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Abstract: Neighbor-based collaborative filtering is one of the prevalent recommendation approaches that apply 

similarity algorithms. Using a similarity algorithm to improve the accuracy of the recommendation system is one 

challenge in collaborative filtering. The computation of similarity now heavily relies on user rating and behavior 

scores. Users' preferences for each product kind (genre) demonstrate the user behavior’s value. The algorithm's 

weakness is that it only considers genre data when estimating user behavior, regardless of when the user rated the 

item. Therefore, this study aims to develop a new similarity algorithm by considering the genre and the time weight 

of the item rating, which is called time loss function-based similarity (TLFSim). Newly assessed items have a higher 

weight than those estimated for a long time. Our experiment tested the TLFSim’s performance compared to the user-

score-probability-collaborative-filtering (UPCF) algorithm using the MovieLens 100k dataset. The experimental 

results demonstrate that the TLFSim algorithm surpasses the prior approach regarding recommendation accuracy, 

reducing mean absolute error (MAE) by 8.28% and root mean square error (RMSE) by 4.57%.  

Keywords: Neighbor-based collaborative filtering, Similarity metric, TLFSim. 

 

 

1. Introduction 

Today, e-commerce is growing and is predicted 

to become a significant trend. One of the major 

benefits of e-commerce over traditional sales is the 

simplicity with which the number of products made 

available to users may be increased as no physical 

display space is required. However, because so 

many products are available on e-commerce systems, 

customers eventually give in to information 

overload [1–3]. For better outcomes, e-commerce 

should allocate resources to overcome this challenge. 

Due to the vast number of users and products, 

recommender systems have been presented as a 

solution to the problem of information overload [4, 

5]. These systems help users by providing 

personalized products they are more likely to be 

interested in by filtering out undesirable products 

and making suggestions based on their interests, 

preferences, or historical behavior. The tremendous 

sales of large e-commerce platforms like Amazon, 

Netflix, etc., are primarily due to recommender 

systems [6]. 

Various recommender systems, including 

collaborative, content-based, knowledge-based, 

demographic, utility-based, and hybrid filtering, 

combine other techniques [7–10]. Collaborative 

filtering is among the most well-known, practical, 

and frequently applied algorithms among the several 

recommender systems approach [4, 11, 12]. The 

collaborative filtering strategy focuses on the 

products that other users with similar preferences 

have previously enjoyed. The taste similarity of 

numerous users is specified based on the rating data 

similarity (on a scale of 1 to 5 for movies) or the 

history of users' browsing [13, 14]. 

Collaborative filtering contains two methods: 

model-based and neighbor-based [15–17]. The 

names of these two methods come from how they 

perform the learning activity based on the users' 

product preferences. The first method involves 

learning formulas and rules to predict the unknown 

preferences of the active user. The second method, 

in contrast, calculates the preference similarity 
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between each pair of users while offline [18]. The 

traditional similarities frequently applied in 

recommender systems are cosine, person correlation 

coefficient (PCC), and Jaccard Coefficient [19]. 

Based on the learning activity of the two methods, 

the model-based requires complex formulas in the 

learning process. In contrast, the neighbor-based 

method gives interpretability and simplicity to the 

recommendation. 

Several studies on neighbor-based collaborative 

filtering have focused heavily on calculating the 

similarity of interest between each pair of users 

utilizing different approaches. Their objective is to 

constantly enhance the effectiveness of neighbor set 

identification for the active user to get better 

recommendation accuracy. Some of these similarity 

functions are proximity-significance-singularity 

(PSS) [20], newPCC [21], Bhattacharyya-similarity 

[22], PCCJaccard [23], multi-level-collaborative-

filtering [24], item-frequency-based-similarity [25], 

triangle-multiplying-jaccard (TMJ) [26], and three-

impact-factors-based-similarity [27]. These 

similarity functions only utilize the user rating data 

to compute the similarity between each pair of users. 

The user rating data indicate the score obtained from 

users when they rate the products. 

Recent studies have presented the similarity 

functions by utilizing user behavior and rating data. 

The user rating data represents the rating score 

provided directly by users. Meanwhile, the user 

behavior data denote an accumulated score obtained 

from users indirectly in accessing genre data [28, 

29]. The final similarity computation incorporates 

the similarity calculation using user rating data and 

the similarity calculation using user behavior data. 

The similarity functions are user-score-probability-

collaborative-filtering (UPCF) [28] and user-profile-

correlation-based-similarity (UPCSim) [29]. The 

evaluation of these similarity functions utilizes the 

MovieLens 100k dataset. The UPCF results in mean 

absolute error (MAE) and root mean square error 

(RMSE) values of 0.7572 and 0.9588. While the 

UPCSim results in MAE and RMSE values of 

0.7408 and 0.9448. The results of these studies can 

improve the recommendation performance 

(especially in the accuracy of rating prediction, 

MAE and RMSE) compared to the traditional 

similarity (Cosine) that generates MAE and RMSE 

values of 0.8074 and 1.0201). Based on the evaluation 

results of these previous functions, there is still 

room to improve prediction accuracy by exploring 

other factors that influence prediction results. 

The limitation with these similarity functions is 

that the similarity calculation only considers the 

genre data when attempting to estimate user 

behavior value, regardless of when the user rates the 

item. It means the predicted rating’s accuracy is still 

high. Based on the limitation, our study proposes a 

new similarity algorithm by considering the genre 

and the time weight of the item rating. We assume 

that the newly assessed items have a higher weight 

than items that have been assessed for a long time. 

Our proposed model is called time loss function-

based similarity (TLFSim).  

The outline of this paper is organized as follows. 

First, section 2 discusses related works in the 

similarity algorithms in the recommender system. 

Then, the detail of our proposed method is described 

in section 3. Finally, experimental results are 

illustrated and discussed in section 4, followed by a 

conclusion section. 

2. Related work 

Neighbor-based methods employ historical user 

rating data to calculate the similarity between users 

or products. These methods aim to establish a 

similarity function between users or products and 

identify the most similar to suggest unrated products. 

The similarity function is the primary key of the 

neighbor-based method, which shows the user 

correlation. A higher similarity value indicates a 

higher correlation. The two conventional similarity 

functions typically used in recommender systems 

are cosine similarity and person correlation 

coefficient (PCC). The similarity between 𝑢𝑠𝑒𝑟𝑥 

(𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦)  utilizes cosine similarity and 

PCC formulated in Eqs. (1) and (2), respectively. 

 

𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝐶𝑂𝑆

=
𝑟𝑢𝑥 .𝑟𝑢𝑦

‖𝑟𝑢𝑥‖.‖𝑟𝑢𝑦‖
=  

∑ 𝑟𝑢𝑥𝑝.𝑟𝑢𝑦𝑝𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦

√∑ 𝑟𝑢𝑥𝑝
2

𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦
 .√∑ 𝑟𝑢𝑦𝑝

2
𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦

  (1) 

 

𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝑃𝐶𝐶

=  

∑ (𝑟𝑢𝑥𝑝−�̅�𝑢𝑥)𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦
(𝑟𝑢𝑦𝑝−�̅�𝑢𝑦)

√∑ (𝑟𝑢𝑥𝑝−�̅�𝑢𝑦)
2

𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦
.√∑ (𝑟𝑢𝑦𝑝−�̅�𝑢𝑦)

2

𝑝∈𝑃𝑢𝑥∩𝑃𝑢𝑦

   (2) 

 

𝑟𝑢𝑥𝑝 and 𝑟𝑢𝑦𝑝 express the rating score to product 

𝑝 from 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively. 𝑃𝑢𝑥
 

and 𝑃𝑢𝑦
 indicate the set of products rated by 𝑢𝑠𝑒𝑟𝑥 

(𝑢𝑥 ) and 𝑢𝑠𝑒𝑟𝑦  (𝑢𝑦 ), respectively. 𝑝 is one of the 

products rated by both users. �̅�𝑢𝑥
 and �̅�𝑢𝑦

 represent 

the average rating of all products rated by 𝑢𝑠𝑒𝑟𝑥 

(𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively. 

In the last decade, some studies proposed the 

similarity functions to enhance the recommender 
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system performances. For example, Liu et al. [20] 

presented a new similarity function composed of 

three similarity factors (proximity, significance, and 

singularity). The first factor computes the absolute 

difference between the two ratings but also 

considers whether or not they agree. The second 

factor indicates that ratings have greater significance 

when they are further apart than the median rating. 

The third factor shows the variance between the two 

ratings compared to other ratings. Thus, the 

similarity function is called PSS similarity. Next, 

Sheugh and Alizadeh [21] introduced an extension 

of the PCC similarity function called newPCC 

similarity. The similarity aims to reduce NaN results 

for cases in which there is no similarity between 

users. Saranya et al. [23] offered a PCCJac 

similarity function that combined PCC similarity 

and Jaccard Coefficient. Hereafter, Zhang et al. [25] 

represented the item frequency-based PCC, which 

improves PCC's similarity. The similarity considers 

the weight of each item before calculating the 

correlation coefficient between users. Feng et al. 

[27] presented a novel similarity function by 

integrating three impact factors. The first impact 

factor aims to compute the similarity between users, 

the second factor identifies the user rating 

propensity, and the third factor describes each user’s 

rating weight. Thus, the similarity function is named 

three-impact factors-based similarity. In general, 

these similarity functions only consider the user 

rating data to compute the similarity between users. 

Using only user rating data may cause the 

recommender system to produce incorrect 

inferences, thus affecting the recommendation’s 

performance [29]. 

Furthermore, several studies have proposed the 

similarity functions by combining the user rating-

based and behavior-based similarities. Their studies 

assume that users give a low rating to a product title, 

not necessarily that they dislike the product 

type/genre. The user rating-based similarity 

computes the similarity between users based on the 

user rating data that utilized the cosine similarity. 

The user behavior-based similarity calculates the 

similarity between users considering the user 

behavior data that adopted the PCC similarity (that 

replaces the user rating data with the user behavior 

data). The user rating data is the rating score given 

directly to the product. Meanwhile, the user 

behavior data is an accumulated score obtained 

indirectly in accessing genre data. 

After giving weight to each similarity, The final 

similarity is computed with a combination of these 

two similarities. Examples of these similarities are 

user-score-probability-collaborative-filtering 

(UPCF) [28] and user-profile-correlation-based-

similarity (UPCSim) [29]. These two similarities 

have different ways of assigning similarity weights. 

The UPCF similarity uses the threshold value for 

weighting. The UPCSim utilizes the correlation 

coefficient between user profile data (age, gender, 

occupation, and location) and user rating/behavior 

data. Eqs. (3) and (4) define these similarity 

formulas.  

 

𝑆𝑖𝑚(𝑢𝑥, 𝑢𝑦)
𝑈𝑃𝐶𝐹

=  

𝛽. 𝑆𝑟(𝑢𝑥, 𝑢𝑦) + (1 − 𝛽). 𝑆𝑏(𝑢𝑥, 𝑢𝑦) (3) 

 

𝑆𝑖𝑚(𝑢𝑥, 𝑢𝑦)
𝑈𝑃𝐶𝑆𝑖𝑚

=  

𝛼. 𝑆𝑟(𝑢𝑥 , 𝑢𝑦) + 𝛿. 𝑆𝑏(𝑢𝑥, 𝑢𝑦) (4) 

 

𝑆𝑟(𝑢𝑥, 𝑢𝑦) denotes the similarity based on user 

rating data between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) that 

utilized the cosine similarity, which is formulated in 

Eq. (1).  𝑆𝑏(𝑢𝑥, 𝑢𝑦)  states the similarity based on 

user behavior data between 𝑢𝑠𝑒𝑟𝑥  (𝑢𝑥 ) and 𝑢𝑠𝑒𝑟𝑦 

(𝑢𝑦) that adopted the PCC similarity (by replacing 

the user rating data with the user behavior data), 

which formulated in Eq. (5). 𝛽 is the threshold value 

that ranges from 0 to 1. 𝛼  and 𝛿  indicate each 

similarity’s weight computed based on the 

correlation coefficient (𝑟) utilizing multiple linear 

regression analysis. Eq. (6) defines the multiple 

linear regression formula, and Eq. (7) states the 

correlation coefficient formula (𝑟). 

 

 𝑆𝑏(𝑢𝑥, 𝑢𝑦) =  

∑ (𝑃𝑢𝑥𝑔−�̅�𝑢𝑥)𝑔∈𝐺𝑢𝑥∩𝐺𝑢𝑦
(𝑃𝑢𝑦𝑔−�̅�𝑢𝑦)

√∑ (𝑃𝑢𝑥𝑔−�̅�𝑢𝑥)
2

𝑔∈𝐺𝑢𝑥∩𝐺𝑢𝑦
 .  √∑ (𝑃𝑢𝑦𝑔−�̅�𝑦)

2

𝑔∈𝐺𝑢𝑥∩𝐺𝑢𝑦

. (5) 

 

𝑃𝑢𝑥𝑔 and 𝑃𝑢𝑦𝑔 indicate the probability score for 

product type/genre 𝑔  from 𝑢𝑠𝑒𝑟𝑥  ( 𝑢𝑥 ) and 𝑢𝑠𝑒𝑟𝑦 

( 𝑢𝑦 ), respectively. 𝐺𝑢𝑥
 and 𝐺𝑢𝑦

 represent the 

product types rated by 𝑢𝑠𝑒𝑟𝑥  (𝑢𝑥 ) and 𝑢𝑠𝑒𝑟𝑦  (𝑢𝑦), 

respectively. 𝑔 is one of the product types rated by 

both users. �̅�𝑢𝑥
 and �̅�𝑢𝑦

 express the average 

probability scores of all product types rated by 

𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively. 

 

𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑛𝑥𝑛 (6) 

 

𝑟 = √
𝑏1 ∑ 𝑥1𝑦+𝑏2 ∑ 𝑥2𝑦+𝑏3 ∑ 𝑥3𝑦+…+𝑏𝑛 ∑ 𝑥𝑛𝑦

∑ 𝑦2  (7) 

 

𝑦 is a dependent variable that is represented by 
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the user rating value. 𝑥  is an independent variable 

that is represented by the user profile data that 

consists of age (𝑥1), gender (𝑥2), occupation (𝑥3), 

and location (𝑥4) . 𝑎  is a constant, and 𝑏  is the 

regression coefficient for each independent variable. 

Using the MovieLens dataset, these two 

similarity functions (UPCF [28] and UPCSim [29]) 

can generate a rating prediction close to the actual 

rating. In other words, the UPCF [28] and UPCSim 

[29] can improve recommendation performance 

compared to similarity algorithms that only depend 

on user rating data. It happens because these two 

similarities involve the user behavior data to 

calculate the similarity between users. In addition, 

the experimental results show that UPCSim [29] can 

outperform UPCF [28] because UPCSim [29] uses 

more complete data in calculating similarity (namely, 

adding user profile data for computing the similarity 

weights).  

Although both similarities are superior, both 

similarities still need to improve their accuracy 

because they do not consider the time factor when 

assessing items. 

3. Research method 

This work proposes an approach for making 

recommendations called TLFSim, which involve the 

time when assessing the item. Fig. 1 shows the four 

stages of our study: input, data preparation, 

neighbor-based process, and output. 

3.1 Input 

The input dataset is the first stage of the 

developed neighbor-based collaborative filtering 

system. In this paper, we used MovieLens 100k. 

There are 100,000 ratings in the MovieLens 100k 

dataset, which includes 1,682 films and 943 people. 

Each user in this dataset has rated at least 20 films 

using a scale from 1 to 5. A score of 1 means the 

user detests the film, while a score of 5 means the 

user enjoys it. The datasets have 93.7% data sparsity 

and 6.3% density [30]. This rating data structure 

consists of user-id, movie-id, rating, and timestamp. 

All items in the recommendation system must have 

ratings to obtain accurate user preference. Hence, 

we used rating prediction to anticipate the unrated 

items using the kNN algorithm. 

3.2 Data preparation 

The second stage is the data preparation. This 

stage performs data pre-processing by reducing 

irrelevant attributes. These irrelevant attributes are 

the movie title, release date, video release date, and  
 

 
Figure. 1 Research stages 

 

IMDb URL of the item data. 

3.3 Neighbor-based process 

The neighbor-based process is the third stage of 

this study. The two steps in this stage are similarity 

calculation and rating prediction. In this study, 

similarity calculation employs TLFSim, which 

considers the time-loss function to calculate 

similarity. The rating prediction method utilizes k 

nearest neighbor (kNN). 

TLFSim combines rating-based and genre-based 

similarities by considering the time-loss function 

[31]. The rating-based similarity refers to Eq. (1), 

and the genre-based similarity refers to Eq. (3). 

Consideration of time-related ratings in the 

collaborative filtering approach is crucial because 
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the user's interests change over time. These ratings, 

which may be derived utilizing the right time loss 

functions, raise the system's efficiency. Two factors 

are critical from the standpoint of these functions: 

first, choosing the right time loss function, and 

second, the level at which the time loss functions are 

inferred. Two well-liked time loss functions: power 

and exponential. The power time loss function is 

formulated in Eq. (8). 

 

𝑇𝐿𝐹𝑃𝑜𝑤𝑒𝑟 = |𝑇𝑢𝑥,𝑝
− 𝑇𝑢𝑦,𝑝

|−𝜑 (8) 

 

𝜑 is a tuning parameter, 𝑇𝑢𝑥,𝑝
and 𝑇𝑢𝑦,𝑝

represent 

the timestamp of 𝑢𝑠𝑒𝑟𝑥  ( 𝑢𝑥 ) and 𝑢𝑠𝑒𝑟𝑦  ( 𝑢𝑦 ) on 

product 𝑝, respectively. The range of time function 

value is (0,1), which is reduced with time. 

This study uses the power function to be applied 

in calculating similarity and rating prediction. The 

similarity between users employing the time loss 

function is calculated as follows:  

 

𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝑇𝐿𝐹𝑆𝑖𝑚

= 𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)
𝑈𝑃𝐶𝐹

∗ 𝑇𝐿𝐹  (9) 

 

The nearest neighbors for each target user are 

identified using the similarity calculated by Eq. (9), 

which aids in producing the prediction. The 

prediction formula is given in Eq. (10) below.  

 

�̂�𝑢𝑥𝑝 = �̅�𝑢𝑥
+

∑ 𝑆𝑖𝑚(𝑢𝑥,𝑢𝑦).𝑢𝑦𝜖𝑁𝑁𝑢𝑥 (𝑟𝑢𝑦𝑝−�̅�𝑢𝑦)

∑ |𝑆𝑖𝑚(𝑢𝑥,𝑢𝑦)|𝑢𝑦𝜖𝑁𝑁𝑢𝑥

∗ 𝑇𝐿𝐹 

(10) 

 

�̂�𝑢𝑥𝑝  is the predicted rating score of the 𝑢𝑠𝑒𝑟𝑥 

( 𝑢𝑥 ) to product 𝑝 . 𝑁𝑁𝑢𝑥  is the set of nearest 

neighbors to 𝑢𝑠𝑒𝑟𝑥  (𝑢𝑥 ). 𝑆𝑖𝑚(𝑢𝑥 , 𝑢𝑦)  is the final 

similarity between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) using 

TLFSim. �̅�𝑢𝑥
 and �̅�𝑢𝑦

 is the rating average of 𝑢𝑠𝑒𝑟𝑥 

(𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦), respectively. 𝑟𝑢𝑦𝑝 is the rating 

score given by 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) to product 𝑝. 

3.4 Output 

Output is the last stage in this research. This 

stage evaluates how well-proposed algorithms 

perform compared to previous algorithms. In this 

study, the performance evaluation uses prediction 

and running time metrics. Prediction metrics utilize 

mean absolute error (MAE) and root mean square  

error (RMSE), which refer to Eqs. (9) and (10) [32, 

33]. 

 

𝑀𝐴𝐸  =
1

𝑁
∑ |𝑟𝑢𝑥𝑝 − �̂�𝑢𝑥𝑝|𝑢𝑥𝜖𝑈𝑥,𝑝𝜖𝑃    (9) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑟𝑢𝑥𝑝 − �̂�𝑢𝑥𝑝)

2
𝑢𝑥𝜖𝑈𝑥,𝑝𝜖𝑃       (10) 

 

𝑟𝑢𝑥𝑝 states the rating score given by 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) 

to product 𝑝 . �̂�𝑢𝑥𝑝  is the predicted rating score of 

𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) to product 𝑝.  

4. Experiment 

We start by outlining the experimental setting in 

this section. We then review the findings by 

contrasting the proposed algorithm with earlier 

algorithms. Finally, we discuss the results of our 

experiment. 

4.1 Experimental setting 

We employed MovieLens 100k to assess the 

effectiveness of the proposed TLFSim algorithm. 

The k-fold cross-validation (CV) method splits this 

dataset into training and testing data. The training 

data aims to create the similarity model, while the 

testing data functions to evaluate the 

recommendation method. We set the value of k with 

k=5 to get separate 80% of training data and 20% of 

testing data. We also set the number of nearest 

neighbors (k) with k=10 to k=100. We compared the 

neighbor-based collaborative filtering algorithms 

(Cosine, UPCF [28], and UPCSim [29]) with our 

proposed TLFSim algorithm. 

This study utilized the computer specifications 

of Processor 11th Gen Intel® Core™ i7-1165G7 @ 

2.80 GHz, 1690 MHz (4 Core), and Memory of 16 

GB. The algorithms in Python were running under 

Microsoft Windows 7. 

4.2 Experimental results 

With training and testing data split (80%:20%) 

on the MovieLens 100k, this section compares the 

performance of our proposed TLFSim algorithm 

with the leading rating-based approaches. Metrics 

for evaluating performance use MAE, RMSE, and 

running time.  

Table 1 compares of MAE values in MovieLens 

100k with the distribution of training data and 

testing data of 80%:20%.  

In all similarity algorithms, the average MAE 

values decline as the number of nearest neighbors 

grows. The average of MAE values using TLFSim 

reduces compared to other algorithms. The decrease 

in the average MAE values compared to UPCSim is 

5.93%, UPCF is 8.28%, and Cosine is 15.45% in the 

MovieLens 100k dataset. It shows that the 

prediction accuracy using the time-loss function 

experienced an average increase compared to  
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Table 1. Comparison of the average MAE values of four 

neighbor-based algorithms in MovieLens 100k dataset 

k 

MAE 

Cosine 
UPCF 

[28] 
UPCSim 

[29] 
TLFSim 

10 0.8227 0.7792 0.7669 0.7135 

20 0.8099 0.7631 0.7483 0.7049 

30 0.8051 0.7565 0.7410 0.7013 

40 0.8048 0.7551 0.7387 0.7002 

50 0.8043 0.7544 0.7369 0.6983 

60 0.8041 0.7535 0.7364 0.6976 

70 0.8049 0.7529 0.7359 0.6961 

80 0.8051 0.7526 0.7355 0.6952 

90 0.8056 0.7525 0.7347 0.6937 

100 0.8072 0.7521 0.7337 0.6923 

Avg 0.8074 0.7572 0.7408 0.6993 

 

 

 
Figure. 2 Comparison of the average MAE values of the 

four similarity algorithms using MovieLens 100K dataset 

 

without the time-loss function. 

Fig. 2 shows the MAE values of the four 

algorithms decrease with increasing number of 

nearest neighbors.  

At the beginning of the curve, the decrease in the 

MAE value is very sharp as the number of nearest 

neighbors increases, while at the end of the curve, 

the greater the number of nearest neighbors, the 

MAE value tends to be stable. It can be said that the 

number of nearest neighbors influences the MAE 

value, where the greater the number of nearest 

neighbors, the smaller the MAE value. With the 

same number of nearest neighbors, the MAE value 

of the TLFSim algorithm is always smaller than that 

of other algorithms. In other words, the error 

between the actual and the predicted ratings of the 

proposed TLFSim is the smallest. 

Table 2 compares the RMSE values in the 

MovieLens 100k dataset with the distribution of 

training data and testing data of 80%:20%. 

Increasing the value of k indicates a smaller RMSE 

value, which means that the number of nearest 

neighbors affects the method's performance.  

Table 2. Comparison of the average RMSE values of four 

neighbor-based algorithms in MovieLens 100k dataset 

k 

RMSE 

Cosine 
UPCF 

[28] 

UPCSim 

[29] 
TLFSim 

10 1.0417 0.9835 0.9793 0.9674 

20 1.0248 0.9643 0.9541 0.9500 

30 1.0189 0.9574 0.9453 0.9166 

40 1.0163 0.9558 0.9427 0.9116 

50 1.0162 0.9556 0.9393 0.9107 

60 1.0154 0.9547 0.9389 0.9096 

70 1.0162 0.9544 0.9383 0.9074 

80 1.0170 0.9543 0.9381 0.9069 

90 1.0173 0.9542 0.9364 0.9058 

100 1.0176 0.9538 0.9359 0.9033 

Avg 1.0201 0.9588 0.9448 0.9169 

 

 

 
Figure. 3 Comparison of the average RMSE values of the 

four similarity algorithms using MovieLens 100K dataset 

 

Based on Table 2, the proposed algorithm 

always gives the smallest RMSE in each condition 

of the number of nearest neighbors compared to the 

other three similarity algorithms. The decrease in the 

average RMSE values compared to UPCSim is 

3.05%, UPCF is 4.57%, and Cosine is 8.21% in the 

MovieLens 100k dataset. 

It shows that the accuracy of TLFSim is the 

lowest, which means the proposed algorithm is 

superior and becomes the advantage of TLFSim. It 

happens because our proposed algorithm employs 

the time-loss function that gives the weight for the 

item period. 

Fig. 3 illustrates how changing the number of 

nearest neighbors affects the RMSE value. The four 

algorithms show a decrease in the RMSE value first 

and are stable when neighbors exceed 50. The 

RMSE value of the TLFSim algorithm always 

indicates the smallest value for each different 

number of neighbors. It shows that TLFSim has the 

lowest error rate than the other two algorithms and  
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Table 3. Comparison of the average running time values 

of four neighbor-based algorithms in MovieLens 100k 

dataset 

k 

Algorithm 

TLFSim 
UPCSim 

[29] 

UPCF 

[28] 
Cosine 

10 4.63 4.78 4.51 3.67 

20 4.57 4.82 4.48 3.91 

30 4.82 5.02 4.60 4.21 

40 5.13 5.27 4.70 4.42 

50 5.53 5.68 5.00 4.82 

60 5.83 5.99 5.28 5.08 

70 5.85 6.02 5.38 5.10 

80 5.89 6.10 5.38 5.25 

90 5.96 6.15 5.58 5.29 

100 6.17 6.28 5.81 5.25 

Avg 5.44 5.61 5.07 4.70 

 

 

confirms the superiority of TLFSim. 

In addition to measuring the MAE and RMSE 

values as recommendation metrics, this experiment 

also evaluated the running time of four algorithms to 

see the effect of the time-loss function on the 

running time of algorithms. Table 3 compares the 

running time on the MovieLens 100k dataset with 

the distribution of training data and testing data of 

80%:20%. 

Based on Table 3, TLFSim requires a longer 

average execution time, namely 1.08 seconds 

compared to Cosine and 0.71 seconds compared to 

UPCF [28]. However, TLFSim requires an average 

execution time of 0.17 seconds faster than UPCSim 

[29]. This result occurs because the TLFSim 

algorithm, apart from calculating the final similarity 

between users, also has an additional step in 

calculating the time loss function compared to the 

three previous algorithms. 

4.3 Discussion 

In this study, we propose a recommendation 

algorithm that utilizes a neighbor-based algorithm 

with a time-loss function called TLFSim. The 

neighbor-based method considers user ratings and 

behavior scores to accommodate user preferences. 

Besides that, this algorithm also employs time when 

a user assesses the item. In testing the method, we 

used the popular MovieLens 100k dataset. This 

dataset has sparsity levels of 93.7%, while density 

levels are 6.3%. The distribution of training data and 

testing data on the dataset is carried out using the k-

folds CV method at k=5. Predictive accuracy (MAE 

and RMSE) and running time evaluate the 

algorithm's performances. 

The experiment results showed that employing a 

time-loss function in neighbor-based collaborative 

filtering could improve the prediction performance 

by reducing MAE and RMSE compared to the state-

of-the-art algorithms (i.e., UPCSim [29], UPCF [28], 

and Cosine). In addition, the performance of the 

recommendation processing time is faster than 

UPCSim [29]. However, it is lower than the other 

two algorithms (UPCF [28] and Cosine). It occurs 

because the similarity calculation also considers 

time data, requiring an additional step that consumes 

more time. It becomes the limitation of our work.  

5. Conclusion 

Based on the results and discussion in the 

previous section, applying the TLFSim algorithm 

produces a better predictive accuracy value than the 

earlier algorithms (UPCSim, UPCF, and Cosine). 

Still, it consumes more time compared to the UPCF 

and Cosine algorithms.  However, the TLFSim is 

still faster than the UPCSim algorithm.  

For further research, the system development 

can consider matrix factorization, clustering, and 

parallel processing to calculate user similarity and 

explore other hybrid methods to improve 

recommendation performance. 

List of notations  

𝑆𝑖𝑚(𝑢𝑥, 𝑢𝑦) =  similarity between 𝑢𝑠𝑒𝑟𝑥  ( 𝑢𝑥 ) 

and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦). 

𝑟𝑢𝑥𝑝  = the rating score from 𝑢𝑠𝑒𝑟𝑥  ( 𝑢𝑥 ) to 

product 𝑝.  

𝑟𝑢𝑦𝑝  = the rating score from 𝑢𝑠𝑒𝑟𝑦  ( 𝑢𝑦 ) to 

product 𝑝. 

𝑃𝑢𝑥
 = the set of products rated by 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥).  

𝑃𝑢𝑦
 = the set of products rated by 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦). 

�̅�𝑢𝑥
 = the average rating of all products rated by 

𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥). 

�̅�𝑢𝑦
 = the average rating of all products rated by 

𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦). 

𝑆𝑟(𝑢𝑥, 𝑢𝑦) = the similarity based on user rating 

data between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).  

𝑆𝑏(𝑢𝑥, 𝑢𝑦) = the similarity based on user 

behavior data between 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) and 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦).  

𝛽 = the threshold value that ranges from 0 to 1. 

𝛼 = the similarity’s weight for 𝑆𝑟(𝑢𝑥 , 𝑢𝑦). 

𝛿 = the similarity’s weight for 𝑆𝑏(𝑢𝑥, 𝑢𝑦). 

𝑔 = the product type/genre. 

𝑃𝑢𝑥𝑔 = the probability score from 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) to 

product type/genre 𝑔.  

𝑃𝑢𝑦𝑔 = the probability score from 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) to 
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product type/genre 𝑔. 

𝐺𝑢𝑥
 = the set of product types rated by 𝑢𝑠𝑒𝑟𝑥 

(𝑢𝑥).  

𝐺𝑢𝑦
 = the set of product types rated by 𝑢𝑠𝑒𝑟𝑦 

(𝑢𝑦). 

�̅�𝑢𝑥
 = the average probability scores of all 

product types rated by 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥)  

�̅�𝑢𝑦
 = the average probability scores of all 

product types rated by 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦). 

𝑦 = a dependent variable.  

𝑥 = an independent variable that is represented 

by the user profile data that consists of age (𝑥1), 

gender (𝑥2), occupation (𝑥3), and location (𝑥4).  

𝑎 = a constant.  

𝑏= the regression coefficient. 

𝑇𝐿𝐹𝑃𝑜𝑤𝑒𝑟= the power time loss function 

𝜑 = tuning parameter.  

𝑇𝑢𝑥,𝑝
= timestamp of 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) on product 𝑝.  

𝑇𝑢𝑦,𝑝
= timestamp of 𝑢𝑠𝑒𝑟𝑦 (𝑢𝑦) on product 𝑝. 

�̂�𝑢𝑥𝑝 = the predicted rating score of 𝑢𝑠𝑒𝑟𝑥 (𝑢𝑥) to 

product 𝑝.  

𝑁𝑁𝑢𝑥  = the set of nearest neighbors to 𝑢𝑠𝑒𝑟𝑥 

(𝑢𝑥).  
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