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Abstract: The accurate and dependable prediction of traffic is essential for the stable and safe implementation system 

of intelligent transportation. It is difficult to examine both inter-series and intra-series temporal correlations at the same 

time. However, several recent research in the time domain have attempted to capture both correlations but numerous 

analyses only capture the correlations of temporal and rely on pre-determined priors as inter-series interactions. In this 

paper, an attention-based spectral temporal graph neural network (AStemGNN) is proposed for traffic flow prediction 

and identifying the critical node/link graph network. In the spectrum domain, both the correlations of inter-series and 

temporal dependency are captured by AStemGNN. It incorporates graph fourier transforms (GFT), which describe the 

correlations of inter-series, and discrete fourier transform (DFT) which represent temporal dependencies. Following 

the execution of GFT and DFT, the spectrum representations retain patterns and it was predicted efficiently by the 

modules of convolution and sequential learning. Furthermore, an AStemGNN automatically identifies the correlations 

of inter-series data without employing the help of pre-defined priors. The efficacy of the AStemGNN method is 

demonstrated by employing the PEMS04 and PEMS08 datasets. The existing methods such as attention-based spatial-

temporal graph neural networks (ASTGNN), static and dynamic spatial correlation neural networks (SDSCNN), 

dynamic graph convolutional recurrent imputation networks (DGCRIN), and graph and attentive multi-path 

convolutional network (GAMCN) are used to justify the efficacy of the AStemGNN. When compared with the existing 

methods such as ASTGNN, SDSCNN, DGCRIN, and GAMCN, the AStemGNN achieves 0.65%, 1.12% mean 

absolute error (MAE), 0.78%, 1.05% root mean squared errors (RMSE), and 1.57%, 2.19% mean absolute percentage 

error (MAPE) in both PEMS04, PEMS08 datasets respectively. 

Keywords: Graph neural network, Inter-series correlations, Intra-series temporal correlations, Link/node 

identification, Traffic flow prediction. 

 

 

1. Introduction 

Traffic flow prediction is a technique that 

examines current traffic circumstances on the urban 

road network, mining traffic patterns, and forecasts 

future traffic conditions on the road network such as 

density, flow, and speed [1]. Traffic flow forecast is 

considered to be a vital part of intelligent 

transportation systems (ITS), offering significant 

benefits in the reduction of traffic congestion, 

enhancing the efficiency of traffic control, decreasing 

traffic accidents, and timely resource deployment [2]. 

Real-world applications like the recognition of 

skeleton-based action and traffic prediction 

frequently use spatial-temporal data [3]. Accurate 

spatiotemporal traffic flow forecasting is required to 

prevent public transport congestion. This can enable 

decision-making for the management of traffic, 

including temporary traffic control, and traffic signal 

modification [4]. Due to the spatial dependence 

between adjacent road segments, the prediction of 

spatial can be done by estimating traffic flows from 

nearby roadways [5]. Spatial-temporal graph 

modeling has gained increased attention as graph 

neural networks develop to achieve more accurate 

traffic predictions in long-term and complex spatial 
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situations [6]. Numerous different types of sensor 

devices have been used on the transportation network 

due to the advancement of sensor technology [7]. 

These sensors generate a lot of geographic-based 

traffic data, which offers adequate traffic forecasting 

[8]. Numerous different types of sensor devices have 

been used on the transportation network due to the 

advancement of sensor technology. 

A key element of crowd control and transit 

management in urban rail transit is the short-term 

forecasting flow of passengers [9]. Using short-term 

passenger flow forecasting, transit operators can 

manage passenger flow to prevent congestion and 

deliver real-time traffic information to passengers to 

assist them in making intelligent scheduling 

decisions [10]. Mobility patterns and travel demand 

are frequently the most important inputs for planning 

and operating transportation infrastructure/services 

such as rail lines, dedicated bus lanes, and scheduling, 

which further determine the public transit service’s 

attraction, effectiveness, and dependability [11]. 

Traffic flow spreads during several traffic nodes, and 

downstream node flow is closely related to upstream 

node flow. There are typically both long-term and 

short-term neighboring periodic temporal 

dependencies for the temporal feature extraction [12]. 

Although network traffic shows enormous variation 

over time, it is still possible to forecast traffic using 

its periodic patterns [13]. To predict traffic, time 

series forecasting models that emphasize using 

temporal characteristics, such as autoregressive 

integrated moving average (ARIMA) and recurrent 

neural network (RNN) are frequently utilized [14]. 

Some research employs convolutional neural 

networks (CNN) to extract spatial information and 

combine it with long-short term memory (LSTM) to 

increase the prediction accuracy to assess the spatial 

dependence of traffic flows [15]. However, several 

attempts have recently tried to capture both 

correlations but only capture correlations of temporal 

in the time domain and rely on inter-series 

interactions with pre-defined priors. To overcome 

these issues, following are the primary contribution 

of this paper is summarized below:  

 

• In the spectrum domain, attention-based 

spectral temporal graph neural network 

(AStemGNN) effectively represents inter-

series and intra-series correlations. The 

advantages of discrete fourier transform 

(DFT), graph fourier transform (GFT), and 

deep neural networks are combined and 

implemented.  

• For various time series, AStemGNN provides 

data-driven dependency graph generation. As 

a result, the model can be used for any time 

series that lacks predefined topologies. 

• Graph neural network (GNN) has been 

established for the effective identification of 

critical links/nodes in the network of large 

complexes and is used to learn link/node 

criticality scores in a variety of applications, 

including urban, social, and biological 

networks. 

 

The remainder of the paper is represented as 

follows. Section 2 describes the literature survey. 

Section 3 discusses the problem statement. Section 4 

describes the objectives. Section 5 discusses the 

proposed methodology. Section 6 describes the 

results. Section 7 discusses the conclusion. 

2. Literature survey 

Guo [16] implemented an attention-based spatial-

temporal graph neural network (ASTGNN) for 

predicting the traffic flow in both the dimensions of 

temporal and spatial, including the heterogeneity and 

periodicity of spatial data. To include a time series 

local context, a trend-aware muti-head attention 

method was established specifically for prediction 

time series tasks. The implemented method achieves 

the best-predicting performance by accurately 

modeling the traffic data dynamics. However, 

ASTGNN heavily depends on previous traffic data, 

this performance suffers in limited or noisy 

environments and does not generalize well to new 

traffic patterns. 

Dai [17] presented static and dynamic spatial 

correlation neural networks (SDSCNN) for the 

prediction of traffic flow and a network of graph 

attention was employed to generate the modules of 

static and dynamic using the correlation between 

traffic and distance data from the road network. 

Using the multi-head self-attention method, the 

temporal correlation and traffic flow periodicity were 

then recorded, and several spatial-temporal layers 

were combined for prediction. METR-LA, PEMS04, 

and PEMS08 were the three datasets that showed the 

implemented method achieves the performance of 

good prediction. However, the model’s prediction 

performance was impacted by the relatively 

homogenous characteristics of the input data, which 

include car accidents, heterogeneous weather, and 

unexpected situations. 

Tang [18] introduced a spatial-temporal graph 

attention-based dynamic graph convolutional 

network (GAGCN) for the flow of traffic prediction. 

GAGCN uses graph attention networks to 

automatically extract spatial connections among 
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hidden nodes in the traffic data feature that was 

dynamically changed over time. To acquire the 

spatial properties of the road network, the graph 

convolutional network is then modified based on the 

connections of spatial. GAGCN has greater 

versatility and accuracy and also improves prediction 

performance. However, the capacity of GAGCN to 

generalize diverse traffic situations or geographic 

locations was limited.  

Ke [19] implemented an automated spatio-

temporal graph prediction (AutoSTG) to learn the 

adjacency matrices of spatial graph convolution 

layers and kernels of temporal convolutional layers 

from metagraph information. Then meta-learning 

was employed to produce the SC diffusion matrices 

and the layers of TC kernels from the acquired 

properties. The implemented method maximizes the 

search space and includes new graphs that enhance 

and stabilize the performance of the model. However, 

the search space was constrained or not sufficiently 

representative of the various network designs, and the 

implemented method produced biased or inaccurate 

outcomes.  

Kong [20] presented a dynamic graph 

convolutional recurrent imputation network 

(DGCRIN) to compute missing traffic data. To 

achieve fine-grained modeling of the dynamic 

spatiotemporal dependencies of the road network, 

DGCRIN employs a generator of the graph and 

dynamic graph convolutional gated recurrent unit 

(DGCGRU). This method enables predictions more 

reliable and precise, even when there are missing 

points of data. However, traffic data typically 

establish substantial dynamic correlations in the 

spatiotemporal dimension, for a static graph structure 

was not properly provided. 

Qi [21] introduced a graph and attentive multi-

path convolutional network (GAMCN) to forecast 

short-term traffic situations and concentrate on the 

temporal and spatial variables that affect traffic 

conditions. To acquire the correlations of spatial and 

temporal traffic situations, the GAMCN system 

combines the component of enhanced GCN with a 

precise multi-path CNN component. The outcomes 

indicate that the implemented method performs well 

in terms of prediction efficiency and errors. However, 

for effective training, the GAMCN method needs a 

large amount of historical traffic data including both 

temporal and spatial information. 

Zhang [22] implemented an evolution temporal 

graph convolutional network (ETGCN) method to 

create a spatial correlation and then, to predict the 

speed of traffic on a road network graph, the spatial-

temporal dependence and their dynamic changes 

were simultaneously learned. To fuse various 

network adjacency matrices, a similarity-based 

attention technique was offered, and then a gated 

recurrent unit was coupled with GCN to 

simultaneously record the correlations of spatial-

temporal. By using the SZ-taxi dataset, the technique 

generates better prediction outcomes. However, 

scaling ETGCN to address greater or more intricate 

spatial and temporal datasets was difficult.  

There are some limitations with the existing 

methods that are mentioned above such as the 

DGCRIN’s traffic data typically establish substantial 

dynamic correlations in the spatiotemporal 

dimension, for which a static graph structure was not 

properly provided. The GAMCN method needs a 

large amount of historical traffic data including both 

temporal and spatial information for training. 

3. Problem statement 

The problem found with the general issues in 

traffic flow prediction and critical node/link 

identification is discussed below: 

 

• The challenge is to identify essential nodes or 

linkages in a road network that have a major 

effect on the overall flow of traffic and 

congestion. 

• However, computation cost and training time 

were increased due to the optimization 

process use of large-scale graphs and tuning 

of hyperparameters. 

• The issue of traffic flow forecasts is to 

accurately predict the flow of traffic in a 

given area at a specific period in the future. 

4. Objectives 

Traffic flow prediction and critical node/link 

identification are effectively carried out by utilizing 

deep learning techniques. 

 

• The main objective is to identify critical 

nodes or links that are essential for optimizing 

the management of traffic measures such as 

lane additions, adjustments of signal timing, 

and infrastructure enhancement.  

• To develop scalable and effective methods for 

reducing the computational resources-related 

constraints on the prediction of traffic flow 

and critical node identification. 

• The goal is to reduce forecasting errors and 

increase the accuracy of the prediction. 
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Figure. 1 Block Diagram of the proposed method 

 

5. Proposed methodology 

For traffic flow prediction and identifying the 

critical node/link graph network an AStemGNN is 

proposed. The overview of the proposed method is 

indicated in Fig. 1. 

5.1 Input and latent correlation layer 

First, the layer of latent correlation is supplied a 

traffic flow time-series input called 𝑋  where the 

weight matrix 𝑊 and the structure of the graph can 

be determined automatically from the data. The 

AStemGNN layer, which consists of two residual 

AStemGNN blocks, is then input by the graph 𝐺 =
(𝑋, 𝑊). When modeling multivariate time series, a 

GNN-based technique requires the use of a graph 

structure. It is built using human knowledge like 

traffic road network prediction, however there are 

occasions when there is no prior predefined structure 

of the graph. The self-attention technique is used to 

detect latent correlations between several time series 

to serve general cases. The model shows correlations 

that are relevant in a data-driven manner. The income 

𝑋 ∈ 𝑅𝑁𝑋𝑇 is received by the layer of GRU and the 

hidden state associated with every timestamp 𝑡  is 

determined. The 𝑊 weight matrix is then determined 

by the process of self-attention representing the entire 

time series using the hidden state 𝑅 is shown in Eq. 

(1) 

 

𝑄 = 𝑅𝑊𝑄, 𝐾 = 𝑅𝑊𝐾 , 𝑊 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑
)    (1) 

 

Where 𝑑 – 𝑄 and 𝐾 hidden dimension size 

𝑄, 𝐾 – Query and Key representation 

𝑊 ∈ 𝑅𝑁𝑋𝑁- graph G’s adjacency weight matrix 

𝑂(𝑁2𝑑) - time complexity of self-attention  

5.2 Attention-based spectral temporal graph 

neural network (AStemGNN) block 

AStemGNN block was created specifically to 

model both dependencies of structural and temporal 

within traffic flow time series in the domain spectrum. 

A Spe-Seq cell is used to create an AStemGNN block 

by combining it with a module of spectral graph 

convolution. In the spectral domain, due to its 

exceptional capacity to acquire latent structures of 

several time series, spectrum graph convolution is 

frequently employed in a series of time prediction 

tasks. The Graph 𝐺 is first converted into a spectral 

matrix representation using a GFT, which leads to the 

univariate time series for each node to become 

linearly independent. Then, every univariate series of 

time is changed into the frequency domain employing 
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a DFT operator. The representation is supplied 

through GLU sub-layers and 1D convolution in the 

frequency domain to collect pattern features before 

being translated back to the domain time using 

inverse DFT. In the end, inverse GFT is performed 

on the representation of the spectral matrix and 

applied convolution of the graph. The remaining 

elements of the Spectral Graph Convolution are then 

used to process the Spe-Seq cell output. To calculate 

the outcomes after the convolution of the graph with 

kernel Θ𝑗, graph fourier transform (GFT) and spe-seq 

cell are applied to every individual channel of input 

data 𝑋𝑖 . Then, to acquire the 𝑗𝑡ℎ  channel 𝑍𝑗  of the 

output, Inverse GFT is included in the sum as follows 

in Eq. (2) 

 

𝑍𝑗 = 𝐺𝐹−1(∑ 𝑔𝛩𝑖𝑗(𝛬𝑖)𝑆(𝐺𝐹(𝑋𝑖)))                (2) 

 

Where 𝐺𝐹, 𝑆, 𝐺𝐹−1 – GFT, Spe-Seq Cell, IGFT 

Θ𝑖𝑗         - graph convolution kernel for the 

channel of input 𝑖 and output 𝑗 

Λ𝑖         - normalized Laplacian matrix of 

eigenvalue 

Based on Z, basis expansion coefficients 𝜃  are 

produced by a fully connected layer using learnable 

parameters to determine 𝑉 basis vectors. The output 

can then be determined using several various bases 

𝑌 = 𝑉𝜃. In the AStemGNN block, this module has 

two branches: the branch of the forecast, which 

predicts future values, and the branch of backcast 

represented by B, which reconstructs historical 

values. The backcasting branch aids in controlling the 

block’s functional space while representing the data 

of the time series. To construct more complex models, 

residual connections are used to stack different 

AStemGNN blocks. Two AStemGNN blocks are 

employed in this instance. Next block attempts to 

estimate difference among the reconstructed values 

of first block and ground truth. To provide 

predictions, both blocks’ outputs are combined and 

transmitted into fully connected layers and GLU.  

5.2.1. Spectral sequential cell (spe-seq cell) 

The spe-seq cell 𝑆  seeks to learn the feature 

representations on each unique series of time after 

decomposing GFT on the basis of frequency. GLU, 

DFT, F, Inverse DFT, 𝐹−1, and 1D convolution are 

its four components where IDFT and DFT transform 

time-series information among the frequency and 

temporal domains, while in the domain of frequency 

represents GLU learn feature representation and 1D 

convolution. The real part 𝑋𝑢
�̂� and imaginary part 𝑋𝑢

�̂�  

of the DFT outcome are specifically managed by 

identical operators with various parallel conditions. 

The operations can be written as shown in eq. (3). 

  

𝑀∗(𝑋𝑢
∗ )̂ = 𝐺𝐿𝑈(𝜃𝑇

∗ (𝑋𝑢
∗ )̂, 𝜃𝑇

∗ (𝑋𝑢
∗ )̂) 

= 𝜃𝑇
∗ (𝑋𝑢

∗ )̂ ⊙ 𝜎∗(𝜃𝑇
∗ (𝑋𝑢

∗ )̂),∗ 𝜖{𝑟, 𝑖}     (3) 

 

Where 𝜃𝑇
∗  - convolution kernel  

⊙ - Hadamard product and the sigmoid gate of 

nonlinear 

𝜎∗ - calculates the degree to which the data in the 

present input is closely associated. Finally, 

𝑀𝑟(𝑥𝑢
𝑟 )̂ + 𝑖𝑀𝑖(𝑥𝑢

𝑖 )̂  and IDFT is used for the 

outcome. 

5.2.2. Spectral graph convolution 

Three phases make up the spectral graph 

convolution: first, the input series of time is 

transferred to the spectrum domain by GFT. 

Secondly, the spectrum characterization is processed 

by the operator of the graph convolution by kernels. 

Finally, to get the outcome, the spectral 

representation undergoes the IGFT. One of the 

essential operators for spectral graph convolution is 

GFT. The laplacian eigenvectors of the normalized 

graph are used to build the bases of the orthonormal 

space where the input graph is estimated. The 

Laplacian of the normalized graph is calculated in Eq. 

(4). 

 

𝐿 = 𝐼𝑁 − 𝐷−
1

2𝑊𝐷−
1

2     (4) 

 

Where 𝐼𝑁 𝜖 𝑅𝑁𝑋𝑁 – identity matrix 

𝐷 - degree matrix in a diagonal 

Then, using the Laplacian matrix’s eigenvalue 

decomposition obtained L in Eq. (5) 

 

𝐿 = 𝑈𝛬𝑈𝑇        (5) 

 

Where 𝑈𝜖𝑅𝑁𝑋𝑁 – eigenvalue matrix 

Λ - eigenvalue diagonal matrix 

The GFT and IGFT operators are described as 

𝐺𝐹(𝑋) = 𝑈𝑇𝑋 = �̂�  and 𝐺𝐹−1(�̂�) = 𝑈�̂� . The 

𝑔Θ(Λ)  function of the eigenvalue matrix with 

parameter provides the graph convolution operator. 

0(𝑁3) is the general temporal complexity. 

5.3 Graph neural network (GNN) 

A kind of artificial neural network called graph 

neural network (GNN) is created to identify patterns 

in data that are represented graphically. It is one of 

the initial works that effectively convert the 

convolutional operations from Euclidean to graph 
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space. The models may operate directly on graphs 

and their topological information. Their operating 

concept is similar to that of convolutional neural 

networks (CNN). Classification of nodes, graphs, and 

link prediction, etc. are common training tasks for 

graph data. The embedding vectors of the learning 

node are often followed by layers of feedforward for 

regression or classification tasks in a GNN. 

Scalability problems arise since the proposed 

learning process is dependent on the graph size. Since 

subgraphs are used to learn node embeddings, and 

graph size has no impact on the way the training is 

carried out. This framework can also be used to infer 

information about previously unknown or new nodes 

in the network that belong to the same family. The 

typical method for learning this embedding vector is 

a mechanism of message-passing, in which data node 

features are gathered from a node’s neighbors and 

merged with that node’s features to create a vector of 

new features. To create the final embedding for each 

graph node, this process is repeated. Rather than 

learning the embedding vectors, the GraphSAGE 

algorithm learns the function of mapping. As a result, 

given its feature and neighborhood, it can induce the 

embedding of a new node or node unseen during 

training. GNN covers a range of learning challenges 

in a variety of fields, including natural language 

processing, biochemistry, and computer vision. The 

proper node embeddings and criticality scores are 

learned using computationally feasible graphs and a 

GNN, which speeds up the criticality score learning 

process. The GNN model learns node embeddings 

from a collection of node features, which are then 

employed to compute criticality scores. 

6. Experimental setup and results 

To assess the effectiveness of the AStemGNN, 

this paper employs the Operating system running on 

Windows (CPU: Intel Core i7-8700 @ 3.20GHz, 

GPU: NVIDIA GeForce GTX 1070Ti). The hyper-

parameters are tuned using a grid search for 

AStemGNN on the validation data. Finally, kernel 

size for 1D convolution is set to 3 and the channel 

size for every layer of graph convolution is set to 64. 

After that, the optimizer of RMSprop is used, and 50 

training epochs are selected. 

6.1 PEMS04, PEMS08 datasets 

Datasets are related to the flow of traffic on 

California’s highways and are gathered in real-time, 

every 30 seconds, by the caltrans performance 

measurement system (PeMS). In a 5-minute interval, 

the raw traffic flow data is collected. The datasets 

include geographic data regarding the sensor stations. 

PEMS04 and PEMS08 are the two datasets generated 

for traffic flow prediction. This dataset is well-known 

for providing a benchmark in traffic prediction. In 

PEMS08 dataset, there are 1979 sensors on 8 roads, 

and 170 of them were chosen for prediction. 

6.2 Evaluation metrics  

Let T be the total number of timestamps, 𝑋�̂� and 

𝑋𝑡 be the forecast and actual values at timestamp t. 

The experiments evaluation metrics can be calculated 

by following Eqs. (6), (7), and (8) 

 

• Mean Absolute Error (MAE) – To assess a 

model’s accuracy, Mean Absolute Error is 

utilized. Absolute numbers or positive 

numbers are used to determine the error. 

 

𝑀𝐴𝐸 =  
1

𝑇
∑ |𝑋𝑡 − �̂�𝑡|𝑇

𝑡=1     (6) 

 

• Root Mean Squared Errors (RMSE) – It is 

obtained by square rooting the MSE. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ |𝑋𝑡 − �̂�𝑡|𝑇

𝑡=1     (7) 

 

• Mean Absolute Percentage Error (MAPE) – It 

is employed to determine a model’s 

predicting accuracy. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑇
∑ |

𝑋𝑡−�̂�𝑡

𝑋𝑡
|  𝑋 100%𝑇

𝑡=1   (8) 

6.3 Experimental results 

The performance of the ASTEMGNN is analyzed 

with different classifiers such as RNN, LSTM and 

GNN for different 𝑘 fold sizes. The 𝑘 -fold sizes 

considered for evaluating the ASTEMGNN are 3, 5 

and 10. Further, the performances are analyzed for all 

features. The analysis of ASTEMGNN with different 

classifiers for all features is shown in Table 1 and Fig. 

2. Similarly, the analysis of ASTEMGNN with 

different classifiers for selected features. Further, the 

graphical illustration of classification performances 

for different classifiers using all features and selected 

features with 10-folds are shown in Fig. 2 

respectively. From the tables, it is found that the 

STEMGNN provides better performances than the 

RNN, LSTM, STEMGNN and GNN. For example, 

the accuracy of STEMGNN with the selected feature 

for 10-fold is 99.00 % whereas RNN obtains 74.92 %, 

RNN obtains 78.29%, GNN obtains 81.82 % and 

GNN obtains 81.74 %. The performances of 

STEMGNN are improved for the following reasons:  
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Table 1. The analysis of ASTEMGNN with different classifiers 

Cross-folds Measures RNN LSTM GNN STEMGNN ASTEMGNN 

3-folds MAE 0.333 0.304 0.282 0.255 0.213 

RMSE 0.57 0.546 0.521 0.492 0.456 

MAPE 2.03 2.06 2.078 2.104 2.083 

5-folds MAE 0.189 0.162 0.143 0.117 0.066 

RMSE 0.433 0.408 0.379 0.362 0.316 

MAPE 2.026 2.05 2.078 2.102 2.089 

10-folds MAE 0.456 0.437 0.403 0.386 0.037 

RMSE 0.685 0.653 0.638 0.603 0.062 

MAPE 2.029 2.047 2.083 2.106 0.114 

 

 
Figure. 2 The analysis of ASTEMGNN with different classifiers 

 

Table 2. Comparative analysis with existing methods 

Author Methods Datasets MAE (%) RMSE (%) MAPE (%) 

Guo [16] ASTGNN PEMS04 3.9 2.5 7.1 

PEMS08 4.5 2.12 8.4 

Dai [17] SDSCNN PEMS04 2.86 0.91 2.59 

PEMS08 3.15 1.1 3.78 

Kong [20] DGCRIN PEMS04 1.466 3.062 3.38 

PEMS08 1.114 2.467 2.28 

Qi [21] GAMCN PEMS04 0.96 1.80 1.71 

PEMS08 1.22 2.65 2.41 

Proposed Method AStemGNN PEMS04 0.65 0.78 1.57 

PEMS08 1.12 1.05 2.19 

 

 
Figure. 3 Actual vs Predicted traffic flow 

 

1) Utilization of Adam optimizer is used to optimize 

the target function that helps to minimize the error 

and 2) HLF is used to balance the MSE and MAE. 

Fig. 3 shows the Actual vs Predicted traffic flow. 

The actual value is the value acquired from 

measurement or observation of the relevant data. It is 

also known as the observed value. The expected 

value is the predicted value of the variable based on 

the regression analysis. The most frequent method for 

calculating model error is linear regression by 

employing MSE. The difference between the actual 

and predicted values is used to calculate an error rate, 

and the goal is to minimize this difference. 

6.4 Comparative analysis 

The comparative analysis includes datasets, 

methods, MAE, RMSE, and MAPE. Table 2 shows 

the comparative analysis with the existing methods. 

The existing methods ASTGNN [16] has a 3.9%, 

4.5% MAE, 2.5%, 2.12% RMSE, and 7.1%, 8.4% 
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MAPE in both PEMS04, PEMS08 datasets. 

SDSCNN [17] has a 2.86%,3.15% MAE, 0.91%, 

1.1% RMSE, and 2.59%, 3.78% MAPE in both 

PEMS04, PEMS08 datasets. DGCRIN [20] has a 

1.466%, 1.114% MAE, 3.062%, 2.467% RMSE, and 

3.38%, 2.28% MAPE in both PEMS04, PEMS08 

datasets. GAMCN [21] has a 0.96%, 1.80% MAE, 

1.80%, 2.65% RMSE, and 1.71%, 2.41% MAPE in 

both PEMS04, PEMS08 datasets. when compared 

with the existing methods, AStemGNN achieves 

0.65%, 1.12% MAE, 0.78%, 1.05% RMSE, and 

1.57%, 2.19% MAPE in both PEMS04, PEMS08 

datasets. 

6.5 Discussion 

This section provides a discussion about the 

AStemGNN method and compares those results with 

existing methods in comparative analysis section 6.4. 

The major goal of this study is to predict the traffic 

flow and to identify the critical node/link graph 

network. In the spectrum domain, both the 

correlations of inter-series and temporal dependency 

are captured by AStemGNN. The Graph 𝐺  is first 

converted into a spectral matrix representation using 

a GFT, which leads to the univariate time series for 

each node to become linearly independent. Then, 

each univariate series of time is converted into the 

frequency domain employing a DFT operator. Finally, 

inverse GFT is performed on the representation of the 

spectral matrix and applied convolution of the graph. 

A Spectral Sequential (Spe-Seq) cell is used to create 

an AStemGNN bock by combining it with a module 

of spectral graph convolution. In the spectral domain, 

due to its exceptional capacity to acquire latent 

structures of several time series, spectrum graph 

convolution is frequently employed in a series of time 

prediction tasks. The efficacy of the AStemGNN 

method is demonstrated by employing the PEMS04, 

PEMS08 datasets. When compared with existing 

methods ASTGNN [16], SDSCNN [17], DGCRIN 

[20], GAMCN [21], the AStemGNN achieves 0.65%, 

1.12% MAE, 0.78%, 1.05% RMSE, and 1.57%, 

2.19% MAPE in both PEMS04, PEMS08 datasets. 

7. Conclusion 

In this paper, the AStemGNN method is proposed 

to predict the traffic flow and to identify the critical 

node/link graph network. The advantages of DFT, 

GFT, and deep neural networks are combined and 

implemented. Furthermore, an AStemGNN 

automatically identifies the correlations of inter-

series data without employing the help of pre-defined 

priors. The GNN has been established for the 

effective identification of critical links/nodes in the 

network of large complexes and is used to learn 

link/node criticality scores in a variety of applications, 

including urban, social, and biological networks. The 

efficacy of the proposed method is demonstrated by 

employing datasets of PEMS04 and PEMS08. The 

AStemGNN performance is simulated and compared 

with the existing methods such as ASTGNN, 

SDSCNN, DGCRIN, GAMCN. AStemGNN 

achieves 0.65%, 1.12% MAE, 0.78%, 1.05% RMSE, 

and 1.57%, 2.19% MAPE in both PEMS04, PEMS08 

datasets. In the future, the approximation technique 

will be examined to decrease AStemGNN time 

complexity because directly using the decomposition 

of eigenvalue is prohibitively expensive for very 

large high-dimensional time-series graphs. 

Notation Table 

Symbol Description 

𝑑 𝑄 and 𝐾 hidden dimension size 

𝑄, 𝐾 Query and Key representation 

𝑊 ∈ 𝑅𝑁𝑋𝑁 Graph G’s adjacency weight matrix 

𝑂(𝑁2𝑑) The time complexity of self-

attention 

𝐺𝐹, 𝑆, 𝐺𝐹−1 GFT, Spe-Seq Cell, IGFT 

Θ𝑖𝑗  Graph convolution kernel for the 

channel of input 𝑖 and output 𝑗 

Λ𝑖  Normalized Laplacian matrix of 

eigenvalue 

𝑋𝑢
�̂� a real part of GFT 

𝑋𝑢
�̂�  the imaginary part of GFT 

𝜃𝑇
∗  convolution kernel 

⊙ Hadamard product and the 

sigmoid gate of nonlinear 

𝜎∗ calculates the degree to which 

the data in the present input is 

closely associated. 

𝐼𝑁  𝜖 𝑅𝑁𝑋𝑁 identity matrix 

𝐷 degree matrix in a diagonal 

𝑈𝜖𝑅𝑁𝑋𝑁 eigenvalue matrix 

Λ eigenvalue diagonal matrix 

0(𝑁3) general temporal complexity 

𝑡 timestamp 

𝑉 Basic vector 

𝜃 expansion coefficients 
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