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Abstract: The classification of EEG (Electroencephalogram) signals requires design of multidomain modules, 

including signal pre-processing, filtering, segmentation, extraction of features from segmented signals, reduction of 

features via statistical modelling, categorization of the signal into 1-of-N brain disease classes, and performing post 

processing operations. Researchers have proposed deep learning models with single domain features for representing 

EEG signals which limits performance capabilities, when used for multiple disease types. In deep learning models 

feature extraction & selection are wrapped in black-box containers, which is uncontrollable without compromising 

classification performance. To overcome this, design of multispectral data representation engine for classification via 

ensemble models used. The proposed engine represents input EEG signals into Mel frequency cepstral coefficient 

(MFCC), and iVector components. The MFCC feature vector is built using cepstrum, spectrum, power density, and 

other frequency domain features, while iVector is built using statistical entropy features. This combination of feature 

sets can improve feature representation efficiency assists in optimizing classification performance. A novel ensemble 

classification model is designed using multiple neural networks (MNNs) varies layer size with observation that 

proposed model showcased over 98.5% accuracy for classification. Proposed AMVAFEx model has outperformed 

than existing models like online transfer TSK fuzzy classifier (TTFC),Neuroglial Network model (NNM) and Local 

Binary Pattern Transition Histogram (LBP TH) in terms of accuracy, precision, recall & delay performance under 

different input conditions. With this advantage, proposed model is useful for real-time clinical applications. 

Keywords: EEG, iVector, MFCC, Multispectral, Variance. 

 

 

1. Introduction 

Efficient design of EEG classification models 

involves design of design of signal filtering, region of 

interest (RoI) extraction, feature representation, 

feature selection, stratification & post-processing 

operations [1]. A highly effective EEG classification 

model needs design of models which will have high 

efficiency of classification with low computational 

delay. EEG data can be captured from real-time 

headsets and pre-processed to reduce effect of noise 

& other external & internal disturbances. After 

filtering, various temporal features are extracted 

which includes angular, spatial, and frequency-based 

feature vectors. These features aid in the recognition 

of the current brain state in time-domain analysis and 

can be combined to form various classes of brain-

related diseases or brain states. 

In the model depicted in Fig. 1, support vector 

machine (SVM), random forest (RF), K-nearest 

neighbour (KNN), decision tree (DT) & multilayer 

perceptron (MLP) models can be used in 

classification of extracted features into different types 

of emotions. These emotions can be utilized by 

external systems for identification of user behaviour, 

and thereby assist in psychometric analysis. It is plain 

to see that the extraction of features, the selection of 

features, and the categorization blocks have a 

significant role in determining the correctness of these 

models. In the next part of this article, we will go 

through the design of these blocks, as well as the 

performance characteristics derived from a wide 

variety of cutting-edge classification models. As a 

result of this conversation, it has come to our attention 

that these methods either employ a black-box model  
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Figure. 1 A general approach for EEG classification 

model 

 

or are overly general, which restricts the scale at 

which they can be used in terms of latency and 

accuracy performance. 

Existing models also showcase some issues for 

real-time EEG datasets like accuracy of classification 

highly depends upon data density, which limits 

applicability & scalability of the model. Feature 

representation capabilities of these models are limited 

because they utilize uni-domain or bi-domain features 

reduces their real-time classification performance. 

Deep learning models utilize black-box methods; thus, 

their performance cannot be controlled & 

reconfigured via linear optimization techniques. 

Multidomain feature extraction & selection models 

have higher redundancies, which reduces their 

classification speed, and accuracy under real-time 

datasets. 

The performance of the work includes following 

contribution: 

1. This study's goal is to provide and examine the 

architecture of the suggested enhanced feature 

selection engine for multivariate analysis-based EEG 

categorization.  

2. This will allow us to circumvent the problems 

associated with feature representation, slow speed, 

and restricted accuracy performance.  

3. The MFCC and iVector approaches aid in assessing 

highly relevant features, while the variance-based 

model aids in choosing most variant features, hence 

minimising redundancy during the classification 

phases. 

The article is organized in following manner: 

Section 2 gives a thorough analysis of the work on 

EEG signals using machine learning models. The 

proposed improved feature extraction engine for 

multivariate EEG classification is examined in section 

3. Section 4 presents the effectiveness of the proposed 

model, and it is assessed by contrasting with other 

methods that are considered to be state-of-the-art. 

Lastly, this article draws to a close with some thought-

provoking remarks on the suggested model and makes 

some suggestions for how to further enhance the 

model's performance in section 5. 

2. Literature review 

There is a diverse selection of models for 

characterizing EEGs that have been presented by 

scientists over the course of a lengthy period. These 

models differ from one another in terms of their 

applicability, precision, review, and delay in 

execution. For instance, the research presented in [2] 
RISC-V CNN coprocessors may complicate wearable 

devices and need more power and memory, reducing 

their ability to detect epilepsy in real time [3]. The 

Common Spatial Pattern (CSP) EEG signal diagnosis 

method for autism and epilepsy has limitations. CSP 

uses specified frequency ranges, which cannot capture 

patient-specific spectral patterns. CSP can also 

struggle with noisy EEG data and needs a professional 

application, limiting its clinical use.[4] investigates 

the use of a mix of LDA, KNN, SVM, and ANN [5]. 

Due to the wide range of epileptic symptoms, machine 

learning models for epilepsy detection can generate 

false positives or negatives in varied patient 

populations in [6] with CSP, and TTFC for the 

purpose of achieving improved characterization 

results. These models have a high level of precision, 

but their implementation must adhere to standards of 

accuracy due of the application-explicit 

characterisation attributes they possess. Modelling 

glial modulation of electrical rhythms in epilepsy 

involves intricate neuroglial interactions and 

parameters, making it challenging to accurately 

represent the system's complexityin [7], The unique 

pentylenetetrazol-induced epilepsy model used can 

restrict the application of low-intensity focused 

ultrasound stimulation to other epilepsy types or 
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conditions in[8], there is discussion of expansions to 

this model, for multidomain EEG groups, NNM and 

LIFUS are utilised. In these models, a high level of 

accuracy is observed; yet, due to the high level of 

computational complexity, they cannot be scaled for 

quite some time. Multiple Recurrent MNN is a 

strategy that was provided in study [9], which assists 

with achieving greater accuracy and preferable 

flexibility compared to previously published models. 

The goal of this work is to further enhance versatility. 

Scientists have presented comparable models that 

make use of CNN with XWT [10], LBP TH [11], and 

MSMM [12]. Drawback of these single models may 

be sensitive to noise and artifacts in EEG data, leading 

to reduced classification performance in practical 

applications. These models make advantage of 

expanded element extraction methodologies to better 

refine and broadly characterize execution when 

epilepsy is being discovered. 

Since these element extraction models have been 

worked on, the combination of a HC DL, a quadratic 

classifier with wavelet highlights, and MSNN DC is 

being discussed. [13-15] These existing models are 

computationally intensive, which can limit their 

utility in low-resource settings or real-time 

applications. Also these models make extensive use of 

inclusion extractions to handle EEG waveforms over 

a variety of ranges to achieve more effective grouping. 

Limitation of [16]Paediatric seizure prediction in 

scalp EEG utilising a multi-scale neural network with 

dilated convolutions may be computationally and 

resource-intensive. Dilated convolutions raise model 

computational needs, making real-time prediction and 

deployment on resource-constrained devices difficult. 

Temporal-spatial and multi-scale CNN with dilated 

convolutions provides promising output. However, 

these models only have a performance in moderately 

accurate way that is improvised in the work of [17, 

18]. In these works, a progressive discriminative 

scanty portrayal classifier, a time area successive 

elements order utilizing a LSTM neural organization, 

and a DCNN neural organization are investigated 

[19]the quality of EEG data can vary significantly, 

and existing models may not always handle data of 

varying quality effectively. This work can help 

improve the accuracy of these models. These models 

contribute to the enhancement of EEG highlights, 

hence facilitating the development of order exactness 

for a variety of therapeutic applications. Comparable 

models are discussed in [20, 21], in which scientists 

suggest Extended K Nearest Neighbours and Joint 

visually impaired source division techniques for 

improved flexible implementation. These strategies 

are intended to help visually impaired individuals. 

Although these models use very simple highlight 

extraction algorithms, it is not possible to apply them 

to EEG datasets with a very broad scope [22, 23] 

EEG-based workers' stress recognition at construction 

sites is limited by cumbersome EEG equipment, 

worker discomfort, and difficulty distinguishing stress 

from other factors in a dynamic construction 

environment, reducing its practicality and accuracy. 

In this way, it is possible to show that the importance 

of very accurate models for large-scale arrangements 

is negligible, while applications requiring a high level 

of thoroughly accurate description cannot be 

employed with models with a high degree of 

adaptability [24, 25].To resolve these problems, the 

following section will provide a strategy a 

multivariate research-based wavelet pressure-based 

quadratic model for EEG order. The performance can 

be verified via various measures like Accuracy, 

Precision, Recall, and Specificity for all the 

classification algorithms [26]. For a number of 

clinical circumstances, this model will aid in the high-

efficiency and high-adaptability EEG characterization 

[27, 28]. It presents innovative strategy integrating 

down sampling local binary patterns with LSTM for 

congestive heart failure and arrhythmia classification 

may require a lot of labelled data for training, which 

can be difficult to get in medicine. The model has 

struggled to generalise with limited data. limitations 

of [29] Deep learning techniques for EEG motor 

imagery signal classification have high computational 

resource requirements, which can limit their 

practicality, especially for real-time applications or 

resource-constrained devices, and may require 

specialised hardware for efficient implementation 

[30]. EEG's poor spatial resolution makes 

classification approaches for semantic relatedness and 

prediction difficult. EEG collects scalp-level brain 

activity, making it difficult to localise semantic 

processing brain areas, which can impair relatedness 

and prediction tasks. Key findings from the 

application of various approaches on diverse datasets 

are displayed in the table 1 below. 

3. Proposed methodology 

The literature research reveals that several 

machine learning algorithms for EEG categorization 

have been presented; each of these models is used to 

diagnose a certain kind of brain disorder. The 

performance for general purpose classification is 

restricted, while models whose scalability 

performance is better have worse precision, recall, 

and accuracy performance. An expanded feature 

extraction engine with quadratic classifier is presented  
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Table.1 The principal findings from utilising different approaches on various EEG datasets 

Article  Datasets used Techniques applied Findings 

[2] 
National Cheng Kung 

University dataset 

FE: CNN 

Classification: CNN 

With the inclusion of the hardware coprocessor, AI 

techniques can be applied. 

[3] 

King Abdulaziz 

University dataset and 

MIT dataset 

FE: CSP-LBP 

Classification: KNN 

Diagnosis time is accumulated and neurological 

brain problems are diagnosed with greater 

precision. 

[6] Physio-net database 
 

Classification: ANN 

Can be distinguished between epileptic and non-

epileptic people in real time. 

[9] 
Real data from CHB-MIT 

dataset 

FE: MDCNN 

Classification: Brain 

Network + DL 

Achieved improved characterization results. 

[10] Bern-Barcelona dataset 
FE: XWT 

Classification: CNN 

Delta rhythm found to be effective in real time 

signal analysis. 

[11] 
University of Bonn 

Epilepsy EEG Dataset 

FE: DWT 

Classification: SVM 

Small feature size and short input signals provides 

low computing requirements. 

[13] CHB-MIT database 
FE: TL using a single DNN 

Classification: HNN 

The Frequency and Time domain features are 

combined together for feature learning and 

epileptic state classification. 

[15] 
Bonn University 

experimental dataset 

 

FE: - 

Classification: HD-SRC 

The quantity of training samples has an impact on 

HD-SRC data. 

[16] CHB-MIT database 
FE: CNN 

Classification: CNN 

Temporal-spatial and multi-scale CNN with 

dilated convolutions provides promising output. 

[17] 
CHZU School of 

Medicine dataset 

FE: spectral power feature 

method 

Classification: CNN 

NN with LSTM architecture endow with 

promising result for BECT epileptic syndrome. 

[18] Bonn University dataset 

FE: CNN 

Classification: FT-VGG16 

with CWT 

DCNN is persuasive in way of detecting seizures. 

[20] 
Bonn university public 

database 

FE: DFT 

Classification: CRMKNN 

Linear representation of the NN provides 

flexibility so to improve performance. 

[22] Experimental data 
FE: PCA 

Classification: SVM 

Fixed windowing approach with time and 

frequency domain features plots more accuracy. 

[25] 
SEED, DEAP and IDEA 

database 

FE: MD-DE 

Classification: BiLSTM 

In order to recognise emotions, the gamma band is 

a key band. 

Proposed 

work 

The Neuromed Epilepsy 

EEG Database 

FE: iVector, MFCC 

Classification: ANN 

Evaluation of highly significant features that 

contribute to excellent performance is made easier 

with the help of the MFCC and iVector 

approaches. 

 
 
in this part as a means of overcoming the limitations 

brought about by the aforementioned shortcoming. 

This engine may be used for a broad range of 

classification tasks. Fig. 2 illustrates the suggested 

model's overall flow, which can also be seen as a 

visual representation of the model's inner workings. It 

can be seen that the incoming EEG signals are first 

compressed using wavelet compression, and then they 

are processed using MFCC and iVector based blocks. 

This sequence can be viewed from Fig. 3 and 

implementation flow from Fig. 2. These blocks 

contribute to the process of extracting multispectral 

features, which in turn contributes to a more accurate 

representation of the input signals. In order to achieve 

intelligent class-based feature choices, these features 

are processed using a variance maximization layer. 

This layer contributes to the overall process. In order 

to achieve final EEG stratification into various illness 

categories, the chosen characteristics are identified 

using a quadratic classifier. This classifier is 

constructed out of Multiple Neural Networks and 

helps in the achievement of final EEG stratification. 

The predicted result was used to identify the 

individual comes under which category of stress level 

from Algorithm 1. 

It is possible to deduce from the model that the 

input EEG waves are first subjected to processing by  
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Figure. 2 Implementation flow of proposed work 
 

Algorithm 1: Proposed algorithm 

INPUT: EEG data 

OUTPUT 
Step 1 Assemble input EEG data. 
Step 2 Preprocess and reconstruct the EEG 

signal. 

Step 3 Filter out the signals bands with 
threshold lower and higher 
frequency. 

Step 4 Minimize the EEG signal 

dimensions. 

Step 5 Extracting approximate EEG & 

detail EEG components. 

Step 6 Represent input EEG signals into 

MFCC components and iVector 

components. 

Step 7 Construct MFCC feature vector 

using cepstrum, spectrum, power 

density and other frequency domain 

features. 

Step 8 Construct iVector using statistical 

entropy features. 

Step 9 Unite these MFCC and iVector 

features for wavelet compression. 

Step 10 Extract N number of features in the 

form of feature vector. 

Step 11 Discard Features that have variance 

lower than threshold value. 

Step 12 Train the model for corresponding 

Deep Learning algorithm. 

Step 13 Apply the K-fold cross validation 

technique to validate the model. 

Step 14 Predict the result by using MNN. 

Step 15 Utilize a confusion matrix to assess 

system performance. 
 
 

a wavelet compression block, which plays a part in the 

process of feature reduction. The evaluation of the 

extraction of wavelet components is done using Eqs. 

(1) and (2) as follows, 

 

𝐸𝐸𝐺𝑎𝑖 =
𝑥𝑖+𝑥𝑖+1

2
                                           (1) 

𝐸𝐸𝐺𝑑𝑖 =
𝑥𝑖−𝑥𝑖+1

2
                                          (2) 

 

Where, 𝐸𝐸𝐺𝑎 , 𝑎𝑛𝑑𝐸𝐸𝐺𝑑  represents approximate 

EEG & detail EEG components extracted by the Haar 

wavelet transform, while 𝑥𝑖&𝑥𝑖+1 represents current 

EEG signal & its next EEG sample values which are 

retrieved from the input EEG signals. These signals 

are also processed via Hilbert transform, which can be 

observed via Eq. (3), 

 

Hout(x) = 2
j

2Hout(2
jx − k)  (3) 

 

Where, 𝑘 represents a wavelet constant. The output of 

this model is further augmented via Eq. (4) to obtain 

final Hilbert features, 

 

f(x) = ∑ EEGa × Hout(EEGa)
N
j,k=0   (4) 

 

Where, 𝑁 represents number of features extracted via 

the Haar wavelet transform’s approximate 

components. 

Due to Hilbert transform, the detail component is 

discarded, while approximate component is used for 

feature extraction. With this method, EEG signal 

dimensions are minimised while entropy is kept 

constant for a range of signal intensities. These 

approximate components reduce dimensions of input 

EEG signal by half, which assists in faster 

classification and better feature representations. To 

represent these components into features, MFCCs are 

extracted, which assists in frequency domain 

representation of input signals. To perform this task, 

initially Fourier transform of approximate 

components is extracted via Eq. (5), 

 

𝐹𝑎𝑝𝑝𝑟𝑜𝑥𝑖 =
∑𝑁−1𝑗=0 𝐸𝐸𝐺𝑎𝑗 ×  

[
𝑐𝑜𝑠 (

2×𝑝𝑖×𝑖×𝑗

𝑁
) −

√−1 × 𝑠𝑖𝑛 (
2×𝑝𝑖×𝑖×𝑗

𝑁
)
]        (5) 

 

The Where, 𝑁  represents total number of extracted  
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Figure. 3 The proposed AMVAFEx model 

 

samples, and 𝑖 ∈ (0, 𝑁 − 1) . Like Fourier, the 

discrete cosine components are evaluated via Eq. (6) 

as follows, 

 

DCTout =
1

√2N
× CDCT × ∑

N−1
x=0 EEG(x) ×  

𝑐𝑜𝑠 [(2 × x + 1) × i ×
pi

2×N
]  (6) 

 

Where, 𝑁  represents number of EEG components, 

while 𝐶𝐷𝐶𝑇 is evaluated via Eq. (7) as follows 

 

CDCT =
1

√2
,  whenEEG > 0,  else,  CDCT = 1 (7) 

Fourier, Wavelet and DCT components are 

combined to form the final feature vector, which is 

used for classification purposes. These coefficients 

are processed further to evaluate MFCC for spectral 

analysis via Eq. (8), 

 

MFCCl = ∑ni=1 𝑙𝑜𝑔(Si) × cos(
pi

n
× l × (i − 0.5))  

(8) 

 

Where, 𝑙 ∈ (1, 𝑛) , 𝑛  represents number of MFCC 

components to be retrieved in its entirety, 𝑆 represents 

Mel power spectrum coefficients, and are estimated 

via Eq. (9), 

 

𝑆𝑖 =
∑ 𝐹𝑎𝑝𝑝𝑟𝑜𝑥 𝑗
𝑁
𝑗=1 ×𝑤𝑖

𝑁
                                 (9) 

 

Here, 𝑖 stands for the MFCC component number, and 

𝑤𝑖 for weight of MFCC component. It is this weight 

which is decided based on frequency & scale value of 

each input signal & can be modified as per model 

requirements. A total of 20 different MFCC 

components were extracted, and combined linearly to 

form a MFCC feature vector. High-performance 

iVector features were incorporated with this vector. 

The estimation of iVectors can be performed using Eq. 

(10) as follows, 

 

iVectori = [
(1,1)var ⋯ (1, n)var

⋮ ⋱ ⋮
(n, 1)var ⋯ (n, n)var

] × Fapproxi
  

+MAX(∪Nj=1 Fapproxj
)  (10) 

 

Where, 𝑁𝑠𝑡𝑎𝑛𝑑𝑠𝑓𝑜𝑟number of inputs, 𝐹𝑎𝑝𝑝𝑟𝑜𝑥  for 

Fourier transform of that input, and (𝑥, 𝑦)𝑣𝑎𝑟 

represents variance among Fourier components𝑥&𝑦, 

which was evaluated via Eq. (11) as follows, 

 

(x, y)var = 𝑒𝑥𝑝 (
x2

2
)  

× [2 × pi × var(y) × var(x)]−1       (11) 

 

Where,𝑥 is the input and 𝑣𝑎𝑟(𝑥) is the variance of 𝑥 

and is used to check for consistency across inputs. 

This variance is evaluated via Eq. (12), 
 

𝑣𝑎𝑟(𝑥) = ∑
(𝑥𝑖−∑

𝑥𝑗

𝑁
𝑁
𝑗=1 )

2

𝑁−1
𝑁
𝑖=1                        (12) 

 

Based on these identities, input Feature vectors are 

created from the EEG signal and can be utilised for 

classification and analysis at the end. Figs. 4 (a) and 4 

(b) show the visualisation of the MFCC and iVector 

components respectively, where the evaluation of 

feature vectors was done using the same EEG input. 

The X-axis of an EEG signal with an iVector 

represents time in seconds, while the Y-axis 

represents amplitude in microvolts (µV). 

They are merged to create a consolidated feature 

vector, which has a number of redundant features. A 

fresh inter-class variance threshold is assessed 

between these features to remove these redundancies. 

This variance is evaluated via Eq. (13), wherein inter-

class information is utilized for estimation of final 

variance. 
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(a) 

 
(b) 

Figure. 4: (a) EEG signal with MFCC and (b) the same 

EEG signal with iVector 

 

𝑉𝑡ℎ = √
  
  
  
  
  
  
  

∑

(

 
 
 
𝐹𝑉𝑎 −

∑
√∑ (𝐹𝑉𝑗−

∑ 𝐹𝑉𝑘
𝑛
𝑘=1

𝑛
)

2
𝑛
𝑗=1

𝑛−1
𝑚
𝑖=1

𝑚

)

 
 
 

2

𝑚
𝑎=1

𝑚 − 1
 

(13) 

 

Where, the value 𝑚  indicates how many features 

there are in the current class, 𝑛  represents total 

number of features in other classes, 𝐹𝑉and represents 

feature vector value for the given set of features. 

Features that have variance lower than 𝑉𝑡ℎ  are 

discarded, whereas others are utilized in the building 

of a classifier using MNN. Variance of features is 

evaluated via Eq. (14) as follows, 

 

𝑣𝑎𝑟(𝐹) = ∑
(𝐹𝑖−∑

𝐹𝑗

𝑁
𝑁
𝑗=1 )

2

𝑁−1
𝑁
𝑖=1                         (14) 

 

Where, 𝐹&𝑁 represents feature vector value, and total 

number of features present in the feature vector 

respectively. The suggested classifier, which employs 

a quadratic neural network with growing neurons in 

order to perform effective EEG classification, is 

provided with the characteristics. For the neural 

network, various layers are coupled through neuron 

connections in order to provide a variety of output 

classes. Each NN model uses highly variant features 

for final classification. The combined QNN model 

uses 𝑛, 2 ∗ 𝑛, 3 ∗ 𝑛, & 4 ∗ 𝑛 number of neural units in 

the final classification design. Here, 𝑛 represents total 

number of features extracted via variance-based 

selection. Eq. (15) is used to control each NN's output, 

wherein the output class is created using feature 

vectors and the logarithmic ranges of those vectors.   

 

𝐶𝑜𝑢𝑡 = −
1

2
× ∑ (𝑉𝐵𝐹𝑗 − ∑ 𝑉𝐵𝐹𝑙

𝑁
𝑙=1 )𝑁

𝑗=1 × (𝑉𝐵𝐹 −

∑ 𝑉𝐵𝐹𝑖
𝑁
𝑖=1 )

𝑇
+ log(∑ 𝑉𝐵𝐹𝑖

𝑁
𝑖=1 )        (15) 

  

 

Where, 𝑉𝐵𝐹,&𝑁 represents extracted variance-based 

features, and the total number of different neural 

network topologies that were used in order to arrive at 

the final outcome of the classification. This 

classification is carried out for each classifier, and the 

final class is derived by the application of Eq. (16), 

which makes use of a mode operation for the 

aggregate of the several classes.  

 

𝐶𝑜𝑢𝑡
𝑓𝑖𝑛𝑎𝑙

= ∪

𝑖=1
𝑁

𝐶𝑜𝑢𝑡𝑖    (16) 

 

To arrive at the final classification outcome, the mode 

operation chooses the most commonly occurring class 

from a group of output classes. The next portion of 

this article discusses how well the classification 

procedure performed in terms of recall, accuracy, and 

delay. 

4. Notation  

𝐸𝐸𝐺𝑎 approximate EEG  

 𝐸𝐸𝐺𝑑  
detail EEG components 

extracted 

𝑥𝑖 current EEG signal 

 𝑥𝑖+1 Next, the EEG sample value 

H Hilbert Transform 

F Fourier Transform 

CDCT Discrete Cosine Transform 

MFCC Mel Frequency Cepstral 

Coefficient 

VBF extracted variance-based 

features 



Received:  July 15, 2023.     Revised: September 15, 2023.                                                                                              571 

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023           DOI: 10.22266/ijies2023.1231.47 

 

𝑤𝑖   weight of MFCC component 

𝑣𝑎𝑟(𝑥)𝑥   variance of 𝑥 

𝑆 Mel power spectrum 

coefficients 

𝑖 MFCC component number 

5. Performance evaluation 

The AMVAFEx model employs many neural 

networks in order to arrive at a conclusive 

categorization of the EEG data. This performance was 

analysed by making use of a vast collection of EEG 

datasets with the purpose of classifying input 

waveforms into several distinct epileptic categories. It 

is possible to access the Neuromed Epilepsy EEG 

Database by going to 

https://clinicaltrials.gov/ct2/show/NCT04647825. 

The dataset involves 15 distinct leads for the EEG, all 

of which were used throughout the procedure for 

gathering data from a total of 500 individual patients. 

In light of the review's findings, a total of 5000 

exceptional items had to be removed from the dataset. 

After that, for training and assessment, these items 

were divided into two groups, with the ratio of 60:40 

being maintained between the two.  

Based on this evaluation and Fig. 5, the proposed 

model consists of 5.2% more accuracy compared to 

TTFC [4], 4.3% compared to NNM [7], and 6.75% 

compared to LBP TH [11] for varied EEG signal types. 

The main reason for this accuracy improvement is due 

to combination of Wavelet, Hilbert, Fourier and 

Cosine transforms, along with feature selection & 

classification enhancements.   

The accuracy, latency, precision and recall of the 

data were examined, and when contrasted with the 

results that were obtained from TTFC [4], NNM [7], 

and LBP TH [11]. This was carried out in order to 

provide evidence that the technique could be relied 

upon. Fig. 5 illustrates the observations that were 

made with regard to the accuracy, and they are as 

follows: It was discovered that the recommended 

model had a degree of accuracy that is 5.2 percent 

greater compared to TTFC [4], 4.3 percent higher 

compared to NNM [7], and 6.75 percent higher 

compared to LBP TH [11] for the several kinds of 

EEG data. [4, 7, 11]  

The combination of Wavelet, Hilbert, Fourier, and 

Cosine transforms, combined with advancements to 

feature selection and classification, is the primary 

cause for this boost in accuracy. When paired with the 

MFCC and iVector features, this bolsters the feature 

representation capabilities of the model, which 

ultimately results in improved accuracy performance. 

Because of its capacity to represent features in high  

 

 
Figure. 5 Accuracy of a variety of EEG classification 

models 

 

density, the CNN that was used in this scenario was 

able to contribute to the improvement of classification 

performance. This performance was accomplished by 

the use of Multiple NN in addition to the coupling of 

MFCC and iVector features. In a similar vein, one 

may evaluate the accuracy performance of these 

models from Fig. 5. 
This performance was achieved when MFCC 

features & iVector features are used in combination, 

and use of multiple neural networks for highly 

efficient classification method.  

On the basis of this examination and Fig. 6, it is 

possible to see that the proposed model is 3.8 percent 

more precise compared to TTFC [4], 4.95 percent 

precise compared to NNM [7], and 2.9 percent precise 

compared to LBP TH [11] for a variety of EEG signals. 

The combination of a number of various feature 

extraction techniques, in addition to advancements in 

selection and classification, is the primary factor 

responsible for this boost in accuracy. 

When this is paired with the MFCC and iVector 

characteristics, the model's capability of feature 

representation is enhanced, which in turn leads to 

improved precision performance. Because of its 

capacity to represent features in high density, the 

CNN that was used in this scenario contributed to an 

improvement in the overall classification performance. 

This performance was accomplished by the use of 

MNN in addition to the coupling of MFCC and 

iVector features. This allowed for an extremely 

efficient classification procedure. Fig. 7 is 

representation of the performance of different models 

for recall.   
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Figure. 6 Precision of different EEG classification models 

 

 
 

Figure.7 Recall of different EEG classification model 

 

This performance was achieved when MFCC 

features are combined with iVector features, and 

MNN are used for highly efficient classification 

procedure. 

On the basis of this assessment, it can be shown 

that the suggested model has a recall that is 5.3 percent 

high compared to TTFC [4], 3.9 percent high 

compared to NNM [7], and 4.5 percent high compared 

LBP TH [11] for several types of EEG data. The 

primary reason for this recall increase is the mixing of 

several feature extraction transforms, such as Wavelet, 

Fourier, Hilbert, and Cosine, together with 

advancements to selection and classification. When 

this is paired with the MFCC and iVector features, the  

 

 

 
Figure. 8 Delay performance of several EEG classification 

methods 

 

model's capability of feature representation is 

enhanced, which in turn leads to improved recall 

performance. Because of its capacity to represent 

features in high density, the CNN that was used in this 

scenario contributed to an improvement in the overall 

classification performance. This performance was 

accomplished by the use of MNN in addition to the 

coupling of MFCC and iVector features. This allowed 

for an extremely efficient classification procedure. 

Fig. 8 provides a visual representation of the 

average delay required for the classification of a 

single EEG signal waveform. From this figure, it is 

possible to see that the proposed model has a delay 

that is 6.1 percent lower than that of TTFC [4], 4.9 

percent less than that of NNM [7], and 5.5 percent 

lower than that of LBP TH [11] for different types of 

EEG signals. 

The use of variance-based feature selection and 

low-complexity classifier operations is the primary 

factor that contributed to the shortening of this delay. 

When paired with the MFCC and iVector features, 

these advancements improve the model's capability of 

representing features, which results in a reduction in 

the amount of time needed for calculation. Because of 

its capability to represent high-density features and 

remove redundant information, the CNN that was 

used in this scenario was able to contribute to an 

improvement in classification performance. The use 

of the wavelet transforms in conjunction with a 

variance-based feature selection approach made it 

feasible for this to occur. The feature vector's size 

could be scaled back by the wavelet transform by up 

to fifty percent, and a variance-based feature selection 

model can aid in the identification of most variant 

features, which can then minimize duplication in 
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output feature sets. As a result of this boost in 

performance, the model that has been suggested is 

now able to be utilised for numerous clinical 

applications in real-time. 

6. Conclusion and future scope 

In comparison to current models, the suggested 

AMVAFEx model performs way better as it combines 

feature extraction, feature selection & classification 

methods. The MFCC &iVector methods assist in 

evaluation of highly relevant features, while variance-

based model assists in selecting most variant features, 

thereby reducing redundancy during the classification 

phases. The chosen features are classified by a 

multiple neural network classifier that runs in 

quadratic mode, and assists in top precision, top recall 

& highly accurate classification.  

Comparing the proposed model to various state-

of-the-art models revealed some interesting findings, 

it may increase classification accuracy. Because of 

this, the proposed model can be used in high-accuracy 

clinical settings. The proposed model was observed to 

have over 5% more accuracy than TTFC [4], over 4% 

more accuracy than NNM [7], and over 6% more 

accuracy than LBP TH [11] for different types of EEG 

signals. Similar performance was seen for recall and 

precision, which greatly increases the model's 

applicability to a variety of EEG categorization 

settings. Along with this enhancement in performance, 

the proposed model also showcases reduced delay, 

which largely results from utilization of feature 

reduction via variance-based optimizations. As a 

result, the proposed model has a 6.1% reduction in 

delay over TTFC [4], 4.9% less delay compared to 

NNM [7], and 5.5% less delay compared to LBP TH 

[11] for different EEG signal types. The scalability of 

the suggested model will eventually be determined by 

researchers by validating its performance on various 

EEG datasets. Moreover, researchers can also identify 

the merger of deep learning models, such as recurrent 

neural networks with long-short-term memory 

(LSTM) and gated recurrent units (GRUs) for 

superior survivability with several forms of brain 

diseases. 
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