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Abstract: Cloud computing benchmarks the dream of rendering computing as a utility, providing high agility and 

reachability from an existing set of technologies. It facilitates a wider dimension to architect and manage remote 

resources. Cloud technology with exponential growth is drilling towards issues that tend to lower its explored 

possibilities. As cloud systems by virtue deal with various virtualized resources, scheduling is opted as an important 

metric for measuring and leveraging performance. But scheduling efficiency is deteriorated by various parameters that 

pave scope for our research and projects immense need for improvising the overall makespan of the system. The 

proposed work aims at projecting a greater drift in the first phase by witnessing a sequence of phases like pre-

processing the user tasks for improved accuracy, classifying the tasks with respect to resource demand and execution 

time using the improved density based clustering method (IDCM). The second phase deals with enhanced coot 

optimization algorithm for task scheduling (ECOA-TS) that proceeds and proves its novelty by adopting Cauchy 

mutation overcoming the convergence backdrop for generating an optimal mapping between clustered user tasks and 

VMs. The overall performance of the proposed work overrides by reduced makespan against existing state-of-the-art 

optimization algorithms like particle swam optimization (PSO), grey wolf optimization (GWO) and whale 

optimization algorithm (WOA) by 27.41%, 19.8%, and 15.33% respectively.  
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1. Introduction 

Developments in the economic standards of 

present societies have given birth to an era of big data. 

Voluminous data generated from the internet 

broadens the scope for evolving technologies among 

which cloud computing ranks to be the voted one. 

Cloud computing facilitates appropriate, on-demand 

access to network scaling customized pool of 

functional resources through a virtualization 

mechanism [1]. Resource sharing with underlying 

virtualization aids in attaining coherence and 

economic feasibility. 

Cloud computing renders several advantages at 

the risk of many challenging issues like security, cost 

management, multi-cloud disparities, and 

interoperability performance issues [2, 3]. Practically, 

digging deep into the performance issue of the cloud 

environment, scheduling tasks optimally, and 

efficient allotment of resources are the major hurdles. 

Hence this area of cloud computing is driving the 

attention of researchers and throwing challenges to 

practitioners. 

Task scheduling is a process of ordering the user 

tasks for efficient utilization of cloud resources in a 

fashion that leverages the overall performance [4]. 

Eventually, user applications in the cloud 

environment are submitted over the internet media 

online and these applications divided as tasks with 

various uncertain characteristics that outworths 

researchers to get deep into the challenges posed by 

dynamically changing task behaviour [5]. The 

uncertain nature of tasks is hindering the service 

provider to complete the tasks at a given time 

resulting in performance downfall. This owes to be a 

serious issue to service providers and thereby needs 
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an efficient task scheduling and resource allocation 

for improving QoS of the cloud system.  

As an attempt to aforementioned problems, many 

researchers came up with [6-8] bio-inspired 

optimization algorithms for efficient scheduling tasks 

and allocating resources. Few practitioners achieved 

enhancement by initially classifying tasks related to 

historical data and designing various types of VMs [9, 

10]. 

Major pitfalls are identified during the assignment 

phase of scheduling to various VMs, where in some 

cases larger tasks are assigned to less capable VMs 

and higher capacity VMs are left with smaller tasks. 

This leads to lowered performance where tasks failed 

to complete at specified deadlines. As a matter of fact, 

such imbalanced and improper assignment is handled 

in our proposed work by clustering and classifying 

the tasks and grouping the VMs into various classes 

for efficient scheduling. 

Our proposed approach encompasses of two 

phases, where the first phase performs clustering of 

tasks by classifying them as Low Processor- Memory 

Intensive group (LPMI), High Processor-Memory 

Intensive group (HPMI), Processor Intensive group 

(PI), and the Memory Intensive group (MI).The 

respective categories of tasks are pipelined into the 

task queue for assigning them to proper VMs using 

proposed enhanced coot optimization algorithm, 

(ECOA-TS) which aids in optimal task scheduling 

and resource allocation with lowered makespan and 

improved resource utilization. 

The contributions of the profound work can be 

phased as below. 

 

• The proposed work defines a framework for 

classifying the pre-processed user tasks using an 

improved density based clustering method based 

on task prerequisites enhancing the quality of 

classification results.  

• An enhanced coot optimization algorithm 

proposed for efficient scheduling of user tasks 

facilitating optimal mapping to respective virtual 

machines. 

• The proposed model results compared against 

existing state-of-art optimization algorithms in a 

simulated environment using cloudsim. 

 

The flow of the paper progresses initially by 

introducing the concepts and issues concerned with 

cloud computing and its challenging factors in 

section 1. Section 2 narrates the intense literature 

survey undergone and their respective analysis and 

discussions of researchers' contributions. Section 3 

gives system model and problem description. Section 

4 describes the contributed work, its architecture, and 

the system flow of contributed methodology. Section 

5 summarizes the outcome of our proposed 

methodology in comparison with existing algorithms 

and is depicted using a graphical representation. The 

conclusion of the work is addressed in Section 6, 

which images future directions and enhancements 

achievable. 

2. Related work 

Several researchers have contributed 

innumerable solutions addressing issues of 

scheduling and resource allocation. 

S.kanwal et.al [11] explored genetic algorithm 

based intelligent scheduling approach with added 

fault tolerant features for enhanced task scheduling. 

The proposed method passes through four stages 

namely task phase then local phase succeeded by 

global phase and final phase dealing with fault 

tolerance. The approach overtakes the basic genetic 

algorithm and adaptive models in metrics like 

execution time, memory usage and overall cost. 

Praveen s. et.al [12] contributed a hybrid 

algorithm that combines the features of basic genetic 

algorithm and the gravitational emulation local 

search for overriding the pitfalls of legacy models 

like PSO & GA in terms of performance related to 

execution time. The proposed model mainly focusses 

on the issues related to the size of the search space 

and search strategies for finding optimal solution. 

Seema A. Alsaidy et.al [13] contributed an 

improved version of PSO Algorithm termed LJFP-

PSO (Longest job to fastest processor) and 

MCT_PSO (minimum completion time) an 

metaheuristic algorithms with improved initialization 

parameters. The Algorithm tends to refine the 

initialization factors of basic PSO and schedule 

longest task to fastest processor, resulting in reduced 

makespan, execution time, degree of imbalance and 

energy consumption. 

Poria Pirozmand et.al [14] proposed an improved 

PSO for efficient task scheduling using a multi 

adaptive learning strategy by defining particles as 

ordinary and local best for particle swam 

optimization. The approach ascertains reduced 

varieties of population thereby promising increased 

likelihood of reaching the local optima, resulting in 

enhanced performance with respect to evaluation 

metrices like makespan, load balancing, effectiveness 

and stability when tested against other approaches. 

Said Nabi et.al [15] contributed an adaptive PSO 

based task scheduling for lowered task execution 

time and improved throughput. The proposed method 

introduces linearly descending and adaptive inertial 
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weight strategy that aids in providing a balance of 

local and global search for optimal scheduling of 

tasks. 

Mohammad zadeh et.al [16] presented an 

improved chaotic binary grey wolf optimization 

(IGWO) algorithm, that aimed at minimizing 

execution cost and makespan time when compared 

with existing approaches. The proposed approach 

targeted on leveraging the convergence speed and 

avoiding the algorithm from falling into local 

optimum, using the cha’s theory and hill climbing 

techniques that rendered improved performance. 

Hongji Liu et.al [17] proposed an adaptive ant 

colony optimization algorithm for task scheduling in 

cloud environment. The work shows improvement in 

terms of adaptive updating of pheromone values for 

improving the convergence speed of contributed 

algorithm, resulting in improved execution time, cost 

and improved load balancing compared with 

traditional ACO algorithm. 

Zade et.al [18] contributed a two-phase algorithm 

which resulted in improved performance with first 

phase dealing with meta scheduling that assigns the 

tasks to host machine and in the second phase the 

scheduling is rein enforced using parallel 

reinforcement learning caledonian crow for optimal 

local scheduling to present optimal mapping of tasks 

and VMs. 

Sudheer Mangalampalli et.al [19] proposed an 

optimal scheduler which targets reduced energy 

consumption and power costs at datacenters by 

considering the priorities of tasks and VM’s. The 

optimizer uses an improved whale optimization that 

prioritizes energy parameters pertaining to multi-

objective fitness function for scheduling the 

appropriate tasks to relative VM’s thereby improving 

the quality metric of reduced power consumption and 

makespan again existing approaches. 

Lewei Jia et.al [20] proposed an improved whale 

optimization algorithm for efficient scheduling, cost 

reduction and resource utilization. The author’s work 

initially performs task scheduling and designs a 

distributed model, successively generating an 

optimal and feasible plan for each individual whale 

by considering inertial weight strategy. This aids in 

improving local weight ability and avoids early 

convergence. 

Jian Li et al. [21] proposed an improved FIFO 

scheduling algorithm which initially builds a task 

model and resource model. Further task preferences 

are considered for which resource clusters are 

assigned that are constructed based on fuzzy 

clustering. The author’s work success in bringing 

down the tasks waiting time and improves resource 

utilization.   

Jivrajani et.al. [22] contributed a scheduling 

approach by grouping similar jobs into batches using 

hierarchical clustering for executing them on 

clustered virtual machines with similar resource 

characteristics. The proposed method excels in 

improved makespan time, as it selects the best cluster 

of machines for executing the grouped tasks. The 

work focuses on reduced energy consumption.  

Junqing Li et.al [23] proposed a hybrid approach 

based artificial bee colony algorithm (ABC) for 

handling issues related to scheduling. The approach 

includes an enhanced perturbation structure for 

extended searching proficiency and improved 

selection and updating mechanism leveraging 

outcome. The work sheerly aids in minimizing the 

makespan time and holds to be robust enough with 

various problems. 

Sudheer M et.al [24] have contributed an efficient 

W-Scheduler that mainly relies on the SLA 

specifications of the task being considered. The work 

progresses by taking the task priorities and VM’s, 

relative to their SLA policies which is subjected to 

Whale Optimization for enhanced scheduling aiding 

in lowered make span and SLA Violations in 

comparison to other competitive approaches. 

As per the literature survey many metaheuristic 

algorithms reflected improved performance by 

scheduling user tasks to VMs in cloud environment 

but still left scope for improvements in aspects like 

efficient resource utilization and task requirements. 

Majority of earlier research contributions are looked 

upon for improvement pertaining to resource 

capability and user requirements.  

3. System model and problem description 

This section describes the design of the system 

and problem description for optimal task scheduling 

in the proposed approach.  

System model: Scheduling problems deal with the 

proper assignment, ordering, and managing of tasks 

in a timely fashion. In a cloud environment, 

heterogeneous tasks with heterogeneous resource 

requirements assemble for execution, which needs to 

be scheduled effectively for improved parameters 

like makespan time, execution cost etc. Cloud-based 

systems formulate scheduling issues as a methodical 

approach for mapping 'N' jobs on 'M' machines that 

ensures balanced task distribution on every machine 

resulting in reduced execution time. The ideal goal of 

the scheduling algorithm is improved task allotment 

across VMs and maintaining minimum variation 

among workloads of available VMs. 

Problem description: This section explores the 

mathematical characteristics pertaining to task 
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scheduling problem. Tasks owe to be the needs of the 

user to be accomplished by the computing devices. 

Assuming ‘N’ independent Tasks whose dimensions 

are characterized with parameters as follows: 

 

𝑇𝑎𝑠𝑘𝑖 =  

{
𝑇𝑎𝑠𝑘𝑖𝑑,𝑇𝑎𝑠𝑘𝑙𝑒𝑛,𝑇𝑎𝑠𝑘𝑝𝑒𝑠,𝑇𝑎𝑠𝑘𝑏𝑑𝑤𝑖𝑑𝑡ℎ,   
𝑇𝑎𝑠𝑘𝑠𝑡𝑜𝑟𝑎𝑔𝑒,𝑇𝑎𝑠𝑘𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒,𝑇𝑎𝑠𝑘𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑖𝑙𝑒

}    (1) 

 

Where i=1,2,..,N and for each ith task, 𝑇𝑎𝑠𝑘𝑖𝑑 the ID 

of the task, 𝑇𝑎𝑠𝑘𝑙𝑒𝑛, is million instructions per 

second(MIPS), 𝑇𝑎𝑠𝑘𝑝𝑒𝑠  is the processing unit (PE) 

of the task, 𝑇𝑎𝑠𝑘𝑏𝑑𝑤𝑖𝑑𝑡ℎ is the bandwidth (unit is 

MB) of current network, 𝑇𝑎𝑠𝑘𝑠𝑡𝑜𝑟𝑎𝑔𝑒 to store the 

task (unit is MB), 𝑇𝑎𝑠𝑘𝑖𝑛𝑝𝑢𝑡, 𝑇𝑎𝑠𝑘𝑜𝑢𝑡𝑝𝑢𝑡  are size of 

input and output files respectively. In addition, 

consider ‘M’ virtual machines with variable 

performance aspects at the data centers and each 

virtual machine has the following properties defining 

its capabilities as below. 

 

𝑉𝑀𝑗 = {
𝑉𝑀𝑖𝑑,𝑉𝑀𝑝𝑒𝑠𝑛𝑢𝑚,𝑉𝑀𝑚𝑖𝑝𝑠,

𝑉𝑀𝑏𝑑𝑤𝑖𝑑𝑡ℎ,𝑉𝑀𝑠𝑖𝑧𝑒,
}                (2) 

 

Where j=1,2,..,M and 𝑉𝑀𝑖𝑑,is the ID of the resource, 

𝑉𝑀𝑝𝑒𝑠 is the quantities  of CPU, 𝑉𝑀𝑚𝑖𝑝𝑠 is million 

instructions per second (MIPS) of a CPU, 𝑉𝑀𝑏𝑑𝑤𝑖𝑑𝑡ℎ 

is the bandwidth and 𝑉𝑀𝑠𝑖𝑧𝑒 is the storage capacity 

of 𝑉𝑀𝑗. 

Therefore, the Expected computing time 

considered for Taski, i=1,2,..N requests on VMj, 

j=1,2,..M, number of virtual machines is given as 

ECT and Task scheduler engages in proper task 

scheduling decisions. Basically, the ECT of a Taski 

on VMj and makespan is given as below: 

 

 𝐸𝐶𝑇 =
𝑇𝑎𝑠𝑘𝑙𝑒𝑛

𝑉𝑀𝑚𝑖𝑝𝑠∗ 𝑉𝑀𝑝𝑒𝑠𝑛𝑢𝑚
    (3) 

 

 𝑀𝑆𝑇 = 𝑚𝑎𝑥 ∑ 𝐸𝐶𝑇𝑖𝑗
𝑁
𝑗=1    (4) 

 

Our approach promises to attain the objective 

function improving the overall performance with 

minimized makespan time (MST), herewith the 

objective function is given as follows: 

 

 𝑂𝑜𝑏𝑗_𝑓𝑢𝑛 =  min(𝑀𝑆𝑇)    (5) 

 

4. Methodology 

Our approach initiates with a pre-processing 

mechanism facilitating efficient and accurate results.  

 

 
Figure. 1 Flowchart of proposed method 

 

The processed data pertaining to user tasks are 

classified into groups of similar characteristics, 

followed by efficient mapping of task groups to 

relevant VM groups using an enhanced coot 

optimization algorithm (ECOA-TS). This algorithm 

accelerates for finding best solutions by improving 

the convergent evolution of the nearest optimal 

solutions using Cauchy mutation to prevent from 

entering local optimization and balance its 

exploration and development capabilities. Fig. 1 

describes the flow of proposed work. 

4.1 Dataset analysis 

The Google cluster traces [25] containing cell 

information of around 29 days, were made available 

by Google in May 2019, where each cell is made up 

of a collection of machines that use the same cluster 

management system. 

The proposed work considers job-id, task-id, 

status, plan-CPU, plan-memory, real-CPU, real-

memory, average-CPU, average- memory, start and 

finish timestamps of tasks. The jobs with finished 

status are considered for analysis purposes. As 

memory and CPU are key factors in determining 

resource usage, this study takes into account the 

average CPU in core, normalized average memory, 

and job execution time in seconds. 
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Algorithm 1: Data cleansing and normalization 

Input: N as the input 

Output: Cleaned and Normalized data  

1:  Initialize k=0 

2:  While k<=Sizeof (N), 

3:  If nan (Nk), then use the function nan to 

verify the vector items. 

4:  Approximate (Nk) 

\* Calculate the average of the 

neighboring points to estimate the missed 

value. * / 

5:  End if 

6:  FindMaxMaxk (Nk) 

7:  Dk Normalize (Nk, Maxk)  

8:  End While. 

 

 
Algorithm 2: Improved density based clustering 

method to classify the tasks 

Input: Google Cluster Traces. 

Output: Clustered Tasks. 

• Compute local density and distance levels 

of sample data and arrange them in 

descending sequence. 

• Consider the x sample bearing the largest 

density value satisfying neighbourhood 

distance with min_pts criteria, and 

compute ∅𝑎𝑣𝑔. 

• Finally, the values with ∅𝑖 > ∅𝑎𝑣𝑔  are 

designated as cluster centers that aid in 

the formation of the decision graph. 

•  Execute the Fuzzy C Means for Task 

Clustering. 

• Let D ={d1,d2,d3…dn} be the set of data 

points and  C={c1,c2,c3…..Cc}  the 

cluster centres selected randomly. 

•  Membership functions are computed using     

Eq. (8), Fuzzy centres computed by using 

Eq. (9). 

• Iterate above two steps until the minimal 

value of objective function in Eq. (7) is 

attained. 

4.2 Pre-processing 

Data collected is subjected to data cleaning, and 

filtering activities aiding in accurate results. The 

tuples with null values are removed in the first phase.  

In the second stage, only tasks with a finished state 

are filtered for this work. The third phase involves 

choosing attributes for CPU, RAM, and execution 

time whose values are finally normalized before 

being used in the clustering method. 

4.3 Phase I: Task classification by improved 

density based clustering method 

Clustering ascertains the number of classes and 

the respective membership points of each class, 

generating clustered labelled data. Fuzzy enhances 

the clustering approach in our work by depicting the 

possibility of assigning data points to more than one 

cluster by calculating the membership function 

belonging to available classes. 

Improved density based clustering method 

overcomes the sensitivity to initial clusters that keep 

updating until optimal clustering, which adds to 

initially fix the number of cluster centers for reducing 

the number of iterations, and to form initial clusters 

for improved convergence. The density peek (DP) 

algorithm ascertains improvement by initially 

locating each cluster centres with parameters ∅𝑖 and 

𝛿𝑖 of the considered data set. 

 

∅𝑖 = 𝛼𝑖𝛿𝑖     (5) 

 

Compute the value of i for each data point through an 

iterative sampling of data points. Initial z points are 

retrieved by arranging the distances in descending 

order. The average density distance is formulated as: 

 

 
1

𝑥
 ∑ ∅𝑖

𝑥
𝑖=1                                               (6) 

 

The higher the density distance values, the higher the 

probability of being the cluster centre i.e., the chance 

of maximum value aids in dictating the cluster centre. 

Thus, this cluster centre is picked as input to the 

second phase. 

Consider the dataset D = {D1, D2, D3…Dn}, 

where Dn is a set of n samples tuple exhibits p 

features. These samples are used to generate C fuzzy 

groups. The FCM’s objective function is formulated 

as: 

 

 𝐽(𝐹, 𝑌) = ∑ ∑ 𝑓𝑖𝑗
𝑚  × 𝑑𝑖𝑠𝑖𝑗

2𝑛
𝑖=0

𝑠
𝑖=0            (7) 

 

where 𝑓𝑖𝑗  is an (n × s) membership matrix, and 

𝑑𝑖𝑠𝑖𝑗  is the Inverse Euclidean distance of the sample 

j and the cluster center i. 

The minimum objective function 𝐽(𝐹, 𝑌) of the 

respective FCM approach is derived by computing 

the F and Y values using the below formulation: 

 

f𝑖𝑗 =
1

∑
𝑑𝑖𝑠𝑖𝑗

1
𝑚−2

𝑑𝑖𝑠𝑘𝑗

s
k=1

   (8) 
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Figure. 2 Architecture of proposed work 

 

 Yi =
∑ (f𝑖𝑗)

𝑚
𝑥𝑖

𝑛
𝑎=1

∑ (f𝑖𝑗)
𝑚𝑛

𝑎=1

                                   (9) 

 

The Novelty is ascertained in aspect that the 

density peak ensures efficient clustering by tunning 

parameters like neighbourhood radius and min-

points criteria. In addition, Fuzzy c means clustering 

pertaining to inverse Euclidean distance promises 

lowered sum of squared error (SSE). The resultant 

clusters are categorized into four buffer groups 

pertain to the low processor- memory intensive 

group (LPMI), high processor-memory intensive 

group (HPMI), processor intensive group (PI), and 

the memory intensive group (MI). The LPMI queues 

define tasks that have low memory and CPU needs. 

Tasks with heavy needs are placed in the HPMI 

queue, and higher CPU requirements and higher 

Memory requirements are pipelined to PI and MI 

queues respectively. 

The VMs are divided into four major classes 

class-1, class-2, class-3, and class-4 as per the task 

resource requirement. The scheduling performance 

is herewith enhanced by mapping appropriate tasks 

from each task buffer queue to their optimal VM 

type by using an enhanced coot optimization 

algorithm. The following Fig. 2 describes the 

architecture of the proposed work. 

4.4 Phase II: Enhanced coot optimization 

algorithm for optimal task scheduling (ECOA-TS)  

Optimization algorithms aim at reducing the 

complexity and search space resulting in an improved 

and enhanced solution [26, 27]. They tend to evaluate 

the possible solutions against each other, that better 

fit into the objective function [28]. Our work focuses 

on improving makespan time inspired by Coot birds' 

natural behavior that overrides undesirable features 

and gives efficient results. 

Enhanced coot optimization algorithm: 

A Coot bird is characterized to be a small water 

bird [29] with variable movements and behavioural 

aspects that make it an optimal choice. Our work 

relies on the behaviour of coots that tend to cover 

distances with several directions of motion. The 

major movements imaging its behaviour are Random 

motion to this and that direction, a chain movement, 

adjusting position in accordance with the group 

leaders and leader movement. 

Eq. (10) aids in randomly generating coot 

population by considering a small sample area. 

 

CPos(𝑖) = 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚) × (𝑢𝑏𝑑 − 𝑙𝑏𝑑) + 𝑙𝑏𝑑  (10) 
 

Where CPos (𝑖)  is the coot position, 𝑑𝑖𝑚  is the 

number of problem dimensions, 𝑙𝑏𝑑 , 𝑢𝑏𝑑  are the 

lower and upper limits of the search space that is 

defined below. 

 

𝑙𝑏𝑑 = [ 𝑙𝑏𝑑1 , 𝑙𝑏𝑑2 , 𝑙𝑏𝑑3 , … . , 𝑙𝑏𝑑𝑛]   
𝑢𝑏𝑑 = [ 𝑢𝑏𝑑1 , 𝑢𝑏𝑑2 , 𝑢𝑏𝑑3 , … . , 𝑢𝑏𝑑𝑛]      (11) 

 

Random movement to this and that direction: 

Various movements related to coot migration in 

exploring search space are considered. The 

movement of the coot bird will permit to avoid 

converging at the local optima or getting looped in 

the local optimal. Coot's updated position is 

computed in Eq. (13). 

 

Z =𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚) × (𝑢𝑏𝑑 − 𝑙𝑏𝑑) + 𝑙𝑏𝑑     (12) 

 

CPos(𝑖) = CPos(𝑖) + 𝐺 × 𝐾2 × (𝑍 −CPos(𝑖)) (13) 

 

In the above equation 𝐾2 denotes a random number 

generated using tent chaotic function accordingly and  

𝐺 is computed as below.  

 

𝐺 = 1 − 𝐼𝑡𝑒𝑟 × (
1

𝑀𝐼𝑡𝑒𝑟
)                            (14) 
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Where 𝐼𝑡𝑒𝑟  is the current iteration, 𝑀𝐼𝑡𝑒𝑟 is the 

maximum iteration. 

Tent map: Tent chaotic map is defined as a logistic 

map that visualizes certain chaotic effects. It is 

formulating as below. 

 

 𝑠𝑟+1 = {
2𝑠𝑟, 𝑠𝑟 < 0.5

2(1 − 𝑠𝑟), 𝑠𝑟 >= 0.5  
                 (15) 

 

Chain movement: The explored paths are connected 

to form a chain movement using the mean positions 

of both coots, which is formulated in Eq. (16) and is 

used to calculate the coot's new position, where 

CPos(𝑖 − 1) represents the second coot. 

 

CPos(𝑖) = 0.5 × ( CPos(𝑖 − 1) + CPos(𝑖))   (16) 

 

Adjusting position in accordance with the group 

leaders: 

Each coot updates its position by considering 

average position of Leaders and below Eq. (17) used 

to choose the Leader.  

 

𝐸 = 1 + (𝑖𝑀𝑂𝐷𝐿𝑐)                                   (17) 

 

Where 𝑖 represents the current coot index, 𝐿𝑐 , 𝐸 

represents the count and index of Leaders. 

Compute the position of next coot with respective 

selected Leader by using Eq. (18) 

 

𝐶𝑃𝑜𝑠(𝑖) = (𝐿𝑝𝑜𝑠(𝐸) + 2 × 𝐾1  

× 𝑐𝑜𝑠(2𝐾𝜋) × (𝐿𝑝𝑜𝑠(𝐸) −  𝐶𝑃𝑜𝑠(𝑖)    (18) 

 

𝐶𝑃𝑜𝑠(𝑖) is Coot current location,𝐿𝑝𝑜𝑠(𝐸)is chosen 

Leader position, 𝜋 =3.14, and 𝐾1 , 𝐾  are random 

values in interval [0,1], [-1,1] respectively. 

Leader movement: Leader positions are updated 

with the formula provided below by searching around 

optimal points and the selected leaders keep changing 

their location to move the group of followers toward 

the ideal region. 

 

 𝐿𝑝𝑜𝑠(𝑖) = 

{
 
 

 
 𝐻 ∗ 𝐾3 × 𝑐𝑜𝑠(2𝐾𝜋) × (𝐵𝑒𝑠𝑡𝑔 − 𝐿𝑝𝑜𝑠(𝑖))

+𝐵𝑒𝑠𝑡𝑔𝐾4 < 0.5

𝐻 ∗ 𝐾3 × 𝑐𝑜𝑠(2𝐾𝜋) × (𝐵𝑒𝑠𝑡𝑔 − 𝐿𝑝𝑜𝑠(𝑖))

−𝐵𝑒𝑠𝑡𝑔𝐾4 ≥ 0.5

   (19) 

 

Where 𝐵𝑒𝑠𝑡𝑔  is the optimal position attained, 𝐾3 

and 𝐾4 indicate random values between [0, 1], 𝐾, a 

random number ranging between [-1,1] intervals. 𝐻 

is formulated and computed as below. 

𝐻 = 2 − 𝐼𝑡𝑒𝑟 × (
1

𝑀𝐼𝑡𝑒𝑟
)                             (20) 

 

Cauchy mutation: 

It is designated as an optimization tool that utilizes 

the Cauchy distribution to introduce variations in 

actual positions thereby exploring local 

neighborhood. Its density function is given below: 

 

𝑓𝑡(𝑦) =
𝑡

𝜋(𝑡2+𝑦2)
, −∞ < 𝑦 < +∞         (21) 

 

where t > 0 is the scale factor, and the Cauchy 

distribution is formulated as follows: 

 

𝑓(𝑦) =
1

2
+

1

𝜋
arctan (

𝑦

𝑡
)                          (22) 

 

The Cauchy exhibits similarity with density function 

of Gaussian distribution entailing few notable 

differences. The Cauchy distribution manifests 

infinite variance promoting notable jumps for better 

transition among discrete environments, thereby 

avoiding the trap of local optima. 

The proposed work employes a Cauchy 

distribution with y value as 0 and t as 0.5 as it 

promises optimal outcomes around these dimensions. 

Our approach overrides the pitfalls of Coot algorithm 

pertaining to local sub-optimal convergence and 

lowered accuracy by exploring a novel search 

position resulting from Cauchy distribution function 

over two randomly selected coot positions. 

 

𝑂𝑝𝑡 = 𝐶𝑎𝑢𝑐ℎ𝑦 (𝑌𝑟𝑎𝑛𝑑,1
𝑁 − 𝑌𝑟𝑎𝑛𝑑,2

𝑁 )             (23) 

 

Hereby the Cauchy mutation utilizes Cauchy 

distribution through Eq. (23). 

𝑌𝑟𝑎𝑛𝑑,1
𝑁 and 𝑌𝑟𝑎𝑛𝑑,2

𝑁  represent randomly selected 

coot positions from the population. The cauchy 

variational operator 𝑂𝑝𝑡  encompasses the 

aforementioned components. 

5. Results and discussion 

Experimental setup and simulation 
The proposed algorithm is evaluated for 

efficiency using the CloudSim simulation tool that 

better depicts our approach providing accurate results. 

The simulator succeeds in   emulating the cloud 

environment components in an enhanced way, and 

also renders support to various well-versed 

scheduling strategies. Our work simulates cloud 

models based on a single data center, with 

infrastructure as service (IaaS). 
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Algorithm3: Enhanced coot optimization algorithm for 

task scheduling (ECOA-TS) 

Input: Randomly initialize coot population as set 

of Tasks and VMs. 

Output: Optimally mapped Tasks and VMs. 

 

• Initialize the coot population by Eq (10), 

parameters Pr=0.5, Lcnt (Number of 

Leaders),  Cootcount (Number of Coots). 

• Cootcount=Cootpop-Lcnt.  

• Compute the fitness values of coots and 

leaders,Identify the best coot or leader as 

global optimum (Bestg). 

•  While End criteria not satisfied 

                  Compute G, H by using Eq. (14)  

                   and Eq. (20)             

                  If rand<Pr 

                       K, K1, and K3 are randomly   

                       selected dimensions. 

                 Else If 

          K, K1 and K3 are a random 

number 

                End If 

• For x=1 to Cootcount 

                Calculate parameter E by Eq. (17). 

                If rand >0.5 

                      Update coot location by Eq. (18). 

                Else If rand <0.5~=1 

                      Update coot location by Eq. (16). 

                Else 

                      Update coot location by Eq. (13) 

                      In Eq. (13), random number K2  

                      is computed using the Tent map as  

                     per proposed model. 

                End If     

• Compute Coot Fitness using Eq. (5) 

               If Coot Fitness < Leader Fitness 

                    Swap (Coot, Leader). 

              End If  

             End For 

• For Leaders count 

                 If K4 < 0.5 

                     Update Leader position by Eq. 

(19.1) 

                 Else 

                     Update Leader position by Eq. 

(19.2) 

                 End If  

• If Leader Fitness< Bestg 

                Swap (leader, Bestg) and revise  

                 global optimum. 

              End If 

          End For 

• Perform Cauchy mutation for global 

search 

          Ht=Ht +1 

         End while. 

 
Table 1. Configuration of host in datacenter 

Host Parameters Value 

Processing element 

(PE) 
2-10 

Processing capacity 20000-35000 MIPS 

RAM capacity 8Gb,16GB and 32GB 

 
Table 2. Configuration of VMs 

VM Parameters Value 

Pes in each VM 1 

Processing capacity 500-4000 MIPS 

RAM capacity 512-4196 MB 

 

Table 3. Task parameters 

Task Parameters Value 

Length of Task 15000-900000MI 

Size of Task 60-3000KB 

 

The system configurations supporting the 

simulation are Intel core i5 CPU with 1.80 GHz 

processor, RAM 8 GB, Windows 64-bit, and 

Windows 10 operating system. The configuration 

parameters of simulated cloud data are shown below. 

5.1 Performance analysis 

The metric that provides efficient monitoring of 

cloud components is performance, that ought to be 

quantifiable and compatible with objectives for the 

scheduling       problem's performance. The ultimate goal 

of scheduling algorithms is to keep the makespan of 

the jobs to a minimum value for improved 

performance. Using varied numbers of VMs and jobs, 

three different experiments are carried out. The VM 

count is kept at values 20,30 and 50, with task count 

at intervals of 500. The resultant outcomes spotted 

with varied spikes in graphs for tasks and resources 

are depicted. Both the tasks and the resources in this 

situation display varied traits. 

For evaluation and comparison analysis, three 

existing approaches including particle swarm 

optimization (PSO), grey wolf optimization (GWO), 

and whale optimization algorithm (WOA), are  
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Figure. 3 No. of Tasks vs Makespan(sec) with 20 VMs 

 

 
Figure. 4 No. of Tasks vs Makespan(sec) with 30 VMs 

 

considered as peer methods for our work. The 

considered algorithms are individually executed over 

google clustered traces and its performance 

evaluations. In Fig. 3 ECOA-TS method has 

demonstrated a reduction MST (Makespan Time) for 

several counts of task ranges with 20 VMs. For 

instance, with 500 tasks, the ECOA-TS approach 

achieved a minimal MST of 598 but the PSO, GWO 

and WOA algorithms presented high values of MST 

of 780, 716, and 672 respectively. Continued with, 

1000 tasks, the ECOA-TS approach presented 

reduced MST of 1372 forasmuch the PSO, GWO, and 

WOA algorithms have computed larger values of 

MST of 1678, 1543, and 1498 respectively. In 

addition to the aforementioned, when given 2000 

tasks, the ECOA-TS algorithm produced a lower 

MST of 3346, but the PSO, GWO, and WOA 

techniques produced higher MSTs of 3820, 3690, and 

3575, respectively. 

Fig. 4 illustrates the performance comparison of 

proposed work over the existing approaches for 

several counts of task ranges with 30 VMs. For 

instance, with 500 tasks, the ECOA-TS approach 

 

 
Figure. 5 No. of Tasks vs Makespan(sec) with 50 VMs 

 

offered minimal MST of 463 but the PSO, GWO and 

WOA algorithms presented high values of MST of 

742, 635, and 570 respectively. The PSO, GWO, and 

WOA algorithms computed higher values of MST of 

1510, 1385 and 1234, respectively, whereas the 

ECOA-TS technique exhibited a lower MST of 1089 

after 1000 tasks. Apart from above, with 2000 tasks, 

the proposed algorithm rendered lowered MST of 

2769 where the PSO, GWO and WOA methods 

imaged higher MST of 3730, 3650, and 3455 

respectively. 

The results depicted in Fig. 5 proposed method 

has promised to offer reduced MST for several counts 

of task ranges with 50 VMs. For instance, with 500 

tasks, the proposed method offered minimal MST of 

438 but the PSO, GWO and WOA algorithms 

presented high values of MST of 640, 590, and 525 

respectively. Continued with, 1500 tasks, the ECOA-

TS approach presented reduced MST of 1043 sec 

forasmuch the PSO, GWO and WOA algorithms 

have computed larger values of MST of 1315, 1230 

and 1178 respectively. Apart from above, with 2000 

tasks, the ECOA-TS algorithm rendered lowered 

MST of 1644 where the PSO, GWO and WOA 

methods imaged higher MST of 1956,1825, and 1750 

respectively.  

Fitness analysis: The behavioral performance of 

our proposed algorithm is evaluated by plotting 

curves for fitness value against other comparison 

algorithms for a variable count of iterations. Fig. 6 

provide the fitness function evaluation of PSO, GWO, 

WOA and proposed method for variable 

permutations. The profound outputs shows that 

ECOA-TS method has occupied the optimal outcome 

with optimal fitness value in all iterations. By way of 

illusion, when 100 iterations, the ECOA-TS offered a 

reduced fitness value of 187.46 with PSO, GWO and 

WOA offering a fewer improvement in fitness value 

of 200.2,198.56,196.38. Consecutively, with 500 

iterations, the ECOA-TS approach reflected reduced 
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Figure. 6 Fitness function over iterations 

 

fitness value of 78.38 and the PSO, GWO, WOA 

attained higher value of 102.78,98.56, 95.84. 

Similarly, with 1000 iterations, the ECOA-TS 

approach attained minimum fitness value of 77.66 in 

contrast to PSO, GWO, WOA with fitness value of 

102.78,98.56, 95.84. 

In a nut shell our Enhanced coot optimization 

algorithm for task scheduling (ECOA-TS) succeeds 

in improving the performance by imaging the 

experimental results in comparison to mentioned 

approaches generating better makespan time for 

datasets considered. 

6. Conclusion 

Our work explores a meta-heuristic framework 

for task scheduling on cloud platforms that 

guarantees optimal results. The realistic dataset 

considered in our work pertains to Google cluster 

traces. The framework originates with pre-processed 

data pipelined into the classification process using the 

improved density clustering method (IDCM) 

algorithm where user tasks are categorized related to 

resource needs and execution time. The resultant 

outcome of cluster groups flows into queues 

designated as low processing memory intensive 

(LPMI), high processing memory intensive (HPMI), 

processor intensive (PI), and memory intensive (MI) 

tasks. The tasks moving out of the queue are assigned 

the appropriate VMs on the respective physical 

machines using proposed approach. Experimental 

outcomes of the proposed ECOA-TS framework 

delectably override the compared approaches by 

lowering average makespan time by 15.33%,19.8%, 

27.41%, over GWO, WOA and PSO algorithm 

respectively. The miniature of our work is 

materialized and simulated using CloudSim. Future 

Scope of the work can be accelerated by considering 

the dynamic nature of user tasks, where the tasks keep 

reshaping their resource needs either by leveraging 

their requirements or pulling down their needs 

dynamically.  
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