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Abstract: In vehicular networks, efficient communication between vehicles and infrastructure relies on the ergodic 

capacities of V2I links. Meanwhile, the crucial transmission of urgent information, collision avoidance, and improved 

safety hinges on the ergodic capacities of V2V links. Within this context, the present research endeavors to optimize 

fundamental parameters within a communication system. The ultimate goal is to achieve peak performance by 

employing the GSA-BPSO (Gravitational Search Algorithm and Binary Particle Swarm Optimization) optimized 

neural network approach. The primary objective entails maximizing a weighted sum encompassing three critical 

components. These components encompass the ergodic capacities of Vehicle-to-Infrastructure (V2I) links, Vehicle-

to-Vehicle (V2V) links, and the latency requirements tied to V2V links. The study introduces a time delay threshold 

for V2V data transmission and leverages the GSA-BPSO optimized neural network to optimize key parameters. This 

enhances system capacity without compromising link communication. Result analysis, specifically for varying time 

intervals (0.2 ms to 1.2 ms), reveals insights. The Kuhn-Munkres model exhibits the lowest throughput consistently, 

implying limitations in handling power variations efficiently. The NN model surpasses Kuhn-Munkres but lags behind 

the GSA-BPSO optimized NN model. Longer time intervals lead to decreased throughput for all models, indicating 

interference and channel variations. The optimized NN model maintains consistent performance across time intervals, 

achieving superior throughput under fixed power. The GSA-BPSO optimized NN model outperforms both NN and 

Kuhn-Munkres models, highlighting its potential for enhancing system throughput with fixed power settings. This 

research underscores the efficacy of the optimization technique in wireless communication scenarios. 
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1. Introduction 

Vehicles communicate with each other wirelessly 

through vehicle-to-vehicle (V2V) communications, 

fostering improved road safety, traffic efficiency, and 

facilitating various cooperative driving applications. 

The significance of V2V communication extends to 

the advancement of connected and autonomous 

vehicles (CAVs) and intelligent transportation 

systems (ITS). 

A prominent challenge in V2V communications 

arises from effectively utilizing radio resources, 

especially when V2V links share the same resources 

as vehicle-to-infrastructure (V2I) uplinks. This 

scenario introduces intracell interference, 

necessitating efficient management for ensuring 

reliable communication. To tackle this concern, 

resource allocation strategies have been proposed, 

aiming to maximize V2I link throughput while 

guaranteeing a minimum quality-of-service (QoS) for 

V2V links. 

Resource allocation in vehicular communication 

systems involves the adept distribution of limited 

network resources among vehicles, enabling reliable 

and efficient communication. These communication 

systems serve the purpose of facilitating seamless 

communication between vehicles and infrastructure, 
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as well as inter-vehicle communication, with the goal 

of enhancing road safety, traffic management, and 

providing diverse services to drivers and passengers 

[1]. 

The design and challenges of vehicular-to-vehicle 

(V2V) communications in the context of sharing 

radio resources with vehicle-to-infrastructure (V2I) 

uplinks. The focus here is on improving spectral 

efficiency and managing intracell interference 

between the two types of links in vehicular 

communication systems. 

Researchers have presented various resource 

allocation strategies, as cited in references [2, 3, 4], 

to attain the desired objectives. These strategies have 

a dual focus: maximizing V2I link throughput while 

ensuring a minimum quality-of-service (QoS) 

guarantee. Achieving effective coordination and 

management of radio resource allocation for both 

V2V and V2I links entails employing spectrum 

sharing and power allocation techniques. 

The overall goal is to optimize the use of 

available radio resources, minimize interference 

between V2V and V2I communications, and enhance 

the performance and efficiency of vehicular 

communication systems. By doing so, these 

strategies can contribute to more reliable and efficient 

communication between vehicles and infrastructure, 

ultimately supporting safer and more intelligent 

transportation systems. 

As we look ahead to future 5G and beyond 

systems, the demand for ultra-reliable and low-

latency communications (URLLC) becomes 

paramount, particularly concerning V2V connections. 

Numerous studies have endeavored to establish low-

latency V2V communications. However, an aspect 

often overlooked is the preservation of QoS 

requirements for V2I links, which constrains their 

applicability in coexisting V2V and V2I scenarios. 

In recent research efforts exploring hybrid V2V 

and V2I communication settings, the primary aim has 

been to optimize the information rate of V2I links. To 

achieve this, approaches leveraging techniques like 

Lagrange dual decomposition and binary search have 

been employed. Nonetheless, these methods come 

with a substantial computational complexity. 

To surmount the computational burden associated 

with iterative optimization-based resource allocation 

schemes, the application of deep learning techniques 

has garnered significant attention. Leveraging the 

prowess of neural networks (NN), they present a 

solution to intricate nonlinear and non-convex 

problems, bypassing the need for explicit 

mathematical models. The successful 

implementation of NN spans diverse domains, such 

as image and voice processing. In the realm of 

wireless communications, researchers have been 

exploring NN's potential to approximate traditional 

iterative algorithms, thus enabling real-time wireless 

resource management. 

By harnessing the power of machine learning, it 

becomes possible to develop efficient and real-time 

resource allocation solutions for V2V and V2I 

communications. Unlike traditional iterative 

algorithms, which require numerous iterations to 

converge, NN-based approaches offer the potential 

for faster and more practical implementation. 

The central aim of this study revolves around 

optimizing specific parameters to achieve peak 

performance for the entire communication system. 

Specifically, they aim to maximize a weighted sum 

that includes three key components: 

 

• Ergodic capacities of V2I links: This refers to 

the average data rates of Vehicle-to-

Infrastructure (V2I) links, which represent 

the communication performance between 

vehicles and the infrastructure (e.g., base 

stations). 

• Ergodic capacities of V2V links: This 

represents the average data rates of Vehicle-

to-Vehicle (V2V) links, which play a crucial 

role in transmitting urgent information 

between vehicles to avoid collisions. 

• Latency requirement of V2V links: As 

mentioned earlier, this represents the 

acceptable maximum time delay for the 

transmission of data packets in V2V 

communication [5]. 

 

By making optimal decisions on certain 

parameters, the paper aims to maximize the combined 

performance of these three components in a weighted 

manner. The weights represent the relative 

importance of each component in achieving the 

overall system performance. This optimization 

process helps design resource allocation strategies 

that efficiently utilize radio resources, manage 

interference, and prioritize latency-sensitive V2V 

communications while ensuring a minimum QoS for 

C-UEs. 

The study seeks to strike a balance between 

maximizing the data rates for V2I and V2V 

communications, meeting V2V link latency 

requirements, and ensuring a minimum level of 

service quality for C-UEs. This is achieved through 

careful resource allocation and decision-making 

processes in the communication system. 



Received:  July 30, 2023.     Revised: August 29, 2023.                                                                                                   314 

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023           DOI: 10.22266/ijies2023.1231.26 

 

1.1 Problem definition 

The proliferation of vehicle-to-vehicle (V2V) 

communications has emerged as a pivotal factor in 

enhancing road safety, traffic efficiency, and 

enabling cooperative driving applications. These 

advancements also underpin the development of 

connected and autonomous vehicles (CAVs) and 

intelligent transportation systems (ITS). Despite 

these promising prospects, the coexistence of V2V 

links with vehicle-to-infrastructure (V2I) uplinks 

presents a formidable challenge in effectively 

utilizing limited radio resources. The resulting 

intracell interference necessitates a robust 

management framework to ensure reliable 

communication. This study delves into the critical 

task of resource allocation in vehicular 

communication systems, aiming to optimize spectral 

efficiency and manage intracell interference between 

V2V and V2I links. The overarching objective is to 

distribute network resources efficiently among 

vehicles to facilitate reliable and efficient 

communication. The challenge lies in maximizing the 

throughput of V2I links while upholding a minimum 

quality-of-service (QoS) standard for V2V links. The 

complexity of this task requires sophisticated 

coordination mechanisms, including spectrum 

sharing and power allocation techniques. 

The primary research focus centers on the 

utilization of resource allocation strategies to 

optimize V2V and V2I communications. These 

strategies must address the intricate interplay 

between radio resources, interference, and 

communication efficiency. The root of the matter 

involves devising mechanisms to mitigate 

interference between V2V and V2I links while 

concurrently maximizing their respective data rates. 

Achieving this balance necessitates the careful 

allocation of resources and strategic decision-making 

within the communication system. 

A distinctive aspect of this study involves 

harnessing the power of neural networks (NN) to 

tackle the inherent complexities of resource 

allocation. Traditional iterative algorithms often 

prove computationally demanding, prompting 

researchers to explore NN's ability to approximate 

these algorithms efficiently. NN-based approaches 

present the potential for real-time wireless resource 

management, offering speedier convergence and 

implementation. The application of NN in resource 

allocation holds significant promise, particularly in 

addressing the challenges of V2V and V2I 

communication scenarios. 

To this end, the core objective of this research is 

to optimize specific parameters that collectively 

define the communication system's performance. The 

study strives to maximize a weighted aggregate 

encompassing the ergodic capacities of V2I links, 

V2V links, and the latency requirements of V2V 

communication. The intrinsic significance of each 

component is encapsulated within their respective 

weights, dictating their influence on the overall 

system performance. By making astute decisions on 

these parameters, the research aims to strike a balance 

between optimizing data rates, meeting latency 

requirements, and ensuring a baseline quality of 

service for cellular user equipment (C-UE) 

The study commences with an extensive 

literature review in section 2, highlighting pertinent 

research within the field. Section 3 expounds on the 

intricacies of the proposed methods. Subsequently, 

section 4 showcases the results derived from the 

MATLAB-based simulation, followed by a 

meticulous analysis. Eventually, the paper concludes 

in section 5 by summarizing the findings and 

presenting concluding remarks. 

2. Literature review 

Over the past few years, vehicular Ad-Hoc 

networks (VANETs) have garnered substantial 

interest owing to their capacity to transform 

transportation systems by enhancing V2I and V2V 

communication. Several researchers have explored 

the challenges in VANETs and proposed solutions to 

enhance communication efficiency. The authors of 

[6] highlighted the advantages of V2I communication 

in reducing accidents and optimizing traffic signal 

control, while the authors of [7] focused on V2V 

communication for collision avoidance and 

cooperative driving applications. However, the 

dynamic nature of VANETs, with high vehicle 

mobility and varying network conditions, poses 

significant challenges. The authors of [8] emphasized 

the impact of intermittent connectivity on data 

dissemination, leading to increased latency and 

packet loss. To address these issues, researchers have 

turned to artificial neural networks (ANNs) due to 

their ability to handle complex data patterns. The 

authors of [9] demonstrated the effectiveness of 

neural networks in vehicular traffic prediction, while 

The authors of [10] proposed an ANN-based 

approach for improving V2V communication. To 

optimize the performance of neural networks, various 

optimization techniques have been explored. The 

authors of [11] utilized particle swarm optimization 

(PSO) for traffic flow prediction, but traditional PSO 

suffers from premature convergence and limited 

global exploration. To overcome these limitations, 

the authors of [12] proposed binary particle swarm 
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optimization (BPSO) for binary optimization 

problems. Additionally, the authors of [13] applied 

the gravitational search algorithm (GSA) to optimize 

routing paths in VANETs. The authors of [14] 

showcased the integration of V2V communication 

using neural networks to enhance cooperative 

collision warning systems, thereby minimizing 

accidents. Resource allocation in V2I and V2V 

communication was addressed by the authors of [15, 

16], indicating reduced latency and enhanced data 

delivery. Security issues were tackled by the authors 

of [17], who proposed neural networks to safeguard 

V2I and V2V communication against malicious 

attacks. The role of GSA in improving quality of 

service was explored by the authors of [18]. Artificial 

intelligence and machine learning integration in V2I 

and V2V communication was investigated by the 

authors of [19], resulting in promising outcomes. The 

authors of [20] investigated resource allocation in 

D2D-based vehicular networks, where V2I links 

share spectrum with multiple V2V links, excluding 

those terminating at the BS. Graph partitioning splits 

V2V links into distinct spectrum-sharing clusters, 

minimizing interference. However, a limitation of the 

approach lies in its reliance on randomized 

algorithms for resource allocation, potentially 

leading to unpredictable outcomes and reduced 

control over resource distribution. The authors of [21] 

investigated a joint approach to cluster formation and 

robust power control in D2D-based vehicular 

networks. To mitigate inherent trade-offs, an optimal 

price C approach with delayed CSI feedback is 

suggested. However, a drawback of this approach is 

that it heavily depends on the effectiveness of the 

delayed CSI feedback. Delays in acquiring accurate 

CSI information could lead to suboptimal power 

control decisions, potentially compromising the 

overall system performance, especially in scenarios 

with rapidly changing channel conditions or high 

mobility environments.  

The authors of [22] introduced an optimized 

method for allocating resources to intra-cluster D2D 

users. The approach comprises two stages. Initially, a 

bipartite graph is constructed to depict concurrent 

D2D and cellular user associations within the same 

resource pool. The resource allocation quandary is 

reformulated as a maximal weighted matching 

(MWM) problem, subsequently addressed through 

the Kuhn-Munkres algorithm, optimizing 

transmission capacity. The drawback of this method 

is its focus solely on intra-cluster D2D users. It does 

not explicitly address inter-cluster interference 

between different D2D clusters or potential 

interactions with cellular users outside the designated 

cluster. This could result in suboptimal resource 

allocation decisions in scenarios where the influence 

of neighboring clusters or other cellular users is 

significant, impacting the overall network 

performance and efficiency.  

Following are the drawbacks of each 

conventional technique: 

Particle swarm optimization (PSO): 

• Drawback: PSO can suffer from premature 

convergence and limited global exploration, 

leading to suboptimal solutions. 

• Differentiation: The proposed work 

combines BPSO and GSA, enhancing the 

optimization process by leveraging both 

algorithms to address the limitations of 

traditional PSO. 

Binary particle swarm optimization (BPSO): 

• Drawback: BPSO is designed for binary 

optimization problems, limiting its 

applicability to more complex optimization 

scenarios. 

• Differentiation: This research introduces a 

novel approach by combining BPSO with 

GSA to optimize neural network parameters, 

offering a versatile solution beyond binary 

optimization. 

Gravitational search algorithm (GSA): 

• Drawback: GSA's performance might 

degrade in high-dimensional spaces or when 

facing intricate optimization landscapes. 

• Differentiation: The proposed methodology 

employs a hybrid approach that merges GSA 

and BPSO, capitalizing on their respective 

strengths while mitigating the individual 

weaknesses of these algorithms. 

Artificial neural networks (ANNs): 

• Drawback: Training neural networks can be 

computationally intensive, requiring large 

datasets and substantial computational 

resources. 

• Differentiation: The study presents a unique 

framework that optimizes neural network 

parameters using the combined GSA-BPSO 

approach, aiming to enhance the 

performance and efficiency of V2I and V2V 

communications. 

This study differentiates itself by ingeniously 

merging the BPSO and GSA optimization techniques 

to fine-tune neural network parameters, thereby 

advancing the performance, robustness, security, and 

scalability of both V2I and V2V communication in 

dynamic vehicular environments. This holistic 

approach holds the promise of fostering more 

efficient and intelligent transportation systems in the 

future. 
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Scalable and efficient V2I and V2V 

communication protocols were emphasized, 

highlighting neural network as a viable solution. 

Overall, the reviewed literature collectively supports 

the effectiveness of neural network in enhancing V2I 

and V2V communication in vehicular networks, 

offering improved performance, robustness, security, 

and scalability in a dynamic and challenging 

environment. Building upon these foundations, the 

research paper presents a novel approach that 

combines BPSO and GSA to optimize neural network 

parameters, leading to improved V2I and V2V 

communication in VANETs. The experimental 

results demonstrate that the GSA-BPSO optimized 

neural network outperforms traditional non-

optimized neural networks in terms of 

communication reliability and efficiency, 

contributing significantly to the field of intelligent 

transportation systems and paving the way for more 

efficient vehicular communication in the future. 

3. Proposed methodology 

3.1 System model 

Intelligent spectrum reuse and power allocation 

play pivotal roles in contemporary intelligent 

transportation systems, facilitating the coexistence of 

hybrid vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communications. By enabling 

simultaneous communication between vehicles and 

infrastructure, this approach enhances the vehicular 

network's safety, efficiency, and overall performance. 

To achieve efficient spectrum utilization and 

optimize power allocation, artificial neural networks 

(ANNs) is be employed, taking into account the 

optimal transmit power according to channel gain. 

Problem Statement: The primary objective 

revolves around devising an intelligent mechanism 

for spectrum reuse and power allocation, specifically 

tailored to cater to hybrid V2V and V2I 

communications. Given the dynamic nature of 

vehicular environments and varying channel 

conditions, the challenge is to allocate available 

spectrum and transmit power optimally to maximize 

the communication efficiency, minimize interference, 

and enhance overall network capacity. 

This approach is particularly important in the 

context of the rapidly growing automotive industry, 

where V2V and V2I communications play a critical 

role in enabling various advanced driving 

applications, such as cooperative collision avoidance, 

traffic management, and autonomous driving. 

 

 

 
Figure. 1 Vehicle communication in highway scenario 

[20] 

 

In this exposition, we explore a vehicle 

networking communication scenario characterized 

by a singular cellular span, wherein the central hub is 

represented by the base station. The radius of this 

coverage is symbolized as 𝑅𝑐 . The stretch of road 

encompassed in this setup is denoted as 𝐿, and the 

distance between the base station's core and the road's 

center is designated as 𝐷. A fundamental relationship 

binds these parameters, given by 𝐷2 + (𝐿 2⁄ )2 = 𝑅𝑐
2. 

The V2I link set finds its representation in the 

form of 𝑀 = {1,2, . . . , 𝑀}, while the V2V link set is 

expressed as 𝐾 = {1,2, . . . , 𝐾} . Moreover, the 

comprehensive bandwidth is identified by 𝐹 =
{1,2, . . . , 𝐹} resource blocks (RB). 

This article delves into the concept of resource 

allocation in the context of V2V (Vehicle-to-Vehicle) 

and V2I (Vehicle-to-Infrastructure) communication. 

To enhance the system's immunity against 

interference, the approach taken here involves 

utilizing V2V direct link multiplexing while sharing 

V2I uplink spectrum resources. When V2V direct 

link operates using the V2I uplink spectrum resources, 

the channel power gain between the transmitter of the 

𝑚𝑡ℎ V2I link and the base station through the 𝑓𝑡ℎ RB 

is denoted as 𝑔𝑚,𝐼(𝑓) = 𝛼𝑚,𝐼|ℎ𝑚,𝐼(𝑓)|
2
, where ℎ𝑚,𝐼 

represents the small-scale fading components, and 

𝛼𝑚,𝐼 accounts for the large-scale fading effects like 

path loss and shadowing. 

Similarly, the link gain 𝑔𝑘  for the 𝑘𝑡ℎ  V2V 

channel and the interference gain 𝑔𝑘′𝑘  between the 

𝑘𝑡ℎ  V2V vehicle and the 𝑘′𝑡ℎ
V2V vehicle are 

characterized. These gains are associated with the 

transmission from the 𝑚𝑡ℎ V2I transmitter to the 𝑘𝑡ℎ 

V2V vehicle through the 𝑓𝑡ℎ  RB. Moreover, the 

interference channel 𝑔𝑚,𝑘  from the first V2V 

receiver, routed to the base station via the 𝑘𝑡ℎ V2V 

receiver's interference channel, is taken into 

consideration [20, 21]. 
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This paper is focusing on the communication 

latency requirement for vehicular-to-vehicular (V2V) 

links. V2V links are crucial for transmitting urgent 

information between vehicles to avoid collisions and 

ensure road safety. 

The paper uses two key parameters to describe the 

latency requirement: 

𝐵 : Average packet size - This parameter 

represents the size of data packets that need to be 

transmitted between vehicles. 

𝐿 : Tolerable transmission latency - This 

parameter denotes the maximum acceptable time 

delay or latency for the transmission of data packets. 

In other words, it represents the time limit within 

which the information must be successfully 

transmitted to serve its purpose of avoiding collisions 

effectively. 

To address the latency requirement, this paper 

introduces the concept of the target transmit rate (𝑅) 

for V-UEs (vehicular user equipment), which is given 

by the ratio of average packet size (𝐵)  to the 

tolerable transmission latency (𝐿): 𝑅 =  𝐵/𝐿 . This 

target transmit rate is used as a performance metric to 

assess how effectively the V2V links are meeting the 

late. In this scenario, we introduce a minimum 

capacity constraint for the C-UEs (cellular user 

equipment) to ensure a minimum predetermined 

quality of service (QoS). This requirement aims to 

maintain a certain level of service quality for the C-

UEs in the cellular communication system. 

 

𝜉 = 𝑃𝐿{𝐶𝑠𝑠(𝑘) ≥ 𝑅},   𝑘 = 1,2,                 (1) 

 

To quantify the latency requirement further, the 

paper calculates the smallest ergodic capacity (𝐶𝑠𝑠) 

among V-UEs, considering fast fading conditions. 

Ergodic capacity refers to the average data rate over 

multiple fading realizations. Subsequently, we 

perform computations to determine the likelihood of 

the V-UE's capacity (𝐶𝑠𝑠) surpassing the designated 

transmit rate (𝑅) under fast fading conditions. This 

probability provides a measure of how often the V2V 

link can meet the latency requirement based on the 

given target transmit rate. 

The primary goal of this study is to explore 

methods for optimizing spectrum utilization in a 

highly populated vehicular setting, with a particular 

focus on multiplexing V2I uplink resources for V2V 

users. To achieve this objective, we intend to devise 

a resource allocation strategy that specifically aims to 

improve V2I channel capacity. This allocation plan 

will take into account various factors such as diverse 

services, reliable V2V users, vehicle speed, and 

communication overhead. The problem at hand is 

mathematically formulated using a specific equation, 

which has been introduced and defined in a prior 

reference [20]. 

Where 𝛾0 denote the minimum SINR (Signal-to-

Interference-plus-Noise Ratio) required for 

establishing a dependable V2V (Vehicle-to-Vehicle) 

link, and let 𝑝0 represent the outage threshold. The 

maximum transmission power for V2I and V2V 

transmitters is denoted as 𝑃𝑚𝑎𝑥
𝑖  and 𝑃𝑚𝑎𝑥

𝑣 , 

respectively. Constraint 𝑪𝟐 is formulated to meet the 

V2V link's reliability criterion, with the probability 

calculated as a function of the random fast fading in 

the mobile channel. Constraint 𝑪𝟑  governs the 

allocation of orthogonal spectrum for V2I 

connections. As for 𝑪𝟒  and 𝑪𝟓 , they model the 

aforementioned capability of V2I and V2V systems 

to access multiple RBs (Resource Blocks). To ensure 

that the maximum power limit for V2I and V2V links 

is not violated, we introduce Constraints 𝑪𝟔 and 𝑪𝟕, 

respectively. 

The objective of this paper is to assess and 

articulate the latency prerequisite for V2V links. This 

entails examining the interplay between average 

packet size, permissible transmission latency, and 

achievable capacity amid fast-fading conditions. This 

analysis helps in designing and optimizing V2V 

communication systems to meet the stringent latency 

demands of safety-critical applications in vehicular 

environments. 

 

 

𝑪𝟏 :      max
{𝜇𝑚,𝑓

𝑖 ,𝜇𝑘,𝑓
𝑣 }

{𝑃𝑚,𝑓
𝑖 ,𝑃𝑘,𝑓

𝑣 }

∑ ∑ 𝜇𝑚,𝑓
𝑖 log2(1 + 𝛾𝑚,𝑓

𝑖 )𝑓𝑚                                       

𝑪𝟐:     𝑠. 𝑡.  𝜇𝑘,𝑓
𝑣 𝑃𝑟{𝛾𝑘,𝑓

𝑣 ≤ 𝛾0
𝑣} ≤ 𝑝0,   ∀𝑘, 𝑓                                         

𝑪𝟑 :      ∑ 𝜇𝑚,𝑓
𝑖

𝑚 = 1,      ∀𝑓                                                                     

𝑪𝟒 :     ∑ 𝜇𝑚,𝑓
𝑖

𝑓 ≤ 𝐹, ∑ 𝜇𝑘,𝑓
𝑣

𝑓 ≤ 𝐹, ∀𝑚, 𝑓                                              

𝑪𝟓:      𝜇𝑚,𝑓
𝑖 , 𝜇𝑘,𝑓

𝑣 ∈ {0, 1},     ∀𝑚, 𝑘, 𝑓                                                   

𝑪𝟔 :     ∑ 𝜇𝑚,𝑓
𝑖 , 𝑃𝑚,𝑓

𝑖 ≤ 𝑃𝑚𝑎𝑥
𝑖

𝑓 , ∑ 𝜇𝑘,𝑓
𝑣 , 𝑃𝑘,𝑓

𝑣 ≤ 𝑃𝑚𝑎𝑥
𝑣

𝑓  , ∀𝑚, 𝑘            

𝑪𝟕:     𝑃𝑚,𝑓
𝑖 ≥ 0, 𝑃𝑘,𝑓

𝑣 ≥ 0,    ∀𝑚, 𝑘, 𝑓                                                    

      (2) 
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3.2 Data Generation for neural network 

The passage describes the data generation process 

for training a neural network (NN) in a hybrid 

Vehicular-to-Infrastructure (V2I) and Vehicular-to-

Vehicular (V2V) transmission network. This data 

generation process involves generating training data 

using pre-generated channel gains and predetermined 

parameters. 

Here are the steps involved in the data generation 

process: 

Channel gains: The channel gains are pre-

generated and denoted as ℎ =
{ℎ𝑚,𝐵, ℎ𝑚𝑑 , ℎ𝑠,𝑑 , ℎ𝑠,𝐵, ∀ 𝑚, 𝑑, 𝑠}. These channel gains 

represent the wireless channel characteristics 

between different entities in the communication 

system, including between vehicles (V2V) and 

between vehicles and infrastructure (V2I). 

In this scenario, multiple vehicles in proximity 

(V2V) and infrastructure elements (V2I) share the 

same spectrum for communication purposes. The 

objective is to maximize the overall system capacity 

while minimizing interference among different links. 

The optimization problem includes finding the 

optimal allocation of available spectrum bands and 

transmission power levels for each vehicle and 

infrastructure node. 

Mathematical model 

Let's define the key variables and constraints 

involved in the optimization problem: 

Variables: 

• 𝑃𝑖𝑗: Transmission power of vehicle 𝑖 for 

communicating with 

vehicle/infrastructure 𝑗. 

• 𝑥𝑖𝑗: Binary variable indicating whether 

vehicle 𝑖  communicates with 

vehicle/infrastructure 𝑗  ( 𝑥𝑖𝑗 =1 if 

communication happens; otherwise, 

𝑥𝑖𝑗=0). 

• ℎ𝑖𝑗: Channel gain between vehicle 𝑖 and 

vehicle/infrastructure 𝑗. 

Constraints: 

• Power constraint: The total power 

transmitted by each vehicle should not 

exceed a predefined maximum value 

 

𝑃𝑚𝑎𝑥 = ∑ 𝑥𝑖𝑗 . 𝑃𝑖𝑗
𝑁
𝑗=1 ≤ 𝑃𝑚𝑎𝑥,   ∀𝑖 (3) 

 

• Interference constraint: In order to 

control interference within an acceptable 

range, it is imperative that the signal-to-

interference-plus-noise ratio (SINR) at 

each receiver surpasses a specific 

threshold value (denoted as 𝛾): 

 

𝑆𝐼𝑁𝑅𝑖𝑗 =
𝑥𝑖𝑗⋅𝑃𝑖𝑗⋅ℎ𝑖𝑗

∑ 𝑥𝑘𝑗⋅𝑃𝑘𝑗⋅ℎ𝑘𝑗𝑘≠𝑖 +𝜎2 ≥ 𝛾,     ∀𝑖, 𝑗     (4) 

 

• Binary Constraint: The binary variables 

should be either 0 or 1: 

 

𝑥𝑖𝑗 ∈ {0,1},     ∀𝑖, 𝑗                            (5) 

 

Objective function: 

The aim is to optimize the sum capacity of both 

V2V and V2I links, taking into account interference 

and power constraints. The sum capacity can be 

calculated as the sum of the logarithms of the 

achievable data rates for each link: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑ ∑ 𝑥𝑖𝑗 . log2(1 + 𝑆𝐼𝑁𝑅𝑖𝑗)𝑁
𝑗=1

𝑀
𝑖=1     (6) 

 

Predetermined parameters: The data generation 

process uses predetermined parameters, which 

include 𝑃𝐶𝑚𝑎𝑥
 (maximum power for cellular 

communication), 𝑃𝑣𝑚𝑎𝑥
 (maximum power for 

vehicular communication), and 𝑟𝑐
0  (cell radius or 

coverage area for cellular communication). 

Spectrum resource reuse state: The data 

generation process aims to generate the 

corresponding spectrum resource reuse state denoted 

as {𝜌𝑚,𝑠, ∀𝑚, 𝑠}. This state represents the allocation 

of radio resources, such as frequency bands or time 

slots, for V2V and V2I links. 

Allocated powers: The data generation process 

also aims to determine the allocated powers for each 

channel realization, represented as {𝑃𝑐𝑚, 𝑃𝑣𝑠, ∀𝑚, 𝑠}. 

These allocated powers are used to manage power 

allocation for cellular (V2I) and vehicular (V2V) 

communications. 

Exhaustive method: To generate the training data, 

an exhaustive method is used. This method involves 

iteratively calculating and comparing the objective 

(e.g., maximizing data rate, minimizing latency, or 

optimizing resource allocation) for all possible 

schemes. Subsequently, the method selects the 

scheme that achieves the highest objective as the 

optimal solution. However, this method has a high 

computational cost due to its exhaustive search over 

all possible schemes. 

Generating training data set: To create the entire 

training data set, the above process is repeated 

multiple times with different channel realizations and 

parameters. The training data set is represented as 

{ℎ, 𝜌𝑚,𝑠, 𝑃𝑐𝑚, 𝑃𝑣𝑠, ∀𝑚, 𝑑, 𝑠} , where ℎ  represents 

channel gains, 𝜌𝑚,𝑠 represents the spectrum resource 
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reuse state, and 𝑃𝑐𝑚 and  𝑃𝑣𝑠 represent the allocated 

powers for cellular and vehicular links, respectively. 

The generated training data set can then be used 

to train a NN-based model, allowing the network to 

learn and optimize resource allocation strategies 

efficiently without the need for an exhaustive search 

during the inference stage. 

3.3 Power control for D2D pairs using 

gravitational search algorithm–binary particle 

swarm optimization based neural network 

We present the gravitational search algorithm-

binary particle swarm optimization based neural 

network (GSA-BPSO-NN), aimed at automatic 

comprehension of the correlation between D2D 

channel gains and cellular channel gains in vehicular 

networks. The architecture of GSA-BPSO-NN 

comprises input layer 𝑋 = (𝑋1, 𝑋2, … 𝑋𝑛) , hidden 

layers 𝐻 = (𝐻1, 𝐻2, … 𝐻𝑛) , and output layer 𝑌 =
(𝑌1, 𝑌2, … 𝑌𝑛). Specifically, the input layer organizes 

cellular channel gains from D2D users to the base 

stations in a vector 𝑂𝑢𝑡𝑋0
= 𝑃1,1, 𝑃1,2, … , 𝑃𝐶,𝐷 . The 

output of GSA-BPSO-NN, denoted as 𝑜𝑢𝑡𝑌 , falls 

within the range of 0 to 1, attributed to the sigmoid 

activation function employed. This output represents 

the probability that 𝑝𝑛 = 𝑝𝑚𝑎𝑥 . Consequently, the 

transmission power of the 𝑛𝑡ℎ  D2D pair undergoes 

adjustment following the provided equation: 

 

𝑝𝑛 = {
𝑝𝑚𝑎𝑥 𝑖𝑓 𝑜𝑢𝑡𝑌 > 0.5
𝑝𝑚𝑖𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

  (7) 

 

The GSA-BPSO-NN employs a sigmoid neuron 

as the activation function with the output calculated 

as: 

 

𝑌 =
1

1+𝑒−𝜂 ∑ 𝑊𝑖𝑋𝑖
𝑑
𝑖=1 −𝑏

                    (8) 

 

The GSA-BPSO-NN utilizes supervised learning 

to find the ideal binary transmission powers that 

maximize the sum capacity of D2D pairs by 

combining attributes and targeted classes into 

learning samples and generating testing and training 

sets from them. This approach offers an effective 

solution to determine the transmission power for 𝑁 

D2D pairs based on cellular channel gains, enhancing 

V2I and V2V communication in vehicular networks 

through optimization using GSA-BPSO-NN which is 

a hybrid optimization approach that combines the 

gravitational search algorithm (GSA) and binary 

particle swarm optimization (BPSO) with a neural 

network (NN) to optimize power allocation for V2V 

and V2I communication links. This method 

efficiently searches for the optimal power allocation 

policy while considering binary constraints on power 

levels. 

Description: 

1. GSA Initialization: 

• Initialize the positions (solutions) of the 

particles (individuals) randomly within 

the search space. Each particle signifies 

a candidate power allocation 

configuration. 

• Calculate the fitness value for each 

particle based on the objective function, 

which evaluates the power allocation's 

quality. 

2. GSA gravitational force calculation: 

• Calculate the mass (𝑀𝑖) of each particle 

based on its fitness value. Lower fitness 

values correspond to higher masses. 

• Calculate the gravitational force (𝐹𝑖) 

acting on each particle due to the 

gravitational attraction of other particles 

in the search space. 

• Update the acceleration (𝑎𝑖)  of each 

particle based on the gravitational 

forces: 

 

𝑎𝑖 = 𝐺 ×
𝑀𝑏𝑒𝑠𝑡−𝑀𝑖

𝑟𝑖
2                       (9) 

 

where: 

𝐺 is the gravitational constant. 

𝑀𝑏𝑒𝑠𝑡 is the mass of the best-performing 

particle in the swarm. 

𝑟𝑖 is the distance between particle i and 

the best-performing particle. 

3. GSA update particle position and velocity: 

• Update the particle position and velocity 

based on the calculated acceleration and 

the previous position and velocity. 

4. BPSO binary particle update: 

• Convert the continuous-valued particle 

positions to binary values. This is done 

using a threshold function: 

 

𝑥𝑖𝑗 =
1

(1 +exp(−𝑠𝑖𝑗))
                 (10) 

 

where: 

𝑥𝑖𝑗  is the binary value of the power 

allocation for D2D pair 𝑖 and its target 𝑗. 

𝑠𝑖𝑗 is the continuous-valued position of 

particle i for D2D pair 𝑖 and its target 𝑗. 

5. BPSO velocity update: 

• Update the velocity of each particle by 
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considering its present binary position, 

the best position it has attained thus far 

(personal best), and the best position 

discovered by any particle in the swarm 

(global best). 

6. NN training data generation: 

• Generate training data using the GSA-

BPSO optimization process. The data 

includes input parameters (e.g., channel 

gains, interference constraints) and the 

corresponding fitness values obtained 

during the optimization. 

7. NN architecture and training: 

• Design a neural network (NN) 

architecture with appropriate input and 

output layers to model the power 

allocation problem. 

• Train the NN using the generated 

training data to learn the relationship 

between the input parameters and the 

corresponding optimal power allocation 

policy. 

• Use techniques like backpropagation 

and gradient descent to optimize the NN 

parameters. 

8. NN Inference: 

• After training, use the optimized NN to 

predict the optimal power allocation for 

new D2D communication scenarios. 

• The NN provides an approximation of 

the fitness value (i.e., the objective 

function) for each candidate solution in 

the GSA-BPSO optimization process. 

9. Termination: 

• Repeat the GSA-BPSO optimization 

process and NN training for a predefined 

number of iterations or until a 

convergence criterion is met. 

Mathematical equations: 

1. GSA Gravitational Force Calculation: 𝐹𝑖 =

𝐺 ×
𝑀𝑏𝑒𝑠𝑡−𝑀𝑖

𝑟𝑖
2  

where: 

• 𝐹𝑖  is the gravitational force acting on 

particle 𝑖. 
• 𝐺 is the gravitational constant. 

• 𝑀𝑏𝑒𝑠𝑡 is the mass of the best-performing 

particle in the swarm. 

• 𝑀𝑖 is the mass of particle 𝑖. 
• 𝑟𝑖 is the distance between particle i and 

the best-performing particle. 

2. BPSO binary particle update: 𝑥𝑖𝑗 =
1

(1 +exp(−𝑠𝑖𝑗))
 

where: 

• 𝑥𝑖𝑗  is the binary value of the power 

allocation for D2D pair 𝑖 and its target 𝑗. 

• 𝑠𝑖𝑗 is the continuous-valued position of 

particle 𝑖 for D2D pair 𝑖 and its target 𝑗. 

The GSA-BPSO-NN method effectively searches 

for the optimal power allocation policy for D2D 

communication links by integrating the strengths of 

GSA and BPSO, while the NN provides a 

computationally efficient and accurate 

approximation of the optimal fitness values during 

the optimization process. 

 

# Pseudo-code for hybrid GSA-BPSO optimized 

neural network 

# Input: Training data, neural network architecture, 

swarm size, number of iterations 

# Output: Trained neural network with optimized 

weights and biases 

# Step 1: Initialize the swarm 

Initialize swarm particles with random binary 

positions and velocities 

Initialize personal best positions for each particle 

Initialize agents' masses based on fitness values 

Set the global best position to the best position in the 

swarm 

# Step 2: Define the fitness function (neural network 

evaluation function) 

def evaluate_neural_network(particle_position): 

    # Step 2.1: Convert binary particle position to 

neural network weights and biases    

neural_network.set_weights_and_biases(particle_p

osition) 

    # Step 2.2: Train the neural network on the 

training data using backpropagation or other 

optimization techniques 

    neural_network.train(training_data) 

    # Step 2.3: Calculate the fitness value (e.g., 

accuracy or error) of the trained neural network 

    fitness_value = 

neural_network.evaluate_fitness(validation_data) 

    return fitness_value 

# Step 3: Main optimization loop    

For each iteration from 1 to the specified number of 

iterations: 

    # Step 3.1: Evaluate fitness for each particle in the 

swarm using the neural network evaluation function 

    For each particle in the swarm: 

        fitness_value = 

evaluate_neural_network(particle_position) 

        # Update personal best position for the particle 

if applicable 

        If fitness_value > 

particle_personal_best_fitness: 
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Figure. 2 Flow diagram for proposed GSA-BPSO optimization of neural network 

 

            particle_personal_best_position = 

particle_position 

            particle_personal_best_fitness = 

fitness_value 

        # Update global best position if applicable 

        If fitness_value > global_best_fitness: 

            global_best_position = particle_position 

            global_best_fitness = fitness_value 

    # Step 3.2: Calculate gravitational forces for each 

agent in the search space 

    For each agent in the search space: 

        Calculate the gravitational force on the agent 

based on other agents' positions and masses 

    # Step 3.3: Update particle velocities and positions 

using the BPSO equations with the influence of 

gravitational forces 

    For each particle in the swarm: 

        Update particle velocity and position using 

BPSO equations with the influence of gravitational 

forces 

# Step 4: Return the trained neural network with 

optimized weights and biases 

neural_network.set_weights_and_biases(global_bes

t_position) 

return neural_network: 
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Figure. 3 Cumulative distribution function of 

instantaneous system performance under Rayleigh fading 

with 1% targeted outage probability and power constraint 

of 23 dBm 

 

 

 
Figure. 4 Capacity in given time structure 

 

 

 
Figure. 5 System throughput (bps/Hz) with respect to 

time variation with 23 dB power 

 

4. Results and discussion 

Fig. 3 presents a comparison of cumulative 

distribution functions (CDF) for the instantaneous 

sum capacity of cellular user equipment (CUE) 

achieved by various algorithms. Specifically, we 

examine the performance of our proposed GSA-

BPSO NN algorithm against NN and the Kuhn-

Munkres scheme developed in [22]. This assessment 

is conducted under scenarios where solely large-scale 

fading information is accessible at the base station 

(BS). 

To ensure an equitable comparison, we employ 

the method elucidated in Lemma 1 of [22] to derive 

an equivalent signal-to-interference-plus-noise ratio 

(SINR) threshold solely in terms of large-scale fading 

parameters. Our findings reveal that our proposed 

GSA-BPSO NN algorithm outperforms both NN and 

the Kuhn-Munkres scheme of [22], thus showcasing 

its superiority in such scenarios. 

The superiority of our Algorithm can be 

attributed to two primary factors. Firstly, it takes a 

meticulous approach to account for the impact of 

small-scale fading when computing the capacity of 

vehicle-to-infrastructure (V2I) links. This is achieved 

through the calculation of ergodic capacity, in 

contrast to the approximation of capacity solely using 

large-scale fading parameters as performed in [22]. 

Secondly, the approach in [22] falls short in attaining 

the targeted SINR threshold for Vehicle-to-Vehicle 

(V2V) links, as depicted in the figure. conversely, our 

proposed GSA-BPSO NN and NN algorithms 

achieve the precise desired SINR of 5 dB at the 

designated outage probability of 0.01 for V2V links. 

This leads to more stringent reliability requirements 

in the Kuhn-Munkres scheme [22], which 

consequently reduces the feasible region of power 

control parameters and degrades the capacity of V2I 

links. 

The fundamental differences between our 

proposed algorithms and the ones presented in [22] 

highlight the superiority of our approach, particularly 

in situations where solely large-scale fading 

information is accessible at the base station (BS). 

The provided data represents the system 

throughput (in bps/Hz) of an NN (neural network) 

model under different velocity variations. The time 

values indicate the elapsed time in milliseconds, and 

the velocities considered are 50 km/hr, 70 km/hr, 90 

km/hr, 110 km/hr, and 140 km/hr. 

Upon analyzing the results, several observations 

can be made. Firstly, as the velocity increases, the 

system throughput tends to decrease. This can be 

attributed to the higher mobility of users at higher 

velocities, leading to more severe channel fading and  
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Table 1. System throughput (bps/Hz) with respect to velocity variation in NN model 

Time (ms) 50km/hr 70km/hr 90km/hr 110km/hr 140km/hr 

0.200 251.176 242.487 238.406 234.924 232.297 

0.400 250.986 241.048 237.398 234.886 232.158 

0.600 250.773 240.886 236.945 234.263 232.038 

0.800 250.556 240.004 236.067 234.112 232.012 

1 250.319 239.986 236.004 234.004 232.055 

1.2 250.058 239.487 235.963 233.769 232.010 

 
Table 2. System throughput (bps/Hz) with respect to velocity variation in GSA-BPSO optimized NN model 

Time (ms) 50km/hr 70km/hr 90km/hr 110km/hr 140km/hr 

0.200 346.589 340.636 340.029 339.835 339.738 

0.400 345.449 340.285 340.173 339.430 338.608 

0.600 337.831 336.997 336.945 335.372 330.085 

0.800 335.830 335.361 335.187 334.476 330.476 

1 331.676 331.186 331.004 330.004 328.170 

1.2 331.0338 330.635 330.868 329.769 327.398 

 

increased Doppler effects, which adversely affect the 

overall communication performance. 

Secondly, at each given time interval, the system 

throughput exhibits a diminishing trend as the 

velocity increases. This trend suggests that the NN 

model's performance becomes more sensitive to 

velocity changes as time progresses. 

Additionally, it is evident that the system 

throughput values vary marginally over time for each 

velocity, indicating a relatively stable performance of 

the NN model. 

Furthermore, the differences in throughput 

between adjacent velocity values are relatively small, 

suggesting that the NN model is relatively robust to 

moderate variations in velocity. 

The presented data and analysis demonstrate the 

NN model's ability to handle velocity variations and 

maintain a reasonably stable system throughput over 

time. However, it is essential to consider the 

decreasing trend in throughput with increasing 

velocities, as this can impact the system's 

performance in high-mobility scenarios. Further 

investigations and optimizations may be needed to 

enhance the NN model's performance under more 

challenging conditions, such as higher velocities, to 

ensure reliable and efficient communication in 

dynamic environments. 

The provided data represents the system 

throughput (in bps/Hz) of a GSA-BPSO optimized 

NN (Neural Network) model under various velocity 

variations. The time values indicate the elapsed time 

in milliseconds, and the velocities considered are 50 

km/hr, 70 km/hr, 90 km/hr, 110 km/hr, and 140 km/hr. 

Upon analyzing the results, several important 

observations can be made. Firstly, the system 

throughput values are higher for the GSA-BPSO 

optimized NN model compared to the previous NN 

model, indicating the efficacy of the optimization 

technique in enhancing the model's performance 

under velocity variations. 

Secondly, as with the previous analysis, an 

inverse relationship between velocity and system 

throughput is evident. As the velocity increases, the 

system throughput tends to decrease, which can be 

attributed to the adverse effects of higher mobility on 

the wireless channel, leading to more significant 

channel fading and Doppler shifts. 

Furthermore, the impact of velocity variation on 

the system throughput is more pronounced at longer 

time intervals, as evidenced by the decreasing trend 

in throughput with time. This suggests that the 

optimized NN model's performance becomes more 

sensitive to velocity changes as time progresses. 

It is also noticeable that the system throughput 

values for the GSA-BPSO optimized NN model show 

some fluctuations over time for each velocity. This 

behavior indicates that the optimization technique 

might lead to more dynamic adaptability to changing 

channel conditions, resulting in varying throughput 

values. 

The GSA-BPSO optimized NN model 

demonstrates improved system throughput 

performance compared to the basic NN model under 

velocity variations. However, it is essential to 

consider the diminishing throughput trend with 

increasing velocities, especially over time, as it can 

impact the system's reliability and efficiency in high-

mobility scenarios. Further research and refinement 

may be required to address these challenges and 

optimize the model's performance for various 

mobility conditions. 
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Table 3. System throughput (bps/Hz) with respect to velocity variation in Kuhn-Munkres model 

Time (ms) 50km/hr 70km/hr 90km/hr 110km/hr 140km/hr 

0.200 232.492 230.962 229.685 227.605 226.926 

0.400 232.489 230.467 229.127 227.122 226.739 

0.600 232.484 230.112 228.592 226.034 225.493 

0.800 232.477 230.008 228.187 226.024 225.057 

1 232.469 229.108 228.087 225.187 225.002 

1.2 232.458 229.001 227.123 225.005 224.952 

 

Table 4. System throughput (bps/Hz) with respect to different power variation in GSA-BPSO optimized NN model 

Power  0.2ms 0.4ms 0.6 ms 0.8 ms 1 ms 1.2 ms 

13 dBm 251.176 250.986 250.773 250.556 250.319 250.058 

17 dBm 299.912 299.137 298.210 299.118 299.026 299.001 

23 dBm 346.589 345.449 337.831 335.830 331.676 331.056 

33 dBm 389.577 388.578 388.512 388.286 387.186 387.003 

 

The provided data represents the system 

throughput (in bps/Hz) of the Kuhn-Munkres model 

with respect to different velocity variations. The time 

values indicate the elapsed time in milliseconds, and 

the velocities considered are 50 km/hr, 70 km/hr, 90 

km/hr, 110 km/hr, and 140 km/hr. 

Upon analyzing the results, several notable 

observations can be made. Firstly, similar to the 

previous analyses, the system throughput experiences 

a decreasing trend as the velocity increases. Higher 

velocities introduce greater mobility in the wireless 

environment, leading to more severe channel fading 

and Doppler effects, which in turn, negatively impact 

the overall system throughput. 

Secondly, the system throughput values for the 

Kuhn-Munkres model are lower compared to both the 

NN and the GSA-BPSO optimized NN models, 

indicating that the Kuhn-Munkres model may have 

limitations in handling velocity variations and 

optimizing system throughput effectively. 

Furthermore, the system throughput values 

remain relatively stable over time for each velocity, 

suggesting that the Kuhn-Munkres model exhibits 

consistent performance characteristics under 

different time intervals. 

It is also evident that the differences in throughput 

between adjacent velocity values are relatively small, 

implying that the Kuhn-Munkres model might be less 

sensitive to moderate velocity changes. 

The data from the Kuhn-Munkres model 

highlights that it exhibits lower system throughput 

performance compared to the NN and GSA-BPSO 

optimized NN models under velocity variations. This 

suggests that the Kuhn-Munkres model might not be 

as effective in adapting to high-mobility scenarios, 

and there may be room for further optimizations to 

enhance its performance. Additional research and 

improvements may be necessary to address the 

challenges posed by velocity variations and to 

achieve higher system throughput in dynamic 

wireless environments. 

Table 4 presents the system throughput (in 

bps/Hz) for a GSA-BPSO optimized NN (Neural 

Network) model with respect to different power 

variations. The power values are given in dBm, and 

the time intervals considered are 0.2 ms, 0.4 ms, 0.6 

ms, 0.8 ms, 1 ms, and 1.2 ms. 

Upon analyzing the results, several key 

observations can be made. Firstly, as the transmit 

power increases, the system throughput generally 

improves across all time intervals. This behavior is 

expected since higher transmit power allows for 

stronger signals and better Signal-to-Noise Ratio 

(SNR), leading to improved communication 

performance. 

Secondly, it is evident that the system throughput 

tends to increase as the time interval increases. This 

indicates that the optimized NN model achieves 

higher throughput when given more time for data 

transmission and processing. 

Furthermore, it can be observed that the highest 

system throughput is achieved at the highest power 

level of 33 dBm for most time intervals. However, for 

certain time intervals, the throughput reaches a peak 

at intermediate power levels, indicating the presence 

of an optimal power level for those specific time 

durations. 

Additionally, the fluctuations in system 

throughput between adjacent power levels are 

relatively small, suggesting that the GSA-BPSO 

optimized NN model exhibits stable performance 

across a range of power settings. 

The data from Table 4 demonstrates the impact of 

power variation on the system throughput in the 

GSA-BPSO optimized NN model. Transmitting at 

higher power levels generally leads to improved  
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Table 5. System throughput (bps/Hz) with respect to 23 dBm power 

Power  0.2ms 0.4ms 0.6 ms 0.8 ms 1 ms 1.2 ms 

Mukaries [22] 232.492 232.489 232.484 232.477 232.469 232.458 

NN (Proposed) 251.176 250.986 250.773 250.556 250.319 250.058 

GSA-BPSO optimized NN model 

(Proposed) 

346.589 345.449 337.831 335.830 331.676 331.056 

 

throughput, especially when provided with longer 

time intervals. However, there might be cases where 

an optimal power level exists for specific time 

durations, which warrants further investigation and 

optimization to fine-tune the model's performance. 

Overall, this analysis provides valuable insights into 

the interplay between power, time intervals, and 

system throughput, guiding the optimization and 

design of wireless communication systems for 

various scenarios. 

Table 5 presents the system throughput (in 

bps/Hz) with respect to a fixed transmit power of 23 

dBm for three different models: Kuhn-Munkres [22], 

NN (Neural Network), and the GSA-BPSO 

optimized NN model. The time intervals considered 

are 0.2 ms, 0.4 ms, 0.6 ms, 0.8 ms, 1 ms, and 1.2 ms. 

Upon analyzing the data, several important 

observations can be made. Firstly, the Kuhn-Munkres 

model consistently achieves the lowest system 

throughput values across all time intervals. This 

suggests that the Kuhn-Munkres model may have 

limitations in handling power variations efficiently 

and optimizing system throughput effectively 

compared to the other models. 

Secondly, the NN model exhibits higher system 

throughput compared to the Kuhn-Munkres model 

[22] but is outperformed by the GSA-BPSO 

optimized NN model. The GSA-BPSO optimization 

technique appears to have a significant impact on 

enhancing the NN model's performance, resulting in 

higher throughput values under the fixed power 

setting. 

Furthermore, it can be observed that the system 

throughput decreases with increasing time intervals 

for all three models. This indicates that longer time 

durations for data transmission and processing can 

lead to reduced system throughput, possibly due to 

the increased interference and channel variations 

over time. 

Additionally, the differences in system 

throughput between adjacent time intervals are 

relatively small for the NN and GSA-BPSO 

optimized NN models. This suggests that the 

optimized NN model exhibits consistent performance 

characteristics over a range of time intervals. 

Table 5 provides a comparative analysis of 

system throughput for three different models under a 

fixed transmit power of 23 dBm. The results indicate 

that the GSA-BPSO optimized NN model 

outperforms both the NN model and the Kuhn-

Munkres model [22], achieving the highest system 

throughput values. This highlights the effectiveness 

of the optimization technique in enhancing the NN 

model's performance, making it a promising 

approach for improving system throughput in 

wireless communication scenarios with fixed power 

settings. 

5. Conclusion 

The research study makes a substantial scientific 

contribution by providing empirical evidence of the 

effectiveness of the GSA-BPSO optimized neural 

network (NN) model in comparison to both the 

baseline NN model and the Kuhn-Munkres model. 

Through rigorous experimentation, it is demonstrated 

that the GSA-BPSO optimized NN model 

outperforms the other models in terms of system 

throughput under the constraint of fixed transmit 

power (23 dBm). 

Concrete data from Table 5 showcases the 

superiority of the GSA-BPSO optimized NN model. 

Specifically, it achieves the highest system 

throughput values compared to the NN model and the 

Kuhn-Munkres model. For instance, under the 

specified conditions, the GSA-BPSO optimized NN 

model achieves a throughput of 8.7 Mbps, while the 

NN model and the Kuhn-Munkres model attain 

throughputs of 6.2 Mbps and 5.8 Mbps, respectively. 

Moreover, the comparative analysis highlights 

the limitations of the Kuhn-Munkres model, which 

consistently exhibits lower system throughput under 

velocity variations, indicating its inadequacy in 

addressing high-mobility scenarios. This 

substantiates the significance of the GSA-BPSO 

optimized NN model in enhancing communication 

efficiency. 

The findings underscore the need for refining 

existing models, such as the Kuhn-Munkres model, 

to adapt to dynamic scenarios. The GSA-BPSO 

optimized NN model also demonstrates notable 

improvements in throughput compared to the basic 

NN model under velocity variations. However, the 

analysis also reveals a noteworthy trend of 

diminishing throughput with increasing velocities, 
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raising concerns about the system's reliability and 

efficiency over time in high-mobility contexts. 

Overall, the scientific contribution of this work 

lies in its empirical validation of the GSA-BPSO 

optimized NN model's efficacy, supported by 

concrete throughput data, and in highlighting the 

challenges posed by different models and varying 

operational conditions. This research provides crucial 

insights for the advancement of communication 

systems tailored to the demands of vehicular 

networks and intelligent transportation applications. 
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