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Abstract: Concealing confidential data within digital multimedia, also called steganography, has been crucial for 

safeguarding data. However, steganalysis techniques are best known for compromising these data concealment 

methods. The convolutional neural network (CNN) yielded better performance over the previously suggested 

techniques based on machine learning for steganalysis. Although the current approaches show promising outcomes, 

they encounter challenges in locating the secret data. This paper introduces a CNN architecture with a key idea to 

enhance the accuracy of identifying the precise hidden data location. Our method novelty is based on reducing image 

features and network parameters via customized feature allocation and convolutional kernels optimization and 

enhancing classification accuracy by optimizing the kernels combined with back-forward gradient descent. Our 

experimental results show improvements over the existing works with the accuracy under payload capacity of 0.4 bpp 

from 83.01% to 98.78% for S-UNIWARD and 87.19% to 97.93% for WOW.  

Keywords: Information security, Steganography, Steganalysis, Convolutional neural network, Network infrastructure. 

 

 

1. Introduction 

Image steganography is a technique used in secret 

communication to hide confidential data within 

ordinary cover media such as images [1], video [2], 

audio [3], and text [4]. In digital images, the modified 

pixel values in stego images are subtly altered, 

making them difficult to discern from the original 

images [5–8]. With image steganalysis, the objective 

is to identify the traces of embedding or even attempt 

to recover the concealed information in a reverse 

steganography process [9], as illustrated in Fig. 1, 

which presents the general logic connecting 

steganography and steganalysis paradigms. Image 

steganalysis can be summarized in three may classes 

as follows. Determining a given image's class (cover 

or stego) [10]; subsequently, the identified suspicious 

images, known as stego images, are selected for 

further investigation. In the case of the known 

steganographic method, the analysis can be expanded 

to include estimating the payload size, which is 

referred to as quantitative steganalysis [11]. 

Moreover, the third class of steganalysis, known as 

locative steganalysis, entails revealing the locations 

of the hidden secret message [12].  

Since the embedding key is typically unavailable, 

a commonly employed alternative is to implement a 

method that identifies the most probable locations of 

the hidden payloads, such as in blocks of the pixels 

[13] or regions [14] of a suspicious image. Given the 

absence of orderings such as logical ones, the 

steganalysis schemes are limited to detecting the 

payloads rather than explicitly revealing the locations 

of the secret messages. Nevertheless, locating the 

small groups of the image pixels with the hidden data 

holds vital significance. 

Most researchers in the field of steganalysis have 

primarily recently tried to concentrate on identifying 

the existence of hidden data in the content of digital 

images [12, 15, 16]. Departing from the introduction 

of the rich models, the state-of-the-art works showed 

outperforming results in detecting the presence of 

hidden data in the content of the digital images.  
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Figure. 1 Steganography and steganalysis processes illustration 

 
Table 1. Notation list 

Symbol Description 

𝑐𝑜𝑣 Cover image 

𝑑 Euclidean distance 

𝑓𝑐𝑜𝑛𝑐𝑒𝑎𝑙  Function to conceal the secret data 

𝐹𝑁 False negative 

𝐹𝑃 False positive 

𝐿𝑚 Length of the generated bitstream 

𝑚 Random bitstream 

𝑆 Stego image 

𝑡𝑚 Total pixels in the cover image 

𝑇𝑁 True negative 

𝑇𝑃 True positive 

𝛽 Relative payload 

𝜇 Neighboring weight 

 
Researchers in detective steganalysis have recently 

tried to improve the results of steganalysis schemes 

in locating the confidential bits confiscated in the 

digital images by using various deep learning 

approaches combined with other mathematical 

models such as fuzzy logic [10], neighboring weight 

algorithm [16], or by using pixels orders 

manipulation for the most effective regions with the 

secret data detection [14]. Moreover, some other 

studies tried to improve confidential data location 

accuracy by combining convolutional neural 

networks (CNNs) for locating the secret bits hidden 

through emerging steganography algorithms [14]. 

The existing solutions in addressing the locative 

steganalysis problem showed a significant 

contribution with high accuracy; nevertheless, they 

present several drawbacks such as high computing 

capacity (see [14]), accuracy that still need to be 

improved to optimize the schemes correctness for the 

fields that may be very sensitive to any error such 

military applications, medical, and forensic 

applications [17]. To alleviate the problems identified 

from the existing solutions, this research proposes an 

enhanced CNN, a deep learning (DL) scheme with 

optimized parameters, by reducing the convolutional 

kernels’ sizes and splitting the inquiry image into 

pixel blocks. To enhance the readability of our 

equations and the work in general, we add Table 1, 

containing a notation list. The contribution of this 

study is described as follows: 

(1) Reducing the size of the images for our model 

to optimize the feature allocation, improving 

the hidden data location accuracy.  

(2) Reducing the number of parameters by 

adapting the convolutional kernels and 

initializing them with the basic 30 SRM filter 

banks as of [18].  

(3) Optimizing the convolutional kernel to 

improve the accuracy with optimal 

convergence of the CNN using the back-

forward gradient descent, otherwise known 

as the back-forward slope. 

The remaining parts of this article are organized 

in the following sections. Section 2 summarizes the 

state-of-the-art models that have been most popular 

in locative steganalysis, section 3 includes the 

description of our method, section 4 encompasses the 

experimental results with their analysis, and section 5 

gives a summative inference of the paper.  
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Figure. 2 The process to get the blocks from the stego image 

 

 
Figure. 3 The blocks formation process 

Legend: (a) The red colour shows the data attributed to the central pixel and (b) The yellow colour shows the data about 

the neighboring pixels constituting the block 

 

 

2. Existing literature 

Highlighting the payload locations continues to 

be a crucial aspect of research in image steganalysis, 

which mainly lies in the information security field. 

Here, we provide a brief overview of existing efforts 

to locate the presence of the secret within digital 

images. 

In the research conducted in [19], a proposed 

approach addresses the issue of pixel classification by 

categorizing each pixel into two binary types: 

payload and non-payload. This research work 

achieved promising results in steganographic payload 

location by exploring the features of each pixel. 

During locating hidden bits, a support vector machine 

(SVM) classifier is trained using discriminative 

features. These features consist of 72-dimensional 

characteristics that capture the differences in pixel 

values between neighboring pixels. The SVM 

classifier is then employed for binary classification 

purposes. Nevertheless, this technique’s drawback is 

based on the fact that though the accuracy and 

efficiency of the locating process are enhanced by the 

learning-based method, the performance experiences 

degradation as the steganographic payload is 

increased.  

In [20], a detector believed to be efficient has 

been proposed to locate the secret data hidden in 

digital images based on a deep neural network. 

However, this approach is currently limited to its 

applicability only to stego images generated using 

older steganography techniques, such as nonadaptive 

LSBM. Moreover, in [21], a study demonstrated a 

paved way for exploring the detection of 

steganographic payloads concealed using modern 

adaptive algorithms. Their method was mainly based 

on re-embedding the secret bits in the pre-confirmed 

stego images to predict the locations double 

concealed with the secret data to be the actual 

locations of the confidential data. The drawback of 

this method is based on a degraded recall and 

precision rate to locate the steganographic payload, 

which is identified through the yielded F1-score, 

which is still lower than 0.5. This shows that this 

method still needs to be improved regarding payload 

location accuracy.  

In addition, several other research works 

proposed methods believed to be more efficient in 

locating the pixels modified with the addition of 

confidential data, such as in [12, 16]. The work in 

[16] suggested a payload location method based on 

the neighboring weight algorithm (NWA). The 

proposed method introduces a novel algorithm to 
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identify the steganographic payload in the spatial 

domain by beginning by making predictions about 

the data embedding algorithm and its associated 

payload, which are then utilized to generate random 

bitstreams of data. Subsequently, the previously 

generated random bits are concealed within the firstly 

confirmed stego image using a cost matrix within the 

syndrome-trellis codes (STCs) scheme to get a 

second stego image. By leveraging the discrepancies 

between two stego images, the authors could obtain 

the extended modification map using the neighboring 

weight algorithm. Their process ultimately facilitated 

the identification and localization of the hidden bits. 

The drawbacks of this method are identified in pairs, 

namely, the loss of discriminative features because 

the proposed process might discard certain relevant 

details, reducing the capability to distinguish 

steganographic images effectively, and the 

significant sensitivity of the size of the payload 

because the payload size incrementation may affect 

the locative ability because of the altered visual 

features. 

Moreover, in [12], a method to locate the secret 

data by combining fuzzy logic and CNN. The 

proposed approach for locating the secret data in a 

digital image has been structured into three stages. 

Firstly, they start by computing the modification 

maps between the stego and the cover images. 

Secondly, these modification maps are utilized as 

input for the fuzzy inference system, which employs 

four input membership functions (distance vector, 

covariance map, compass mean, and the intensity of 

pixels matrices) and the membership function for 

output, namely the correlation maps from the fuzzy 

inference system. Finally, the fuzzy-resulted maps 

known as correlation maps are fed into a CNN to 

distinguish pixels altered by secret data concealment 

from the original pixels. Through experimental 

analysis conducted on four adaptive steganographic 

models (HILL, HUGO-BD, S-UNIWARD, and 

WOW), the results substantiate their superior 

performance. The drawback of this method is based 

on the fact that their approach did not address the 

problem of broad generalization across diverse 

steganographic algorithms or scenarios, potentially 

resulting in compromised accuracy. 

In line with the existing works, differently to [12, 

16], that preprocess the inquiry images, which may 

result in misclassification due to losing some 

significant features, we consider non-pre-processed 

inquiry images for input to our model. Moreover, to 

address the remarkable problem of the results 

deterioration problem when the payload is increased 

as of [19, 21], our method considers splitting an 

inquiry image into small parts, which are easy and 

effective for classification. Furthermore, we mitigate 

the issue of less generalization discussed in [20] by 

making our model work with adaptive 

steganographic algorithms. We propose a new 

steganalysis algorithm to locate the hidden data 

without requiring much training because we work on 

the blocks (where one image generates several 

blocks) and a Simple CNN with small kernel sizes.  

3. Proposed method 

In this section, we present the steps involved in 

the algorithm we present in locating a steganographic 

payload by initially embedding the secret data in the 

cover images, splitting the inquiry images into blocks, 

and classifying the blocks based on whether they hold 

the secret data or not. Fig. 2 illustrates the steps taken 

to get the blocks from the stego images, and 

Algorithm 1 details the overall process to locate the 

blocks with the hidden data.  

From Algorithm 1, here is the description of the 

steps: 

1) Creating a random sequence of bits 

Denoting the random bitstream as 𝑚 , we 

generate 𝑚 with a specified length 𝐿𝑚.  

Considering 𝑡𝑚  as the cover image’s total 

pixels and β as the relative payload, we find 

the measure of 𝐿𝑚 basing on Eq. (1). 

 

           𝐿𝑚 = 𝑡𝑚 × 𝛽                                 (1) 

 

2) Concealing the secret data (here referred to 

as random bits) 

We use the generally known scheme known 

as syndrome trellis codes (STCs) [22] to 

embed the secret data. Considering 𝑐𝑜𝑣  as 

the cover, we obtain the stego images here 

denoted as 𝑆 as of Eq. (2). 

 

                          𝑆 = 𝑐𝑜𝑣 + 𝑚                                (2) 

 

3) Splitting the stego and cover into blocks 

Considering a pixel 𝑃 of coordinates (𝑖𝑜, 𝑗𝑜) 

As a central pixel, we depart from the 

neighboring weight factor μ, got from the 

Euclidean distance d between the pixel 𝑃1 of 

coordinates (𝑖1, 𝑗1) near the central pixel P to 

form the pixel blocks for the training process. 

The neighboring weight is as of Eq. (3), and 

the Euclidean distance is calculated 

following Eq. (4).  

 

                     𝜇 =  √𝑑                                  (3) 
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Table 2. A summarized description of the proposed CNN architecture 

Type of the layer Output shape Parameters Linked to 

input_1 (Input Layer) [(None, 256, 256, 1)] 0 [ ] 

2D Convolution (2D Conv) (None, 256, 256, 30) 780 ['input_1[0][0]'] 

Batch Normalization (BN) (None, 256, 256, 30) 90 ['2d_conv[0][0]'] 

DepthwiseConv2D (None, 256, 256, 30) 60 ['bn[0][0]'] 

SeparableConv2D (None, 256, 256, 30) 3540 ['depthwise_2d_conv [0][0]'] 

Batch Normalization (BN) (None, 256, 256, 30) 90 ['separable_2d_conv [0][0]'] 

DepthwiseConv2D (None, 256, 256, 30) 60 ['bn_1[0][0]'] 

SeparableConv2D (None, 256, 256, 30) 3540 ['depthwise_2d_conv _1[0][0]'] 

Batch Normalization (BN) (None, 256, 256, 30) 90 ['separable_2d_conv _1[0][0]'] 

add (Add) (None, 256, 256, 30) 0 [' bn[0][0]', 'bn_2[0][0]'] 

2D Convolution (2D Conv) (None, 256, 256, 30) 8130 ['add[0][0]'] 

Batch Normalization (BN) (None, 256, 256, 30) 90 ['2d_conv _1[0][0]'] 

2D Convolution (2D Conv) (None, 256, 256, 30) 8130 ['bn_3[0][0]'] 

Batch Normalization (BN) (None, 256, 256, 30) 90 ['2d_conv_2[0][0]'] 

Average Pooling2D (None, 128, 128, 30) 0 ['bn_4[0][0]'] 

2D Convolution (2D Conv) (None, 128, 128, 60) 16260 ['average_pooling2d[0][0]'] 

Batch Normalization (BN) (None, 128, 128, 60) 180 ['2d_conv_3[0][0]'] 

DepthwiseConv2D (None, 128, 128, 60) 120 ['bn_5[0][0]'] 

SeparableConv2D (None, 128, 128, 60) 12480 ['depthwise_2d_conv _2[0][0]'] 

Batch Normalization (BN) (None, 128, 128, 60) 180 ['separable_2d_conv_2[0][0]'] 

DepthwiseConv2D (None, 128, 128, 60) 120 ['bn_6[0][0]'] 

SeparableConv2D (None, 128, 128, 60) 12480 ['depthwise_2d_conv_3[0][0]'] 

Batch Normalization (BN) (None, 128, 128, 60) 180 ['separable_2d_conv_3[0][0]'] 

add_1 (Add) (None, 128, 128, 60)  0 ['bn_5[0][0]''bn_7[0][0]'] 

2D Convolution (2D Conv) (None, 128, 128, 60) 32460 ['add_1[0][0]'] 

Batch Normalization (BN) (None, 128, 128, 60) 180 ['2d_conv _4[0][0]'] 

AveragePooling2D (None, 64, 64, 60) 0 ['bn_8[0][0]'] 

2D Convolution (2D Conv) (None, 64, 64, 60) 32460 ['average_pooling2d_1[0][0]']] 

Batch Normalization (BN) (None, 64, 64, 60) 180 ['2d_conv _5[0][0]'] 

Average Pooling2D (None, 16, 16, 60) 0 ['bn_10[0][0]']] 
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(Continued) Table 2. A summarized description of the proposed CNN architecture 

Type of the layer Output shape Parameters Linked to 

2D Convolution (2D Conv) (None, 16, 16, 30) 1830 ['average_pooling2d_3[0][0]'] 

Batch Normalization (BN) (None, 16, 16, 30) 90 ['2d_conv_7[0][0]'] 

2D Convolution (2D Conv) (None, 16, 16, 2) 62 ['bn _11[0][0]'] 

Batch Normalization (BN) (None, 16, 16, 2) 6 ['2d_conv _8[0][0]'] 

Global Average Pooling2D (None, 2) 0 ['bn_12[0][0]'] 

Softmax (None, 2) 0 ['global_average_pooling2d[0][0]' 

Total parameters: 166,598 

Trainable parameters: 164,734 

Non-trainable parameters: 1,864 

 

 

 

 

       𝑑 = √(𝑖1 − 𝑖0)2 + (𝑖1 − 𝑖0)2               (4) 

 

Considering one pixel at each side of the 

neighborhood of the central pixel, we will 

form the blocks of size (3,3) in this work. The 

block formation is also illustrated in Fig. 3.  

4) Padding the block with ones (1s) to 

have dimensions 256×256 

Our blocks initially dimensioned to 3 ×
3, and we use NumPy to create a new array 

with dimension 256 × 256 and then put the 

original block into the centre of the new array, 

surrounded by ones. 

5) Binary classification of the blocks 

into innocent or altered pixel blocks using a 

CNN  

 

Using a CNN, we optimize the feature 

allocation and the number of model 

parameters through the convolutional kernels’ 

initialization with the SRM filters. To 

improve the model’s convergence, we use 

the back-forward descent gradient. The 

general structure of the CNN we propose is 

summarized in Table 2, including the layer 

types, input and output shapes, parameters, 

and the connection fashion of the layers. 

4. Results  

4.1 Experimentation setup   

This study carefully defines the experimental 

settings to comprehensively evaluate and compare 

the steganographic schemes and the locating method. 

Algorithm 1 

Input: Cover image 𝑐𝑜𝑣, random bitstream 𝑚 

Output: Prediction of the blocks with the 

steganographic payload. 

Step 1: Creating a random sequence of bits 𝐿𝑚 

𝐿𝑚 = 𝑡𝑚  ×  𝛽 

with 𝑡𝑚: the cover image’s pixels 

           β: relative payload capacity 

Step 2: Concealing the secret data to get the stego 

image 𝑆. 

𝑆 =  𝑓𝑐𝑜𝑛𝑐𝑒𝑎𝑙(𝑐𝑜𝑣, 𝐿𝑚) 

with 𝑓𝑐𝑜𝑛𝑐𝑒𝑎𝑙 , a function used to conceal the 

secret data 𝐿𝑚 into 𝑐𝑜𝑣 in the STCs framework.  

Step 3: Splitting the stego images 𝑆 and the cover 

images 𝑐𝑜𝑣 into blocks based on the logic in Fig. 

3 which relies on the Euclidean distance.  

Step 4: Padding the block with ones (1𝑠) to have 

dimension 256 × 256. 

Step 5: Classification of the padded blocks into 

innocent or altered (holding the steganographic 

payload) blocks using the CNN detailed in Table 

2.   
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The proposed approach involves experiments using 

the BOSSbase ver.1.01 dataset [23]. This dataset 

comprises 10,000 grey images obtained from eight 

distinct cameras. Each image has a size of 512 ×
 512  pixels and was stored in an uncompressed 

format to ensure the preservation of data integrity. 

The payload for the steganographic algorithms tested 

in the experiment is 0.2 𝑏𝑝𝑝  and 0.4 𝑏𝑝𝑝 . The 

steganographic schemes tested in this study include 

WOW, S-UNIWARD, and MiPOD. Our method was 

also utilized for comparison alongside existing 

locating methods [12, 21]. These well-defined 

experimental settings provided a solid foundation for 

conducting a rigorous analysis of the proposed 

scheme and its effectiveness in locating the pixels 

altered by a steganographic payload.  

Furthermore, to conduct a comprehensive 

evaluation of our method’s performance, the 

accuracy, precision, recall rate, otherwise known as 

sensitivity and the 𝐹1 − score  has been used. The 

computation of the 𝐹1 − score  departs from the 

Recall rate here computed as of Eq. (5) and the 

precision computed as of Eq. (6). The accuracy is 

obtained based on the relation Eq. (7) and the 𝐹1 −
score is got based on Eq. (8).  

The accuracy represents the proportion of 

correctly classified blocks over the total number f 

considered blocks. In the context of our model, the 

accuracy evaluates how accurately a block with 

embedded data is located. Precision represents the 

proportion of the true positive predictions to the total 

positive predictions of blocks. For the case of this 

work, the precision shows the accuracy of positively 

located blocks out of all blocks predicted to be 

positive. Recall rate is also referred to as sensitivity 

or true positive rate. The recall rate, or recall, 

represents the ratio of true positively predicted blocks 

to the total positive blocks demonstrated as holding 

the secret data. The F1-score balances precision and 

recall rate, which plays a capital role if an imbalance 

between the classes happens. In the context of 

steganalysis, particularly this work, a higher F1-score 

identifies a better trade-off between correctly located 

steganographic data and minimizing false positives 

cases. 

It is worth noting that the abbreviations used in 

our evaluation metrics are defined as follows: true 

positives (TP) represent the number of changed 

pixels correctly identified as altered pixels; false 

positives (FP) indicate the number of cover pixels 

incorrectly identified as altered pixels; true negatives 

(TN), indicate the number of cover’s pixels correctly 

identified as cover pixels; and false negatives (FN), 

represent the stego pixels incorrectly identified as 

cover pixels. 

 

            𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝐹𝑁+𝑇𝑃
                         (5) 

 

           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
                              (6) 

 

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 × 100%            (7) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒
          (8) 

 

4.2 Results and discussion 

This subsection represents the results of the 

proposed model evaluation on the training, validating, 

and testing process. It also presents a comparative 

analysis of the obtained results and the results in the 

existing works.  

1) Model evaluation of the training process 

The data in Table 3 shows the proposed 

model’s training process results over different 

steganographic algorithms using specific payload 

capacities (expressed in bits per pixel, bpp) and 

various evaluation metrics, namely accuracy, 

precision, recall, and F1-score.  

It is worth noting that as the payload capacity 

increases, the performance to detect all three 

algorithms is generally improved. The WOW 

algorithm consistently demonstrates 

outperforming results in all metrics considered 

for evaluation and indicates the same across all 

payload capacities. The MiPOD algorithm also 

shows significant performance, particularly at 

0.4 bpp. In contrast, the S_UNIWARD algorithm 

generally shows lower results than WOW and 

MiPOD, particularly regarding the recall rate and 

F1-score. 

2) Model evaluation on the validation process 

Referring to Table 4, which contains the 

results of our method’s validation process, it is 

identified that the performance is consistently 

improved across all algorithms. Specifically, it is 

worth noting that our algorithm performs best to 

locate the blocks holding data embedded using 

the WOW compared to other steganographic 

algorithms. Locating the steganographic data 

hidden with the MiPOD algorithm achieves 

commendable results, mainly when the payload 

capacity is higher at 0.4 bpp, where it maintains 

competitive performance across the considered 

evaluation metrics. Meanwhile, the location of 

the payload concealed under S_UNIWARD, 

while generally delivering respectable outcomes, 

shows slightly inferior results in all evaluation  
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Table 3. Results of the training process 

Steganographic 

algorithm 

Payload capacity 

(bpp) 

Evaluation metrics 

Accuracy (%) Precision (%) Recall (%) F1-score 

MiPOD 0.2 96.64 96.43 95.75 0.96 

0.4 98.52 98.41 97.85 0.98 

S_UNIWARD 0.2 96.02 95.81 95.13 0.95 

0.4 98.01 97.90 97.34 0.97 

WOW 0.2 98.55 98.44 97.76 0.98 

0.4 98.73 98.52 98.37 0.98 

 

Table 4. Results of the validation process 

Steganographic 

algorithm 

Payload capacity 

(bpp) 

Evaluation metrics 

Accuracy (%) Precision (%) Recall (%) F1-score 

MiPOD 0.2 97.44 97.33 96.68 0.97 

0.4 99.23 98.60 98.49 0.98 

S_UNIWARD 0.2 96.82 96.71 96.05 0.96 

0.4 98.72 98.09 97.98 0.98 

WOW 0.2 99.92 99.88 99.02 0.99 

0.4 99.97 99.93 99.27 0.99 

 

Table 5. Results of the testing process 

Steganographic 

algorithm 

Payload capacity 

(bpp) 

Evaluation metrics 

Accuracy (%) Precision (%) Recall (%) F1-score 

MiPOD 0.2 96.67 95.65 94.99 0.95 

0.4 98.49 98.33 97.66 0.97 

S_UNIWARD 0.2 96.04 95.03 94.37 0.94 

0.4 97.93 97.82 97.16 0.97 

WOW 0.2 97.89 97.78 97.12 0.97 

0.4 98.78 98.67 98.01 0.98 

 

metrics compared to the other two algorithms. 

Our evaluation results generally showcase our 

model's efficiency in locating the image’s blocks 

with steganographic payload with promising 

accuracy, precision, recall, and F1-score. 

3) Model evaluation on the testing process 

Table 5 contains the results of our model for 

the testing process where the model best locates 

the block holding a steganographic payload 

concealed under the WOW algorithm with 

notable stability across both 0.2 and 0.4 bpp, with 

a significant performance in terms of Accuracy, 

Precision, Recall, and F1-score. MiPOD also 

demonstrates commendable performance, with 

accuracy, precision, recall rate, and F1-score 

steadily enhancing in direct proportions as the 

payload capacity. Similar performance 

improvement in direct proportion to the payload 

size is observed for S_UNIWARD, which also 

maintains promising results showing relatively 

modest output in both the Recall rate and the F1-

score. 

4.3 Comparison of our results to the state-of-the-

art 

In Table 6, we present a comparison of the results 

obtained with our model and the results of the state-

of-the-art models in [12, 21], considering the 

accuracy, precision, recall, and F1-score as key 

evaluation metrics. To obtain the comparison result 

from [12] in terms of accuracy, we depart from a table 

presenting their results with several payload 

capacities (we multiply the considered data by 100 to 

express them in the same scale as our work); in terms 

of the recall rate and F1-score, we depart a systematic 

observation and mathematical interpretation of 

figures illustrated in their paper. We convert the 

obtained values to the same scale as ours to have 

homogeneous data for comparison. To get the 

comparison data from [21], we also systematically 

observe and mathematically interpret the illustrated 

figures for both the recall rate and the F1-score in 

their work. To optimize the trade-off between the 

recall rate and the precision and extract the optimal  
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Table 6. Results comparison between our method and the existing methods 

Method Steganographic 

method 

Payload 

capacity 

(bpp) 

Evaluation metrics 

Accuracy (%) Recall (%) F1-score 

The proposed Method WOW 0.2 96.04 94.37 0.94 

0.4 97.93 97.16 0.97 

S_UNIWARD 0.2 97.89 97.12 0.97 

0.4 98.78 98.01 0.98 

The method in [12] WOW 0.2 69.98 91.00 0.22 

0.4 87.19 94.50 0.35 

S_UNIWARD 0.2 62.88 95.00 0.17 

0.4 83.01 96.50 0.23 

The method in [21] WOW 0.2 - 73.00 0.27 

0.4 - 81.00 0.34 

S_UNIWARD 0.2 - 57.00 0.16 

0.4 - 70.00 0.23 

 

 

data, we consider the recall rate with the feature map 

margin yielding the best outcomes in F1-score and set 

the extracted values to the same scales as ours.  

It is worth noting that the method we propose in 

this work demonstrates outperforming results either 

with a payload of 0.2 bpp or 0.4 bpp achieving high 

scores in terms of Accuracy, Recall, and F1-score. 

The methods proposed [12, 21] exhibit varying 

performance levels, but it is generally shown that our 

method yields the best results. It is also worth noting 

that the start-of-the-art works considered did not 

work on detecting the location of the steganographic 

payload hidden under the MiPOD algorithm as done 

in our work. The findings generally underscore the 

proposed method's superior performance compared 

to existing approaches, positioning it as a promising 

advancement in locative steganalysis techniques. 

5. Conclusion 

Research has been conducted to enhance 

steganalysis performance in locating the 

steganographically altered parts of digital images 

with hidden data. The introduction of the CNNs 

demonstrated their ability to yield remarkable results 

surpassing the conventional ML-based handcrafted 

features. This article centres around the CNN 

paradigm to develop a new CNN that employs 

reduced features and optimized kernels to detect the 

pixel blocks containing hidden data within images. 

Compared to the existing schemes, our 

contributions are as follows. First, our model 

improves the accuracy of detecting hidden data by 

optimizing feature allocation by reducing the image 

size. Second, we reduce the number of parameters by 

customizing the convolutional kernels and 

initializing them with the fundamental 30 SRM filter 

banks, as presented in [18]. Third, we enhance the 

accuracy and achieve optimal convergence of the 

CNN by optimizing the convolutional kernel using 

backpropagation. 

For experimentation, we utilize images from the 

BOSSBase version 1.01 dataset with the recent 

adaptive steganographic algorithms, namely, WOW, 

S-UNIWARD, and MiPOD. We embed random data 

with payload capacities of 0.2 bpp and 0.4 bpp. Our 

experimental findings exhibit a notable performance 

of our method compared to existing techniques in 

accurately locating the pixel blocks containing 

steganographic payload within digital images.  

In future works, our objective is to extend the 

application of this proposed method to other datasets, 

including agricultural and medical images, thereby 

making a cross-field contribution to the detection of 

hidden data presence which can help the decision-

makers or security measures accuracies. 
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