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Abstract: An intensive computation source has become increasingly important in recent years to meet the intensive 

resource and low-latency needs of industrial internet of things (IIoT) systems. Existing IIoT devices are built with 

limited computational resource, delivering results in a limited fashion when used in highly resource-intensive and 

delay-sensitive applications. It is difficult to process time-critical IIoT task due to varying demand like low latency, 

intensive computation and high data transmission. Offloading computing tasks to mobile edge computing (MEC) 

servers in the network's perimeter can effectively reduce delay. However, MEC server collected fewer resources than 

the resource cloud. To improve the resource utilization and minimize cost, this research develops an adaptive task 

offloading decision model through multi-constraint objective function. The goal is to minimize service delay, energy 

consumption, and maximize resource utilization through prediction based decision model. This study examines a non-

orthogonal multiple access (NOMA) -based MEC for IIoT system, where edge nodes offload their tasks to nearby edge 

servers for execution. Heuristically modified long short-term memory (H-LSTM) employing hybrid cat and mouse 

dingo optimization (HCMDO)-based reinforcement learning is suggested to distribute tasks optimally. We formulate 

joint optimization by considering multiple parameters using HCMDO. Further, these optimal parameters are used in 

training H-LSTM along with benchmark dataset. The outcome of the H-LSTM network utilized in deep reinforcement 

learning (DRL) to improve convergence speed, accuracy and stability by predicting task and best server. Average 

energy consumption analysis performed in the developed model attained 19.8%, 15.1%, 16.9%, and 15.6% than 

conventional approaches. In addition, the experimental results shows developed model attain better outcome in terms 

of delay and resource utilization.  

Keywords: Hybrid cat and mouse dingo optimization, Industrial IoT, Long short term memory, Edge computing, 

Reinforcement learning, Task offloading. 

 

 

1. Introduction 

Industry automation ensures efficient production 

with little need for labour. Automating design, 

analysis, assembly lines, warehouse management, 

and logistics depends on smart devices largely. 

Greater process flexibility, higher production quality, 

and more revenue are requirements of the Industry 

4.0 revolution. Industry 4.0 encompasses many 

technologies like advanced robotics, the internet of 

things (IoT), machine learning (ML), augmented & 

virtual reality (AR & VR), big data analytics, cloud 

computing, and cyber security. Industry 4.0 includes 

security applications, augmented/virtual reality 

devices, real-time cyber-physical systems, and 

autonomous vehicles, which demand low latency 

with deadline and intensive computing resource, 

which we term time-critical applications. Even 

though cloud has intense resource, it delivers high 

latency. The delay in offloading and processing such 

applications leads to a severe loss of money and 

human lives in the industry. Offloading computing 

tasks to MEC servers in the network's perimeter can 

effectively reduce delay. In recent times, several 

enhancements have been performed in fifth-

generation (5G) cellular technology and allow 

different applications like automatic driving, the IIoT, 
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and augmented reality (AR) [1]. Due to a lack of 

spectrum resources, the IIoT has been hampered in its 

development. 

Recently, non-orthogonal multiple access 

(NOMA) has been envisioned as one of the enabling 

technologies for achieving ultrahigh throughput and 

high efficiency in cellular networks in order to 

enhance the sensing and transmission performance of 

the IIoT. Spectrum deficit is also a limitation that will 

impact each sensor's quality of service (QoS) due to 

a large number of connected industrial sensors [2]. 

The automated communication system needs 

controlling, validation, and minimal latency rate for 

developing many wireless communication devices 

like actuators and sensors in Industry 4.0. Generally, 

real-time validation tasks are performed intensely, 

and the wireless communication system is presented 

in minimal size; simultaneously, they have only 

limited memory source, communication, and 

computation [3]. Therefore, it is essential for 

improving the validation and latency rate 

minimization ability in 5G applications. 

Computational job offloading near the MEC server 

reduces remote cloud-user data exchange [4]. The 

edge network's MEC servers analyse, offload, cache, 

and process user data. A big data platform requires 

cache storage, and server analytics software for 

efficient analysis but MEC has fewer sources than the 

distant cloud [5].  

Machine learning approaches have several 

features in resolving complex and non-convex 

problems [6]. In machine learning approaches, 

enhancing reliability in communication is considered 

an arduous task. A distributed approach is developed 

based on federated learning, and it allows resource 

allocation to perform effectively in ultra-reliable 

vehicular communication systems [7]. Finally, the 

professionals have explained the complexity attained 

in reliable communication of the 6G network. Further, 

knowledge in the communication area is improved 

effectively with machine learning networks and 

cross-layer optimization techniques [8]. 

The IIoT can utilize the 5G spectrum in the future 

to attain significant bandwidth. Allocating the same 

spectrum resource to numerous users can help with 

spectrum utilization and successfully address the lack 

of spectrum, making NOMA a suitable solution for 

5G. Orthogonal multiple access (OMA) and NOMA 

were compared in terms of performance and it found 

that NOMA outperformed OMA [9]. By 

incorporating NOMA into the IIoT, the IIoT boosts 

the total transmission capacity by using the limited 

resources to link more IIoT devices. NOMA's 

reliability and load balance strategy are still in the 

initial investigation. The reliability of NOMA has 

been studied and improved through time and spatial 

diversity-based retransmission schemes for industrial 

automation applications [10]. A novel task offloading 

strategy in NOMA enabled edge-computing 

framework is essential to tackle the challenges 

attained in the existing models. 

Contributions associated with the developed task 

offloading in NOMA-EDGE-enabled IIoT are 

elaborated as follows. 

• Initially, we designed NOMA-MEC enabled 

IIoT scenario in which each IIoT device can partially 

offload task to edge servers (ES) through NOMA. To 

study this problem, we formulate a multi-constraint 

optimization problem for offloading decision to 

minimize service delay, balance load, energy 

consumption, and maximize resource utilization. 

• We develop an efficient heuristic model named 

HCMDO for optimizing the decision variable in 

computational offloading.  

• We develop a new task and load prediction 

model named H-LSTM to predict best server for each 

task with parameter optimization based on the 

developed HCMDO for maximizing accuracy. 

• An adaptive task offloading decision model was 

built based on DRL and prediction using H-LSTM.  

• Finally, analyse the efficacy rate of the 

suggested model for NOMA-MEC-enabled IIoT over 

conventional approaches and classifiers under 

different settings and datasets.  

The reminder of this paper is organized as follows. 

The related work survey and problem statement are 

presented in section 2. System model in an edge 

computing system with NOMA is discussed in 

section 3. Task offloading decision model for time-

critical application using DRL and H-LSTM 

approach elaborated in section 4. The experimented 

results as well as the conclusion part of the research 

are presented in section 5 and section 6, respectively.     

2. Related works 

In [11] have recommended a reinforcement 

model named Q-Learning to perform effective 

resource allocation by reducing the interference and 

neglecting the usage of the network. The developed 

approach was presented in the form of a decentralized 

manner. Here, the cognitive radio (CR) worked as a 

multi-agent and generated a dynamic team for 

attaining the effective optimal resource allocation 

model. In [12] have suggested a joint optimization 

technique for validating resource allocation in Edge 

Servers. The workload of the smart terminal (ST) 

offloaded and radio source allocations for non-

orthogonal multiple access (NOMA) transmission 

effectively reduced the cost of the system. Still, the 
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non-convexity issue attained in the optimization issue 

was exploited, and an effective layered approach was 

developed to reach the optimal solution. The outcome 

showcased that the developed model achieved a 

better effectiveness rate and gained more efficacy.  

In [13] have recommended radio access network 

(RAN) slicing-based two-level approach in the open-

RAN (O-RAN) framework for assigning the 

validation as well as communication in the RAN 

sources. In every slicing phase of RAN, the resource 

slicing issue was developed with the help of the 

Markov decision approach and learning approach in 

resolving the problems. In [14] have proposed deep 

reinforcement learning-based collaborative 

computation offloading and resource allocation 

scheme. Unmanned aerial vehicles (UAVs) are used 

in emergency scenarios with network failure. To re-

establish the network by serving as airborne base 

stations and computing nodes for the edge network.  

In [15] have combined dynamic channel access 

and power control in a wireless interference network 

using multi-agent DRL. The multi-agent DRL 

algorithm with centralized training (DRLCT) solved 

the joint resource allocation problem. In this instance, 

training is carried out at the central unit, and 

following training, users decide independently on 

their transmission tactics using just local data. In [16] 

have assisted downlink of NOMA network through 

reconfigurable intelligent surface by proposing a 

capacity maximization strategy based on a double 

deep Q-Network (DDQN) under energy consumption 

constraints. The reconfigurable intelligent surface 

phase shift design and the UAV trajectory are 

collaboratively optimized using the DDQN approach. 

The simulations show that the recommended 

algorithm convergence and the chosen environment 

can help the neural network learn in the intended 

direction and behave better. 

In [17] have presented a revolutionary reverse 

auction-based computation offloading and resource 

allocation mechanism (RACORAM) for mobile 

cloud-edge computing. The essential concept is to 

accept offloaded computation from nearby mobile 

devices, which are resource-constrained, the cloud 

service centre recruits edge server owners to replace 

them. The reverse auction-based compute offloading 

and resource allocation challenge aims to reduce the 

cost. The reverse auction encourages edge server 

owners to participate in the offloading process.  

In [18] have modelled mobile-x architecture for 

task offloading in MEC. The dynamic nature of the 

network results in an inefficient allocation of the edge 

servers. As a result of processing delays and time 

constraints, activities are abandoned. Because of the 

ambiguous load dynamic state across the edge nodes, 

the researchers find it challenging and confusing to 

decide whether to unload. The decision to choose 

edge nodes for centralized edge offloading is what 

poses the problem. The offloading choice problem is 

then resolved by in-depth network task flow analysis 

and device feedback on edge services. This approach 

combines bi-directional LSTM and deep 

reinforcement learning to improve system cost in 

terms of time delay and energy consumption. 

To solve inappropriate compute offloading and 

uneven resource allocation in MEC [19] proposed a 

deep learning-based task offloading and resource 

allocation technique. First, the multiuser multi-server 

MEC environment's calculation and communication 

models are fused to generate a new objective function. 

This objective function reduces terminal device 

energy utilization and maximizes computing task 

completion time. Deep reinforcement learning based 

on multi-agent reinforcement learning creates system 

benefits and resource consumption as rewards and 

losses. The dueling-DQN algorithm determines the 

optimum resource allocation approach for the system 

issue model. 

In [20] have developed a novel approach to 

offload IoT tasks in an edge-cloud environment, 

which uses the fuzzy logic method for analysing 

application characteristics, resource utilization, and 

resource heterogeneity. Additionally, it can lower the 

total job failure rate due to problems with the network 

and processing resources. A set of fuzzy rules akin to 

human thinking make up a fuzzy rules basis. It is a 

straightforward if-then rule that addresses all 

scenarios related to application attributes and system 

circumstances. 

2.1 Problem statement 

Edge computing resources are limited compared 

to the cloud sector. However, IIoT system comprises 

low latency and intensive computing resource 

application, which we term time-critical applications. 

Even though cloud has intense resource, it delivers 

high latency. The delay in offloading and processing 

such applications leads to a severe loss of money and 

human lives in the industry. Offloading computing 

tasks to MEC servers in the network's perimeter can 

effectively reduce delay.  Hence, the time-critical 

application must be allocated to ES, which expects 

execution within the deadline. The characteristics of 

IIoT, such as heterogeneity, wireless network, real-

time, and high data generation, affect the 

performance if resources are not properly scheduled 

and utilized. These may cause delays, energy and 

bandwidth wastage, failure, and performance 

degradation. Multi-agent model-free reinforcement 
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learning schemes effectively converge and enhance 

the network capacity. However, performing with the 

channel imperfection effects among the cooperative 

CR networks is unsuitable. The user cooperation 

approach ensures the active computing of user nodes 

by sharing helper nodes' computation and 

communication resources. NOMA has minimized the 

system cost, including computation resource 

consumption and overload. But, it makes 

convergence speed slower and provides unstable 

performance in the convergence process. O-RAN 

solves the slicing problem and provides high 

robustness and efficiency in satisfying the 

requirements of services. However, it does not 

investigate the relationship between the duration of 

the reconfiguration interval and retraining frequency. 

Collaborative computation offloading and 

resource allocation (CCPRA) scheme based on DRL 

handles emergencies where network failure exists in 

UAV-assisted IoT networks. It shows high energy 

costs and a lack of overall performance. DRLCT 

provided the solution for the joint resource allocation 

problem, multi-agent at centralized training increases 

the overhead. In RACORAM, the cloud service 

center chooses the edge servers for offloading its 

computation from nearby resource-constraint MDs. 

Since the reverse auction is followed, it is unsuitable 

for delay-constrained applications. The Mobile-X 

architecture model's reinforcement learning 

technique addresses offloading concerns and 

provides a better decision-making process 

independent of the system cost. It slows down 

convergence speed and results in unstable 

convergence.  

The dueling-DQN algorithm determines the best 

resource allocation strategy in multiuser and multi-

server MCE environments. However, not adhering to 

task deadlines which is crucial in time-critical 

applications like real-time video processing. The 

fuzzy rule-based offloading approach works 

efficiently regarding service time and resource 

utilization. It's not suitable for resource-intensive and 

latency-sensitive applications. Therefore, 

complexities attained in the traditional system inspire 

us to develop novel hybrid LSTM and reinforcement 

learning approaches with the optimization strategy to 

solve the task offloading and resource allocation 

problem in Industrial IoT system. 

3. System model 

The spectrum efficiency advantage of NOMA is 

utilized in this work to jointly optimize the computing 

and communication resource for edge-enabled IIoT 

systems. The IIoT devices that are edge node (e.g., 

smart camera) in our proposed NOMA enabled edge 

computing architecture as displayed in Fig. 1. The 

considered system model comprises a multi-task, 

multi-access node for the sake of simplicity. However, 

in practice there are many IIoT devices with tasks to 

be executed locally or edge. Multiple tasks under a 

partial offloading strategy are challenging and worth 

investigating from an industry 4.0 compliance 

perspective. Each node generates computation-

intensive and delay-sensitive tasks (e.g., smart 

camera-based alert system through object detection, 

human motion tracking). The applications can 

delegate their computation-related duties to 

neighbour edge servers with computing capabilities, 

ensuring low latency service. 

The computational delay is minimized so edge 

nodes effectively utilize NOMA to perform 

offloading in the validation workload presented in the 

ES group form l={1,2,…,Y} through multiple 

accesses MEC. The gain of channel power 

consumption (fi) is given for ES in Eq. (1).  

 

                         𝑓1 > 𝑓2 > ⋯ > 𝑓𝑦                   (1) 

 

The gain of channel power consumption from the 

edge node to ES is presented as y. In an upcoming 

equation, the transmit power of the task node to ES y 

is shown as Ty. The throughput Sy attained from the 

edge node to ES y is attained in Eq. (2) based on the 

Successive Interference Cancellation (SIC) principle. 

 

       𝑆𝑦 = 𝑣𝑙𝑜𝑔2 (1 +
𝑓𝑦𝑇𝑦

𝑓𝑦 ∑ 𝑇𝑧 +𝑉𝑚𝑜
𝑦−1
𝑧−1

 ) ∀ 𝑦 ∈ 𝑌    (2) 

 

Here, the channel bandwidth of the edge node is 

presented as v, and the background noise spectral 

power density is given as mo. The task offloading 

decision model design includes task analysis and 

joint optimization models. 

3.1 Task analysis model 

Each edge node N in the IIoT system runs a group 

of task denoted as Ɩ= {1, 2, 3…, L}. Each task 

generated in different time slot P= {1, 2,..., Pi}. The 

newly generated task QN(t) of edge node N at time 

slot t ∈ P is denoted as given in Eq. (3)  
 

         𝑄𝑁(𝑡) = (𝑇𝑠𝑖𝑧𝑒 , 𝑇𝑡𝑦𝑝𝑒 , 𝑇𝑑 , 𝐶, 𝜆)          (3) 

 

Here, Tsize denotes task data size, Ttype represents task 

type that is determined based on the task deadline Td, 

C denotes the computation demand of the newly 

generated task, λ denotes the task arrival rate.  
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Figure. 1 NOMA-enabled Industrial edge computing 

 

According to the application's tolerance for delays as 

determined by the task characteristics, the task is 

categorized as delay-constraint or delay-tolerant and 

resource sensitive. 

The task categorization depends on the task's 

parameters and the user device's load profile. A task 

is categorized as delay-constraint if it requires 

immediate and precise results. The task is classified 

as delay-tolerant if not.  

3.2 Joint optimization model 

This model determines the target edge server for 

offloading tasks. Considering the local resource 

constraint, we use partial local execution in our work. 

We focus on the optimal execution of delay-

constraint and computation-intensive tasks at edge 

servers. We formulate joint optimization of 

computation, communication, and cache resource in 

edge computing. The goal is to minimize delay, 

energy consumption and maximize resource 

utilization. This joint optimization problem results in 

improved quality of experience (QoE) as a whole. 

Task nodes use bandwidth and cause 

transmission delays when they offload tasks to ES. 

Tasks in time slot t and bandwidth used during 

offloading must be less than the maximum bandwidth 

available to maintain a high transmission rate. In 

conclusion, the system's overall model trades off time 

delay and energy consumption during task computing 

to create a cost reduction problem. The solution aims 

to reduce the overall cost of the tasks produced by the 

system over time.   

In the edge computation scenario, the task node 

sends the task across the shared wireless channel for 

ES to process. It incurs transmission delay and energy 

consumption depending on task size as specified in 

the communication cost. After receiving the 

computation tasks, the ES assigns a computing 

resource to each job. We refer to ri, r, and R, 

respectively, as the computing resource that will be 

used to accomplish offloaded tasks, the computation 

resource allocation vector, and the total computation 

resource of the ES. As a result, the ES task calculation 

latency and power consumption are handled. We 

disregard the time and energy used by the ES in 

returning the calculation result to the task node in our 

model. The offloaded task at the edge server caches 

data from the cache storage.  

4. Adaptive task offloading decision model 

The proposed model is a hybrid of DRL and 

LSTM that has been heuristically adjusted. An H-

LSTM network is introduced as the first layer to 

precisely capture the long-term historical 

relationships in the data. Our approach employs two 

layers of neural networks DRL and H-LSTM. The 

first H-LSTM network is used for task and load 

prediction at each time point t, and its outputs are all 

the ESs' anticipated states determined by historical 

data. An agent of DQN finds optimal action using the 

prediction result of H-LSTM.  An agent then 

allocates the task to the ES. Following that, the 

chosen ES carry out the policy and provide their 

information to an agent and their present true states, 

which will be recorded in the historical data for future 

predictions. Each ES completes its execution and 

records the cost and resource utilization for further 

use in terms of rewards to an agent. We continue this 

procedure throughout subsequent intervals until the 

process converges and all jobs are allocated with the 

lowest possible cost. The workflow of the proposed 

work is as follows: 1) proposing HCMDO for dataset 

preparation by initializing and optimizing parameters, 

2) developing H-LSTM for cost and load prediction, 

and 3) Deep reinforcement learning-based decision 

model. 

4.1 Proposed HCMDO 

A novel optimization approach named HCMDO 

is implemented for optimizing the decision user 

variable, decision server variable, decision 

communication and caching variable in the data 

augmentation phase, and bias, weights, hidden 

neuron count, and epochs count in LSTM to offer an 

effective prediction. Cat and mouse optimization  
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Algorithm 1: Developed HCMDO 
Initiate the population for cat mouse and dingo 

Assign the parameter of both approaches 

For entire solution 

Validate the fitness of an entire solution 

Update the random number A by the newly 

developed concept provided in Eq. (4) 
 If (𝐴 > 0.5) 
 Renew the solution using     DOA 

 Else 

 Renew the solution using  CMO 

 End if 

Find the optimal best  solution 
End for 

Return the best solution 

 

 

 
Figure. 2 Task and load prediction model 

 

 

 
Figure. 3 Task offloading decision model 

 

 

(CMO) is easy to implement and utilizes only a few 

variables to attain an effective outcome rate. Still, it 

mainly depends on the basic condition and consumes 

more time to implement. Therefore, the Dingo 

optimization algorithm (DOX) in the developed 

framework is needed, and this fused combination is 

termed HCMDO as presented in algorithm 1. DOX 

needs a minimum amount of mathematical effort and 

uses minimal validation time to attain a better optima 

value.  

In this developed HCMDO, the random number 

A  is updated based on a new concept conventionally 

used as the random parameter with the fixed range, 

presented in Eq. (4).  

 

                 𝐴 = (
𝑤𝑓−𝑏𝑓

𝑏𝑓
)                  (4) 

 

Here, the term wf denotes the worst fit and bf 

represents the best fit.  

4.3 Proposed H-LSTM prediction model 

The architectural view of the developed task and 

load prediction is presented in Fig. 2. Initially, 

network parameters are attained from MEC sever. 

The task-related parameters are initialized and 

offered as the input to the dataset augmentation phase. 

Here, parameters in offered data like decision user 

variable, decision communication variable, and 

decision server variable in computation offloading 

and data caching in decision variable are tuned with 

the help of developed HCMDO and attained the 

outcome as optimal task data. The optimal task data 

is considered as dataset 2. Moreover, the data taken 

from online sources is presented as dataset 1, and 

further, both dataset 1 and dataset 2 are used in 

training the LSTM-based prediction phase. In the 

training phase of LSTM, targets are fixed as the 

optimal task to the MEC server from dataset 1 and 

dataset 2. From dataset 1, the task class is fixed as the 

target; from dataset 2, cost and load of MEC server is 

fixed as the target. The parameter of LSTM, like bias, 

weight, epoch count, and hidden neuron count, are 

tuned with the help of developed HCMDO for 

maximizing the accuracy rate to attain an effective 

cost and load prediction rate. In the testing phase, 

heuristically modified LSTM predicts task and load 

based on historical data. 

4.4 Deep reinforcement decision model 

A Deep reinforcement learning-based decision 

model is designed by integrating H-LSTM for 

attaining an effective task offloading in NOMA 

enabled edge computing under IIoT system. The 

architectural view of the proposed decision model is 

presented in Fig. 3. 
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LSTM output is given to the deep reinforcement 

learning based decision model for obtaining optimal 

task offloading policy. An agent in DRL interacts 

with the environment in our case ES by choosing 

action. The optimal action is picked with the help of 

ES state prediction based on cost and load. We 

considered simulated decision variables, benchmark 

data as features in training LSTM, the transmission 

and computation cost are taken in to account while 

predicting ES’s state. The next task and its preference 

is predicted by H-LSTM based on the user history 

data. This justifies the reason for using two datasets 

for training LSTM in our proposed work. The 

prediction continues at every time point t until task 

queue of edge node becomes empty. An agent assigns 

task to optimally predicted ES for execution.  The 

decision model is validated through reward function 

considering execution cost, resource utilization and 

service delay.  

Deep reinforcement learning-based decision 

model describes a novel method for overcoming the 

problem of dynamically allocating the job and 

choosing optimal resource through efficient accuracy 

and convergence. Effective task allocation in IIoT 

increase productivity by ensuring effective decision-

making, system efficiency, minimizing resource 

wastage, and lowering costs. The environmental 

information of DRL is explained below. 

Agent: An agent is a software model runs in edge 

node. It is seen as a scheduler that chooses action in 

accordance with the state of the environment at the 

time and refines its decision-making by ongoing 

interaction with it. The agent's goal is to minimize 

overall system expenses by acting in the best way 

feasible in each circumstance. 

Observation: The observation is the feedback 

given from the environment back to the agent. It helps 

an agent to decide what can be done in its next action. 

Most of all, the agent does not have a memory. So, its 

decision based on the observation of the current state. 

At every initial time, agent observes the state of an 

environment. A state qϵQ offers the status 

information that is displayed in Eq. (5).  

 

         𝑄 = {𝑞 |𝑞 = (𝑅𝑐 , 𝑂, 𝐼𝛹 , 𝑏𝑙 , 𝑓𝑙, 𝑃𝑖)          (5) 

 

In this, Rc describes task, O denotes the 

observation, Iψ as the task information, bl as tasks in 

the backlog, front log portions of the job queue as fl, 

and Pi the prediction state information based on cost 

and load by H-LSTM. 

Action: The first of the action's two goals is to 

specify how jobs should be scheduled. On the other 

hand, combining multiple functions into a single 

action might produce a large action space, making the 

problem excessively challenging. As a result, an 

innovative mechanism to reduce the action space is 

being created. The decision epoch and the actual 

timestamp are first distinguished. Each timestamp 

contains a number of decision epochs for carrying out 

actions. For every timestamp, the number of 

computing resources required is modified, and time 

is frozen to plan out each task in the backlog. An 

agent assigns every task to optimal predicted ES for 

execution through defined action space. Considering 

the state information, an agent in RL initially 

determines the task computation demand and 

deadline of the newly arrived task to decide whether 

task has to be executed locally or offload to ES. This 

decision denoted as offloading decision (Od). Then, it 

chooses optimal ES called task allocation decision 

(Es) based on predicted cost and load, finally it 

chooses NOMA transmission (Nt), as given in Eq. (6) 

as action 

 

           𝐵 = {𝑏|𝑏 = (𝛰𝑑 , 𝛦𝑠 , 𝛮𝑡)}                    (6) 

 

Reward function: the reward from an 

environment is a significant factor in validating 

developed framework. The policy network is updated 

such that an optimal choice made in the next time slot 

when the agent observes the state at time slot t, makes 

an action in accordance with the policy, and then 

receives a reward at time slot t+1. Each agent seeks 

to maximise its long-term discounted reward by 

enhancing the mapping from states to actions, which 

encourages the agent to consistently choose the best 

course of action in its ongoing interactions with the 

environment. Here reward function is defined as state 

and action at time t and reward R for the pair (qt , bt ) 

 given as below. 

 

                  𝑅 = ∑ 𝛾𝑡𝑟𝑡                                𝑇
𝑡=0  (7) 

 

Here γt represents discount rate and rt denotes 

reward at time t. The objective function of the system 

model is achieved on the basis of reward function 

design.  In common reward function   defined in a 

way to minimize overall cost of processing delay and 

energy consumption by selecting the best offloading 

options. In our work, strict deadline is followed as we 

considered time critical IIoT task. Regardless of local 

or edge execution, energy consumption and delay 

defined as key attributes in reward function design. 

Finally, the offloading result (success/failure) is 

considered to evaluate the reliability of selected ES. 

We employ negative incentives in order to adhere to 

the goal of the paper's model. The DRL can receive  
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Algorithm 2: Developed reinforcement learning-based 

decision model 

Input: task requests (TR) 

Result: optimal task offloading policy 

Initialize network Q with random weight wi 

Initialize replay memory D to the capacity C 

for episode = 1 to R do 

 receive initial state observation q 

 for t = 1 to N do 

  explore an action bt with probability 1-

epsilon based on HCMDO-LSTM prediction 

  Or else exploit action bt 

=argmaxQ(qt,bt,weight) 

  run action bt 

  get reward rt for chosen action bt and next 

State qt+1 

  cache (qt, bt, rt, qt+1) into D 

  Chose samples from D randomly 

  Update the weights of DNN for loss 

minimization through stochastic gradient 

descent  

  Policy update π(qt) after every steps 

 end for 

end for 

 

the highest reward while the system objective 

function is at the lowest possible level.  

Policy: a policy (π) is mapping function that an 

agent uses to select action b at state q as π: q→b. The 

policy map gives probability (Pr) as given in Eq. (8). 

 

    𝜋(𝑞, 𝑏) = 𝑃𝑟 (𝑞𝑡 = 𝑞, 𝑏𝑡 = 𝑏)            (8) 
 
The developed deep reinforcement learning-

based decision model combines DQN and LSTM 

network to solve exploration and exploitation 

problem. The exploration phase selects actions based 

on predicted probability of LSTM network. In 

exploitation phase, actions are selected based on the 

derived policy. The trade-off between exploration 

and exploitation can be handled using LSTM network 

integrated in DQN as given in Algorithm 2. 

In this paper, we evaluated the performance of 

proposed DRL-HLSTM by comparing four variants 

of similar learning methods such as RL [21], DRL-

LSTM [22], DQN [23] and DDQN [24].  

Reinforcement learning: Initially, we build basic 

RL using Q-learning algorithm. RL agent learns to 

act and adopts changes in an environment.  With an 

objective of deriving optimal offloading policy, Q-

learning takes decision and receives reward from an 

environment. It validates decision by reward analysis 

to update policy, which maximize the reward in 

future. RL agent develops policy π by learning state 

action pair at time t. immediate reward for action at 

time t is r. In our work, we receives tasks from edge 

node and RL agent map it to ES. The goal of the RL 

agent is to discover an offloading policy that 

minimises the cumulative reward value (i.e., cost) for 

all the considered ES and tasks. Each state and action 

pair is stored in Q-table. Nevertheless, when state and 

action space is large it is difficult to store and process 

(state, action) pairs in Q-table. Q-learning took more 

time to converge and sometimes not converges at all. 

It takes RL approach lower in all evaluation metrics. 

Deep reinforcement learning: DRL combines RL 

and deep learning algorithm to maximize the total 

discounted reward. We use Deep quality network 

(DQN) as DRL, which optimize policy π* by 

maximize the future reward in the long run, rather 

than the immediate next reward. Unlike RL, DQN 

estimate Q-value instead of computing Q-value for 

each state-action pair (q,b). It is essential for 

modelling large-scale scheduling scenarios with a 

large number of actions-state pairings. In our training 

procedure, the DRL agent selects a random 

scheduling action (i.e., assigning tasks to ES) with a 

high probability in order to investigate the influence 

of unknown scheduling alternatives and develop a 

more effective strategy. Using the Bellman equation, 

the agent increases the probability of selecting the 

action with the highest Q-value during training in 

order to minimise the expected cumulative reward 

(execution cost). Technically, the agent schedules 

one or more pending tasks at each time instant t based 

on the conditions specified. The optimal Q-value 

function indicates that, at time t, each policy chooses 

a valid ES to execute each task in order to minimise 

the total execution cost. We obtain the actual Q-value 

of action b by using the state q as input to the online 

network and q as input to the target network in order 

to determine the minimum Q-value of all actions in 

the target network.  

DDQN: Double DQN is proposed to address the 

issue of overestimation. DQN takes the maximum 

value with max each time, and the difference between 

this maximum value and the weighted average value 

introduces an error, which leads to overestimation 

after a lengthy period of time accumulation. The 

Double DQN consists of two networks, A and B, and 

utilises these two networks to sequentially process 

the state evaluation and action output. Thus, one 

network is used to select the action, and the other 

network is used to alter the Q value based on the 

action selected.  

DRL-LSTM: In this LSTM is integrated with 

DQN for model stability and fast convergence.  

However, the performance of classifier is highly  
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Table 1 Simulation parameter for training LSTM 

Parameter Range Description Unit 

C 4-10 MEC count - 

K 100-400 number of 

task nodes 

- 

da 12777 mobile 

network 

operator 

- 

r 1000 cluster - 

PK 27 transmission 

power 

watts 

BM [25,32] channel 

bandwidth 

MHz 5 

Σ [50,20] transmission 

speed 

Mbps 

Ѵ 0.02-12 Transmission 

duration 

sec 

MME 100-300 computing 

memory 

TB 

MCPU [2,2.5] computation 

in CPU 

GHz 

Rhok 0.02-12 Processing 

time 

sec 

ZK [452.5,732.5] computational 

workload 

cycles/bit 

Td 0.02-12 task deadline Seconds 

Tsize [2,7] task size MB 

 

dependent on their hyper parameter values; therefore, 

it is essential to employ a method that ensures the 

optimal values. To address this problem, we propose 

heuristic hyper tuning approach through hybrid 

optimization algorithm termed HCMDO for LSTM. 

It has a faster convergence rate and can improve the 

prediction accuracy of the LSTM model effectively. 

Therefore, state prediction model is proposed based 

on HCMDO combined with long-short-term memory 

(LSTM) neural networks, for higher reliability. Due 

to the agent's initial random selection action, it takes 

longer to investigate and select the optimal result 

during training on the DRL task offloading decision 

model. In this paper, we propose predicting the cost 

and server burden based on the record history of the 

periphery server. Based on the results of the 

prediction, the optimal server is selected with a 

certain probability. This solution enables the agent to 

avoid selecting servers with high load and suggest 

low cost, thereby decreasing task processing latency 

and task abandoning rates. 

5. Results and discussion 

5.1 Experimental setup 

To validate the proposed algorithm, we did 

simulation in the Python platform. The proposed 

work experiment carried in three stages. Namely 

dataset selection and preparation, H-LSTM training 

and DRL integration with H-LSTM. In this proposed 

approach, two different datasets are utilized. In 

dataset 1, the resource and iot data are collected from 

Google cluster trace. The data such as time, 

constraints, priority, instance event type, cluster, 

sample rate, memory access per information, end 

time, average usage, random sample usage, collection 

name, collection logical name, and assigned memory, 

vertical scaling, and so on are utilized for the analysis.  

In dataset 2, the simulated dataset is utilized to 

perform effective resource prediction analysis. 

Initially, the data are offered as the input to the 

augmented data phase, and the variables like decision 

user variable, decision server variable, 

communication variables, and data transmission 

decision variable are optimized by developed 

HCMDO. Then, optimal predicted data are attained 

and further offered to the prediction phase. The 

dataset utilized different parameters for the analysis, 

which are discussed in Table 1. Thus, the attained 

data from the dataset are offered as the input to the 

training phase of the LSTM model.     

In existing studies, only google cluster dataset is 

considered for training, but it is insufficient to depict 

real scenarios. We initialized computation and 

communication parameters to improve prediction 

stability and accuracy to perform an effective 

offloading in an edge computing system. Those 

parameters are utilized as the input to the dataset 

augmentation phase. Optimal predicted task data are 

attained as the output. Further, they are offered as the 

input to train LSTM.  

We used the simulated and online dataset to train 

LSTM network. The extracted features are 

normalized according to the proposed model. We 

employ the HCMDO algorithm to tune hidden 

neurons and epoch count of LSTM. The proposed H-

LSTM prediction method undergone the following 

phases: data pre-processing, model training, and 

model prediction. In training LSTM, the error 

between output and real value is continuously 

reduced. The LSTM unit can store long-term 

information and is suitable for long-term training. 

The prediction outcomes of H-LSTM is given to the 

deep reinforcement learning-based decision model 

for obtaining optimal task offloading policy. 

Finally, we integrate DRL and H-LSTM. Due to 

the agent's initial random selection action, it takes 

longer to investigate and select the superior result 

during training on the DRL decision model. We 

propose in this paper to forecast cost and server 

traffic based on peripheral server record history data. 

Based on the results of the prognosis, the server is 
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selected with a certain probability as the optimal 

resource for the subsequent instant. This solution 

permits the agent to effectively avoid selecting 

servers with high load and cost, thereby decreasing 

task processing latency and energy consumption. In 

this paper, the performance of the proposed work is 

compared with existing LSTM-DRL, RL, DQN, 

DDQN. We also compare the performance of 

proposed H-LSTM prediction accuracy with LSTM 

As we use high number of training instances 

(simulated and benchmark) H-LSTM & DRL  able to 

make accurate predictions about the burden, cost and 

based on the prediction outcomes, the agent can make 

optimal use of the most thoroughly investigated 

strategy. By utilizing H-LSTM, we achieve 

promising result on average latency, energy 

consumption, and number of input task, overall cost. 

Through the decision model, newly generated tasks 

assigns with the optimal ES. The LSTM prediction 

model predicts the optimal server for each task in 

advance based on historical data and then feeds that 

prediction into the decision model to propose an 

offloading scheme. In the experiments, we used 400 

nodes and 10 ES as maximum. In each iteration, task 

and ES are randomly selected between 100 to 400 and 

4 to 10 respectively. 

5.2 Performance comparison 

The prediction accuracy and error analysis of the 

proposed H-LSTM is given in Table 2. The proposed 

H-LSTM is superior in terms both accuracy and error 

than the traditional LSTM. The training and testing 

accuracy of the proposed H-LSTM is depicted in fig. 

4. 

The Performance analysis of the developed 

adaptive task offloading decision model shows 

higher outcomes in terms of cost function, average 

latency, energy consumption, and number of input 

task as presented in Figs. 5-8. Average energy 

consumption analysis performed in the developed 

model attained 19.8%, 15.1%, 16.9%, and 15.6% 

better than conventional approaches like RL, LSTM-

DRL, DQN, and Double-DQN respectively. Thus, 

the analysis in the suggested model achieved a better 

performance rate than the traditional approaches and 

offered a better task allocation rate in an industrial 

edge computing system.  

6. Conclusion  

In order to effectively handle different IIoT 

application requirement, heuristically modified 

LSTM based deep reinforcement approach was 

developed for task offloading in industrial edge  

 

Table 2. Prediction and error analysis 

No. of 

Nodes 

Accuracy Mean absolute 

percentage error 

H-LSTM LSTM H-LSTM LSTM 

100 89.2 84.3 15.3652 19.3159 

200 92.1 88.4 9.2985 15.3648 

300 93.2 90.3 7.2468 11.6548 

400 95.4 91.2 3.7892 8.3654 

 

 
Figure. 4 Training and validation accuracy of H-LSTM 

 

 
Figure. 5 Cost function 

 
Figure. 6 Average delay 

 

computing systems. Data were initially provided to 

the dataset augmentation step. Here, the many data-

presented factors are adjusted with the aid of a 

designed HCMDO to achieve ideally allocated jobs. 

Additionally, the obtained data and the dataset's data 

are provided to the LSTM prediction phase, which 

resulted in the identification of the best resource.  
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Figure. 7 Average energy consumption 

 

 
Figure. 8 The maximum number of task input 

 

Here, the created HCMDO used to fine-tune the 

LSTM's parameters in order to enhance accuracy. 

The adaptive task offloading decision model based on 

deep reinforcement learning make use of the 

projected output for the task allocation. Comparing 

the recommended model to existing methods like RL, 

LSTM-DRL, DQN, and Double-DQN, the results are 

19.8%, 15.1%, 16.9%, and 15.6% better. As a result, 

the suggested model's analysis outperformed more 

than traditional approaches in terms of performance 

and provided a superior result for systems utilizing 

industrial edge computing. Future study will take into 

account a variety of industrial IoT application 

scenarios in an effort to improve the performance of 

the suggested algorithm. 
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