC similarity (by replacing

the user rating data with the user behavior data),

which formulated in Eq. (5). 𝛽 is the threshold value

that ranges from 0 to 1. 𝛼 and 𝛿 indicate each

similarity’s weight computed based on the

correlation coefficient (𝑟) utilizing multiple linear

regression analysis. Eq. (6) defines the multiple

linear regression formula, and Eq. (7) states the

correlation coefficient formula (𝑟).

 𝑆𝑏(𝑢𝑥, 𝑢𝑦) =

∑ (𝑃𝑢𝑥𝑔−�̅�𝑢𝑥)𝑔∈𝐺𝑢𝑥∩𝐺𝑢𝑦
(𝑃𝑢𝑦𝑔−�̅�𝑢𝑦)

√∑ (𝑃𝑢𝑥𝑔−�̅�𝑢𝑥)
2

𝑔∈𝐺𝑢𝑥∩𝐺𝑢𝑦
 . √∑ (𝑃𝑢𝑦𝑔−�̅�𝑦)

2

𝑔∈𝐺𝑢𝑥∩𝐺𝑢𝑦

. (5)

𝑃𝑢𝑥𝑔 and 𝑃𝑢𝑦𝑔 indicate the probability score for

product type/genre 𝑔 from 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦

(𝑢𝑦), respectively. 𝐺𝑢𝑥
 and 𝐺𝑢𝑦

 represent the

product types rated by 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦),

respectively. 𝑔 is one of the product types rated by

both users. �̅�𝑢𝑥
 and �̅�𝑢𝑦

 express the average

probability scores of all product types rated by

𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively.

𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑛𝑥𝑛 (6)

𝑟 = √
𝑏1 ∑ 𝑥1𝑦+𝑏2 ∑ 𝑥2𝑦+𝑏3 ∑ 𝑥3𝑦+…+𝑏𝑛 ∑ 𝑥𝑛𝑦

∑ 𝑦2 (7)

𝑦 is a dependent variable that is represented by

Received: September 8, 2023. Revised: October 20, 2023. 1024

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

the user rating value. 𝑥 is an independent variable

that is represented by the user profile data that

consists of age (𝑥1), gender (𝑥2), occupation (𝑥3),

and location (𝑥4) . 𝑎 is a constant, and 𝑏 is the

regression coefficient for each independent variable.

Using the MovieLens dataset, these two

similarity functions (UPCF [28] and UPCSim [29])

can generate a rating prediction close to the actual

rating. In other words, the UPCF [28] and UPCSim

[29] can improve recommendation performance

compared to similarity algorithms that only depend

on user rating data. It happens because these two

similarities involve the user behavior data to

calculate the similarity between users. In addition,

the experimental results show that UPCSim [29] can

outperform UPCF [28] because UPCSim [29] uses

more complete data in calculating similarity (namely,

adding user profile data for computing the similarity

weights).

Although both similarities are superior, both

similarities still need to improve their accuracy

because they do not consider the time factor when

assessing items.

3. Research method

This work proposes an approach for making

recommendations called TLFSim, which involve the

time when assessing the item. Fig. 1 shows the four

stages of our study: input, data preparation,

neighbor-based process, and output.

3.1 Input

The input dataset is the first stage of the

developed neighbor-based collaborative filtering

system. In this paper, we used MovieLens 100k.

There are 100,000 ratings in the MovieLens 100k

dataset, which includes 1,682 films and 943 people.

Each user in this dataset has rated at least 20 films

using a scale from 1 to 5. A score of 1 means the

user detests the film, while a score of 5 means the

user enjoys it. The datasets have 93.7% data sparsity

and 6.3% density [30]. This rating data structure

consists of user-id, movie-id, rating, and timestamp.

All items in the recommendation system must have

ratings to obtain accurate user preference. Hence,

we used rating prediction to anticipate the unrated

items using the kNN algorithm.

3.2 Data preparation

The second stage is the data preparation. This

stage performs data pre-processing by reducing

irrelevant attributes. These irrelevant attributes are

the movie title, release date, video release date, and

Figure. 1 Research stages

IMDb URL of the item data.

3.3 Neighbor-based process

The neighbor-based process is the third stage of

this study. The two steps in this stage are similarity

calculation and rating prediction. In this study,

similarity calculation employs TLFSim, which

considers the time-loss function to calculate

similarity. The rating prediction method utilizes k

nearest neighbor (kNN).

TLFSim combines rating-based and genre-based

similarities by considering the time-loss function

[31]. The rating-based similarity refers to Eq. (1),

and the genre-based similarity refers to Eq. (3).

Consideration of time-related ratings in the

collaborative filtering approach is crucial because

Received: September 8, 2023. Revised: October 20, 2023. 1025

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

the user's interests change over time. These ratings,

which may be derived utilizing the right time loss

functions, raise the system's efficiency. Two factors

are critical from the standpoint of these functions:

first, choosing the right time loss function, and

second, the level at which the time loss functions are

inferred. Two well-liked time loss functions: power

and exponential. The power time loss function is

formulated in Eq. (8).

𝑇𝐿𝐹𝑃𝑜𝑤𝑒𝑟 = |𝑇𝑢𝑥,𝑝
− 𝑇𝑢𝑦,𝑝

|−𝜑 (8)

𝜑 is a tuning parameter, 𝑇𝑢𝑥,𝑝
and 𝑇𝑢𝑦,𝑝

represent

the timestamp of 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) on

product 𝑝, respectively. The range of time function

value is (0,1), which is reduced with time.

This study uses the power function to be applied

in calculating similarity and rating prediction. The

similarity between users employing the time loss

function is calculated as follows:

𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝑇𝐿𝐹𝑆𝑖𝑚

= 𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝑈𝑃𝐶𝐹

∗ 𝑇𝐿𝐹 (9)

The nearest neighbors for each target user are

identified using the similarity calculated by Eq. (9),

which aids in producing the prediction. The

prediction formula is given in Eq. (10) below.

�̂�𝑢𝑥𝑝 = �̅�𝑢𝑥
+

∑ 𝑆𝑖𝑚(𝑢𝑥,𝑢𝑦).𝑢𝑦𝜖𝑁𝑁𝑢𝑥 (𝑟𝑢𝑦𝑝−�̅�𝑢𝑦)

∑ |𝑆𝑖𝑚(𝑢𝑥,𝑢𝑦)|𝑢𝑦𝜖𝑁𝑁𝑢𝑥

∗ 𝑇𝐿𝐹

(10)

�̂�𝑢𝑥𝑝 is the predicted rating score of the 𝑢𝑠𝑒𝑟𝑥

(𝑢𝑥) to product 𝑝 . 𝑁𝑁𝑢𝑥 is the set of nearest

neighbors to 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥). 𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦) is the final

similarity between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) using

TLFSim. �̅�𝑢𝑥
 and �̅�𝑢𝑦

 is the rating average of 𝑢𝑠𝑒𝑟𝑥

(𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively. 𝑟𝑢𝑦𝑝 is the rating

score given by 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) to product 𝑝.

3.4 Output

Output is the last stage in this research. This

stage evaluates how well-proposed algorithms

perform compared to previous algorithms. In this

study, the performance evaluation uses prediction

and running time metrics. Prediction metrics utilize

mean absolute error (MAE) and root mean square

error (RMSE), which refer to Eqs. (9) and (10) [32,

33].

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑟𝑢𝑥𝑝 − �̂�𝑢𝑥𝑝|𝑢𝑥𝜖𝑈𝑥,𝑝𝜖𝑃 (9)

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑟𝑢𝑥𝑝 − �̂�𝑢𝑥𝑝)

2
𝑢𝑥𝜖𝑈𝑥,𝑝𝜖𝑃 (10)

𝑟𝑢𝑥𝑝 states the rating score given by 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥)

to product 𝑝 . �̂�𝑢𝑥𝑝 is the predicted rating score of

𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) to product 𝑝.

4. Experiment

We start by outlining the experimental setting in

this section. We then review the findings by

contrasting the proposed algorithm with earlier

algorithms. Finally, we discuss the results of our

experiment.

4.1 Experimental setting

We employed MovieLens 100k to assess the

effectiveness of the proposed TLFSim algorithm.

The k-fold cross-validation (CV) method splits this

dataset into training and testing data. The training

data aims to create the similarity model, while the

testing data functions to evaluate the

recommendation method. We set the value of k with

k=5 to get separate 80% of training data and 20% of

testing data. We also set the number of nearest

neighbors (k) with k=10 to k=100. We compared the

neighbor-based collaborative filtering algorithms

(Cosine, UPCF [28], and UPCSim [29]) with our

proposed TLFSim algorithm.

This study utilized the computer specifications

of Processor 11th Gen Intel® Core™ i7-1165G7 @

2.80 GHz, 1690 MHz (4 Core), and Memory of 16

GB. The algorithms in Python were running under

Microsoft Windows 7.

4.2 Experimental results

With training and testing data split (80%:20%)

on the MovieLens 100k, this section compares the

performance of our proposed TLFSim algorithm

with the leading rating-based approaches. Metrics

for evaluating performance use MAE, RMSE, and

running time.

Table 1 compares of MAE values in MovieLens

100k with the distribution of training data and

testing data of 80%:20%.

In all similarity algorithms, the average MAE

values decline as the number of nearest neighbors

grows. The average of MAE values using TLFSim

reduces compared to other algorithms. The decrease

in the average MAE values compared to UPCSim is

5.93%, UPCF is 8.28%, and Cosine is 15.45% in the

MovieLens 100k dataset. It shows that the

prediction accuracy using the time-loss function

experienced an average increase compared to

Received: September 8, 2023. Revised: October 20, 2023. 1026

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

Table 1. Comparison of the average MAE values of four

neighbor-based algorithms in MovieLens 100k dataset

k

MAE

Cosine
UPCF

[28]
UPCSim

[29]
TLFSim

10 0.8227 0.7792 0.7669 0.7135

20 0.8099 0.7631 0.7483 0.7049

30 0.8051 0.7565 0.7410 0.7013

40 0.8048 0.7551 0.7387 0.7002

50 0.8043 0.7544 0.7369 0.6983

60 0.8041 0.7535 0.7364 0.6976

70 0.8049 0.7529 0.7359 0.6961

80 0.8051 0.7526 0.7355 0.6952

90 0.8056 0.7525 0.7347 0.6937

100 0.8072 0.7521 0.7337 0.6923

Avg 0.8074 0.7572 0.7408 0.6993

Figure. 2 Comparison of the average MAE values of the

four similarity algorithms using MovieLens 100K dataset

without the time-loss function.

Fig. 2 shows the MAE values of the four

algorithms decrease with increasing number of

nearest neighbors.

At the beginning of the curve, the decrease in the

MAE value is very sharp as the number of nearest

neighbors increases, while at the end of the curve,

the greater the number of nearest neighbors, the

MAE value tends to be stable. It can be said that the

number of nearest neighbors influences the MAE

value, where the greater the number of nearest

neighbors, the smaller the MAE value. With the

same number of nearest neighbors, the MAE value

of the TLFSim algorithm is always smaller than that

of other algorithms. In other words, the error

between the actual and the predicted ratings of the

proposed TLFSim is the smallest.

Table 2 compares the RMSE values in the

MovieLens 100k dataset with the distribution of

training data and testing data of 80%:20%.

Increasing the value of k indicates a smaller RMSE

value, which means that the number of nearest

neighbors affects the method's performance.

Table 2. Comparison of the average RMSE values of four

neighbor-based algorithms in MovieLens 100k dataset

k

RMSE

Cosine
UPCF

[28]

UPCSim

[29]
TLFSim

10 1.0417 0.9835 0.9793 0.9674

20 1.0248 0.9643 0.9541 0.9500

30 1.0189 0.9574 0.9453 0.9166

40 1.0163 0.9558 0.9427 0.9116

50 1.0162 0.9556 0.9393 0.9107

60 1.0154 0.9547 0.9389 0.9096

70 1.0162 0.9544 0.9383 0.9074

80 1.0170 0.9543 0.9381 0.9069

90 1.0173 0.9542 0.9364 0.9058

100 1.0176 0.9538 0.9359 0.9033

Avg 1.0201 0.9588 0.9448 0.9169

Figure. 3 Comparison of the average RMSE values of the

four similarity algorithms using MovieLens 100K dataset

Based on Table 2, the proposed algorithm

always gives the smallest RMSE in each condition

of the number of nearest neighbors compared to the

other three similarity algorithms. The decrease in the

average RMSE values compared to UPCSim is

3.05%, UPCF is 4.57%, and Cosine is 8.21% in the

MovieLens 100k dataset.

It shows that the accuracy of TLFSim is the

lowest, which means the proposed algorithm is

superior and becomes the advantage of TLFSim. It

happens because our proposed algorithm employs

the time-loss function that gives the weight for the

item period.

Fig. 3 illustrates how changing the number of

nearest neighbors affects the RMSE value. The four

algorithms show a decrease in the RMSE value first

and are stable when neighbors exceed 50. The

RMSE value of the TLFSim algorithm always

indicates the smallest value for each different

number of neighbors. It shows that TLFSim has the

lowest error rate than the other two algorithms and

Received: September 8, 2023. Revised: October 20, 2023. 1027

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

Table 3. Comparison of the average running time values

of four neighbor-based algorithms in MovieLens 100k

dataset

k

Algorithm

TLFSim
UPCSim

[29]

UPCF

[28]
Cosine

10 4.63 4.78 4.51 3.67

20 4.57 4.82 4.48 3.91

30 4.82 5.02 4.60 4.21

40 5.13 5.27 4.70 4.42

50 5.53 5.68 5.00 4.82

60 5.83 5.99 5.28 5.08

70 5.85 6.02 5.38 5.10

80 5.89 6.10 5.38 5.25

90 5.96 6.15 5.58 5.29

100 6.17 6.28 5.81 5.25

Avg 5.44 5.61 5.07 4.70

confirms the superiority of TLFSim.

In addition to measuring the MAE and RMSE

values as recommendation metrics, this experiment

also evaluated the running time of four algorithms to

see the effect of the time-loss function on the

running time of algorithms. Table 3 compares the

running time on the MovieLens 100k dataset with

the distribution of training data and testing data of

80%:20%.

Based on Table 3, TLFSim requires a longer

average execution time, namely 1.08 seconds

compared to Cosine and 0.71 seconds compared to

UPCF [28]. However, TLFSim requires an average

execution time of 0.17 seconds faster than UPCSim

[29]. This result occurs because the TLFSim

algorithm, apart from calculating the final similarity

between users, also has an additional step in

calculating the time loss function compared to the

three previous algorithms.

4.3 Discussion

In this study, we propose a recommendation

algorithm that utilizes a neighbor-based algorithm

with a time-loss function called TLFSim. The

neighbor-based method considers user ratings and

behavior scores to accommodate user preferences.

Besides that, this algorithm also employs time when

a user assesses the item. In testing the method, we

used the popular MovieLens 100k dataset. This

dataset has sparsity levels of 93.7%, while density

levels are 6.3%. The distribution of training data and

testing data on the dataset is carried out using the k-

folds CV method at k=5. Predictive accuracy (MAE

and RMSE) and running time evaluate the

algorithm's performances.

The experiment results showed that employing a

time-loss function in neighbor-based collaborative

filtering could improve the prediction performance

by reducing MAE and RMSE compared to the state-

of-the-art algorithms (i.e., UPCSim [29], UPCF [28],

and Cosine). In addition, the performance of the

recommendation processing time is faster than

UPCSim [29]. However, it is lower than the other

two algorithms (UPCF [28] and Cosine). It occurs

because the similarity calculation also considers

time data, requiring an additional step that consumes

more time. It becomes the limitation of our work.

5. Conclusion

Based on the results and discussion in the

previous section, applying the TLFSim algorithm

produces a better predictive accuracy value than the

earlier algorithms (UPCSim, UPCF, and Cosine).

Still, it consumes more time compared to the UPCF

and Cosine algorithms. However, the TLFSim is

still faster than the UPCSim algorithm.

For further research, the system development

can consider matrix factorization, clustering, and

parallel processing to calculate user similarity and

explore other hybrid methods to improve

recommendation performance.

List of notations

𝑆𝑖𝑚(𝑢𝑥, 𝑢𝑦) = similarity between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥)

and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).

𝑟𝑢𝑥𝑝 = the rating score from 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) to

product 𝑝.

𝑟𝑢𝑦𝑝 = the rating score from 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) to

product 𝑝.

𝑃𝑢𝑥
 = the set of products rated by 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥).

𝑃𝑢𝑦
 = the set of products rated by 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).

�̅�𝑢𝑥
 = the average rating of all products rated by

𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥).

�̅�𝑢𝑦
 = the average rating of all products rated by

𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).

𝑆𝑟(𝑢𝑥, 𝑢𝑦) = the similarity based on user rating

data between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).

𝑆𝑏(𝑢𝑥, 𝑢𝑦) = the similarity based on user

behavior data between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).

𝛽 = the threshold value that ranges from 0 to 1.

𝛼 = the similarity’s weight for 𝑆𝑟(𝑢𝑥 , 𝑢𝑦).

𝛿 = the similarity’s weight for 𝑆𝑏(𝑢𝑥, 𝑢𝑦).

𝑔 = the product type/genre.

𝑃𝑢𝑥𝑔 = the probability score from 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) to

product type/genre 𝑔.

𝑃𝑢𝑦𝑔 = the probability score from 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) to

Received: September 8, 2023. Revised: October 20, 2023. 1028

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

product type/genre 𝑔.

𝐺𝑢𝑥
 = the set of product types rated by 𝑢𝑠𝑒𝑟𝑥

(𝑢𝑥).

𝐺𝑢𝑦
 = the set of product types rated by 𝑢𝑠𝑒𝑟𝑦

(𝑢𝑦).

�̅�𝑢𝑥
 = the average probability scores of all

product types rated by 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥)

�̅�𝑢𝑦
 = the average probability scores of all

product types rated by 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).

𝑦 = a dependent variable.

𝑥 = an independent variable that is represented

by the user profile data that consists of age (𝑥1),

gender (𝑥2), occupation (𝑥3), and location (𝑥4).

𝑎 = a constant.

𝑏= the regression coefficient.

𝑇𝐿𝐹𝑃𝑜𝑤𝑒𝑟= the power time loss function

𝜑 = tuning parameter.

𝑇𝑢𝑥,𝑝
= timestamp of 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) on product 𝑝.

𝑇𝑢𝑦,𝑝
= timestamp of 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) on product 𝑝.

�̂�𝑢𝑥𝑝 = the predicted rating score of 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) to

product 𝑝.

𝑁𝑁𝑢𝑥 = the set of nearest neighbors to 𝑢𝑠𝑒𝑟𝑥

(𝑢𝑥).

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, TW and DP; methodology,

TW, DP, and HWH; software, TW; validation, TW,

DP, and HWH; formal analysis, TW and DP;

investigation, TW and DP; resources, TW; data

curation, TW; writing—original draft preparation,

TW, DP, and HWH; writing—review and editing,

TW, DP, and HWH; visualization, TW; supervision,

DP and HWH; project administration, TW; funding

acquisition, TW.

Acknowledgments

This research was supported by directorate

general of higher education (Dikti), ministry of

education, culture, research and technology,

research grant: Penelitian dasar with contract

number 140/E5/PG.02.00.PL/2023.

References

[1] P. Phorasim and L. Yu, “Movies

recommendation system using collaborative

filtering and k-means”, Int. J. Adv. Comput.

Res., Vol. 7, No. 29, pp. 52–59, 2017, doi:

10.19101/IJACR.2017.729004.

[2] S. Setiowati, T. B. Adji, and I. Ardiyanto,

“Context-based awareness in location

recommendation system to enhance

recommendation quality: A review”, In: Proc.

of 2018 Int. Conf. Inf. Commun. Technol.

ICOIACT 2018, Vol. 2018-Janua, pp. 90–95,

2018, doi: 10.1109/ICOIACT.2018.8350671.

[3] J. Liu, Z. Yang, T. Li, D. Wu, and R. Wang,

“SPR: Similarity pairwise ranking for

personalized recommendation”, Knowledge-

Based Syst., Vol. 239, 2022, doi:

10.1016/j.knosys.2021.107828.

[4] H. Khojamli and J. Razmara, “Survey of

similarity functions on neighborhood-based

collaborative filtering”, Expert Syst. Appl., Vol.

185, No. June, p. 115482, 2021, doi:

10.1016/j.eswa.2021.115482.

[5] K. V. Rodpysh, S. J. Mirabedini, and T.

Banirostam, “Resolving cold start and sparse

data challenge in recommender systems using

multi-level singular value decomposition”,

Comput. Electr. Eng., Vol. 94, No. June, p.

107361, 2021, doi:

10.1016/j.compeleceng.2021.107361.

[6] L. N. H. Nam, “Towards comprehensive

approaches for the rating prediction phase in

memory-based collaborative filtering

recommender systems”, Inf. Sci. (Ny)., Vol. 589,

No. 227, pp. 878–910, 2022, doi:

10.1016/j.ins.2021.12.123.

[7] R. Abolghasemi, P. Engelstad, E. H. Viedma,

and A. Yazidi, “A personality-aware group

recommendation system based on pairwise

preferences”, Inf. Sci. (Ny)., Vol. 595, pp. 1–17,

2022, doi: 10.1016/j.ins.2022.02.033.

[8] F. Horasan, A. H. Yurttakal, and S. Gündüz, “A

novel model based collaborative filtering

recommender system via truncated ULV

decomposition”, J. King Saud Univ. - Comput.

Inf. Sci., Vol. 35, No. 8, 2023, doi:

10.1016/j.jksuci.2023.101724.

[9] Y. Gao, Z. W. Huang, Z. Y. Huang, L. Huang,

Y. Kuang, and X. Yang, “Multi-scale broad

collaborative filtering for personalized

recommendation”, Knowledge-Based Syst., Vol.

278, p. 110853, 2023, doi:

10.1016/j.knosys.2023.110853.

[10] Y. Ali, O. Khalid, I. A. Khan, S. S. Hussain, F.

Rehman, S. Siraj, and R. Nawaz, “A Hybrid

group-based movie recommendation

framework with overlapping memberships”,

PLoS One, Vol. 17, No. 3, 2023.

[11] R. Duan, C. Jiang, and H. K. Jain, “Combining

review-based collaborative filtering and matrix

factorization: A solution to rating’s sparsity

Received: September 8, 2023. Revised: October 20, 2023. 1029

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

problem”, Decis. Support Syst., No. December

2021, p. 113748, 2022, doi:

10.1016/j.dss.2022.113748.

[12] N. Bhalse and R. Thakur, “Algorithm for movie

recommendation system using collaborative

filtering”, Mater. Today Proc., No. xxxx, pp.

1–6, 2021, doi: 10.1016/j.matpr.2021.01.235.

[13] Y. Afoudi, M. Lazaar, and M. A. Achhab,

“Hybrid recommendation system combined

content-based filtering and collaborative

prediction using artificial neural network”,

Simul. Model. Pract. Theory, Vol. 113, No.

June, p. 102375, 2021, doi:

10.1016/j.simpat.2021.102375.

[14] Z. Z. Darban and M. H. Valipour, “GHRS:

Graph-based hybrid recommendation system

with application to movie recommendation”,

Expert Syst. Appl., Vol. 200, No. November

2020, 2022, doi: 10.1016/j.eswa.2022.116850.

[15] A. Fareed, S. Hassan, S. B. Belhaouari, and Z.

Halim, “A collaborative filtering

recommendation framework utilizing social

networks”, Mach. Learn. with Appl., Vol. 14,

No. September, p. 100495, 2023, doi:

10.1016/j.mlwa.2023.100495.

[16] J. Liu, Y. Chen, Q. Liu, and B. Tekinerdogan,

“A similarity-enhanced hybrid group

recommendation approach in cloud

manufacturing systems”, Comput. Ind. Eng.,

Vol. 178, No. October 2022, p. 109128, 2023,

doi: 10.1016/j.cie.2023.109128.

[17] A. A. Amer, H. I. Abdalla, and L. Nguyen,

“Enhancing recommendation systems

performance using highly-effective similarity

measures[Formula presented]”, Knowledge-

Based Syst., Vol. 217, p. 106842, 2021, doi:

10.1016/j.knosys.2021.106842.

[18] T. Neammanee, S. Maneeroj, and A. Takasu,

“Considering similarity and the rating

conversion of neighbors on neural collaborative

filtering”, PLoS One, Vol. 17, No. 5, 2022.

[19] N. Sun, Q. Luo, L. Ran, and P. Jia, “Similarity

matrix enhanced collaborative filtering for e-

government recommendation”, Data Knowl.

Eng., Vol. 145, No. October 2021, p. 102179,

2023, doi: 10.1016/j.datak.2023.102179.

[20] H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu,

“A new user similarity model to improve the

accuracy of collaborative filtering”,

Knowledge-Based Syst., Vol. 56, pp. 156–166,

2014, doi: 10.1016/j.knosys.2013.11.006.

[21] L. Sheugh and S. H. Alizadeh, “A note on

pearson correlation coefficient as a metric of

similarity in recommender system”, In: Proc. of

2015 AI Robot. IRANOPEN 2015 - 5th Conf.

Artif. Intell. Robot., 2015, doi:

10.1109/RIOS.2015.7270736.

[22] B. K. Patra, R. Launonen, V. Ollikainen, and S.

Nandi, “A new similarity measure using

Bhattacharyya coefficient for collaborative

filtering in sparse data”, Knowledge-Based Syst.,

Vol. 82, pp. 163–177, 2015, doi:

10.1016/j.knosys.2015.03.001.

[23] K. G. Saranya, G. S. Sadasivam, and M.

Chandralekha, “Performance comparison of

different similarity measures for collaborative

filtering technique”, Indian J. Sci. Technol.,

Vol. 9, No. 29, 2016, doi:

10.17485/ijst/2016/v9i29/91060.

[24] N. Polatidis and C. K. Georgiadis, “A multi-

level collaborative filtering method that

improves recommendations”, Expert Syst. Appl.,

Vol. 48, pp. 100–110, 2016, doi:

10.1016/j.eswa.2015.11.023.

[25] F. Zhang, W. Zhou, L. Sun, X. Lin, H. Liu, and

Z. He, “Improvement of Pearson similarity

coefficient based on item frequency”, Int. Conf.

Wavelet Anal. Pattern Recognit., Vol. 1, pp.

248–253, 2017, doi:

10.1109/ICWAPR.2017.8076697.

[26] S. B. Sun, Z. H. Zhang, X. L. Dong, H. R.

Zhang, T. J. Li, L. Zhang, and F. Min,

“Integrating triangle and jaccard similarities for

recommendation”, PLoS One, Vol. 12, No. 8,

2017, doi: 10.1371/journal.pone.0183570.

[27] J. Feng, X. Fengs, N. Zhang, and J. Peng, “An

improved collaborative filtering method based

on similarity”, PLoS One, Vol. 13, No. 9, pp.

1–18, 2018, doi: 10.1371/journal.pone.0204003.

[28] C. Wu, J. Wu, C. Luo, O. Wu, C. Liu, Y. Wu,

and F. Yang, “Recommendation algorithm

based on user score probability and project

type”, Eurasip J. Wirel. Commun. Netw., Vol.

2019, No. 1, 2019, doi: 10.1186/s13638-019-

1385-5.

[29] T. Widiyaningtyas, I. Hidayah, and T. B. Adji,

“User profile correlation-based similarity

(UPCSim) algorithm in movie recommendation

system”, J. Big Data, Vol. 8, No. 1, 2021, doi:

10.1186/s40537-021-00425-x.

[30] F. M. Harper and J. A. Konstan, “The

movielens datasets: History and context”, ACM

Trans. Interact. Intell. Syst., Vol. 5, No. 4, 2015,

doi: 10.1145/2827872.

[31] G. Jain, T. Mahara, and S. C. Sharma,

“Performance Evaluation of Time-based

Recommendation System in Collaborative

Filtering Technique”, Procedia Comput. Sci.,

Vol. 218, No. 2022, pp. 1834–1844, 2023, doi:

10.1016/j.procs.2023.01.161.

Received: September 8, 2023. Revised: October 20, 2023. 1030

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023 DOI: 10.22266/ijies2023.1231.84

[32] M. Jalili, S. Ahmadian, M. Izadi, P. Moradi,

and M. Salehi, “Evaluating Collaborative

Filtering Recommender Algorithms: A Survey”,

IEEE Access, Vol. 6, pp. 74003–74024, 2018,

doi: 10.1109/ACCESS.2018.2883742.

[33] X. Li and D. Li, “An Improved Collaborative

Filtering Recommendation Algorithm and

Recommendation Strategy”, Mob. Inf. Syst.,

Vol. 2019, 2019, doi: 10.1155/2019/3560968.

