
Received: May 19, 2023. Revised: July 25, 2023. 501

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

Task Classification and Scheduling Using Enhanced Coot Optimization in Cloud

Computing

 Syed.Karimunnisa1* Yellamma Pachipala1

1Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation Vaddesvaram, AP, 522502, India

* Corresponding author’s Email: karimun1.syed@gmail.com, pachipala.yamuna@gmail.com.

Abstract: Cloud computing benchmarks the dream of rendering computing as a utility, providing high agility and

reachability from an existing set of technologies. It facilitates a wider dimension to architect and manage remote

resources. Cloud technology with exponential growth is drilling towards issues that tend to lower its explored

possibilities. As cloud systems by virtue deal with various virtualized resources, scheduling is opted as an important

metric for measuring and leveraging performance. But scheduling efficiency is deteriorated by various parameters that

pave scope for our research and projects immense need for improvising the overall makespan of the system. The

proposed work aims at projecting a greater drift in the first phase by witnessing a sequence of phases like pre-

processing the user tasks for improved accuracy, classifying the tasks with respect to resource demand and execution

time using the improved density based clustering method (IDCM). The second phase deals with enhanced coot

optimization algorithm for task scheduling (ECOA-TS) that proceeds and proves its novelty by adopting Cauchy

mutation overcoming the convergence backdrop for generating an optimal mapping between clustered user tasks and

VMs. The overall performance of the proposed work overrides by reduced makespan against existing state-of-the-art

optimization algorithms like particle swam optimization (PSO), grey wolf optimization (GWO) and whale

optimization algorithm (WOA) by 27.41%, 19.8%, and 15.33% respectively.

Keywords: Task scheduling, Virtual machines, Classification, Fuzzy clustering, Optimization, Quality of service.

1. Introduction

Developments in the economic standards of

present societies have given birth to an era of big data.

Voluminous data generated from the internet

broadens the scope for evolving technologies among

which cloud computing ranks to be the voted one.

Cloud computing facilitates appropriate, on-demand

access to network scaling customized pool of

functional resources through a virtualization

mechanism [1]. Resource sharing with underlying

virtualization aids in attaining coherence and

economic feasibility.

Cloud computing renders several advantages at

the risk of many challenging issues like security, cost

management, multi-cloud disparities, and

interoperability performance issues [2, 3]. Practically,

digging deep into the performance issue of the cloud

environment, scheduling tasks optimally, and

efficient allotment of resources are the major hurdles.

Hence this area of cloud computing is driving the

attention of researchers and throwing challenges to

practitioners.

Task scheduling is a process of ordering the user

tasks for efficient utilization of cloud resources in a

fashion that leverages the overall performance [4].

Eventually, user applications in the cloud

environment are submitted over the internet media

online and these applications divided as tasks with

various uncertain characteristics that outworths

researchers to get deep into the challenges posed by

dynamically changing task behaviour [5]. The

uncertain nature of tasks is hindering the service

provider to complete the tasks at a given time

resulting in performance downfall. This owes to be a

serious issue to service providers and thereby needs

mailto:karimun1.syed@gmail.com
mailto:pachipala.yamuna@gmail.com

Received: May 19, 2023. Revised: July 25, 2023. 502

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

an efficient task scheduling and resource allocation

for improving QoS of the cloud system.

As an attempt to aforementioned problems, many

researchers came up with [6-8] bio-inspired

optimization algorithms for efficient scheduling tasks

and allocating resources. Few practitioners achieved

enhancement by initially classifying tasks related to

historical data and designing various types of VMs [9,

10].

Major pitfalls are identified during the assignment

phase of scheduling to various VMs, where in some

cases larger tasks are assigned to less capable VMs

and higher capacity VMs are left with smaller tasks.

This leads to lowered performance where tasks failed

to complete at specified deadlines. As a matter of fact,

such imbalanced and improper assignment is handled

in our proposed work by clustering and classifying

the tasks and grouping the VMs into various classes

for efficient scheduling.

Our proposed approach encompasses of two

phases, where the first phase performs clustering of

tasks by classifying them as Low Processor- Memory

Intensive group (LPMI), High Processor-Memory

Intensive group (HPMI), Processor Intensive group

(PI), and the Memory Intensive group (MI).The

respective categories of tasks are pipelined into the

task queue for assigning them to proper VMs using

proposed enhanced coot optimization algorithm,

(ECOA-TS) which aids in optimal task scheduling

and resource allocation with lowered makespan and

improved resource utilization.

The contributions of the profound work can be

phased as below.

• The proposed work defines a framework for

classifying the pre-processed user tasks using an

improved density based clustering method based

on task prerequisites enhancing the quality of

classification results.

• An enhanced coot optimization algorithm

proposed for efficient scheduling of user tasks

facilitating optimal mapping to respective virtual

machines.

• The proposed model results compared against

existing state-of-art optimization algorithms in a

simulated environment using cloudsim.

The flow of the paper progresses initially by

introducing the concepts and issues concerned with

cloud computing and its challenging factors in

section 1. Section 2 narrates the intense literature

survey undergone and their respective analysis and

discussions of researchers' contributions. Section 3

gives system model and problem description. Section

4 describes the contributed work, its architecture, and

the system flow of contributed methodology. Section

5 summarizes the outcome of our proposed

methodology in comparison with existing algorithms

and is depicted using a graphical representation. The

conclusion of the work is addressed in Section 6,

which images future directions and enhancements

achievable.

2. Related work

Several researchers have contributed

innumerable solutions addressing issues of

scheduling and resource allocation.

S.kanwal et.al [11] explored genetic algorithm

based intelligent scheduling approach with added

fault tolerant features for enhanced task scheduling.

The proposed method passes through four stages

namely task phase then local phase succeeded by

global phase and final phase dealing with fault

tolerance. The approach overtakes the basic genetic

algorithm and adaptive models in metrics like

execution time, memory usage and overall cost.

Praveen s. et.al [12] contributed a hybrid

algorithm that combines the features of basic genetic

algorithm and the gravitational emulation local

search for overriding the pitfalls of legacy models

like PSO & GA in terms of performance related to

execution time. The proposed model mainly focusses

on the issues related to the size of the search space

and search strategies for finding optimal solution.

Seema A. Alsaidy et.al [13] contributed an

improved version of PSO Algorithm termed LJFP-

PSO (Longest job to fastest processor) and

MCT_PSO (minimum completion time) an

metaheuristic algorithms with improved initialization

parameters. The Algorithm tends to refine the

initialization factors of basic PSO and schedule

longest task to fastest processor, resulting in reduced

makespan, execution time, degree of imbalance and

energy consumption.

Poria Pirozmand et.al [14] proposed an improved

PSO for efficient task scheduling using a multi

adaptive learning strategy by defining particles as

ordinary and local best for particle swam

optimization. The approach ascertains reduced

varieties of population thereby promising increased

likelihood of reaching the local optima, resulting in

enhanced performance with respect to evaluation

metrices like makespan, load balancing, effectiveness

and stability when tested against other approaches.

Said Nabi et.al [15] contributed an adaptive PSO

based task scheduling for lowered task execution

time and improved throughput. The proposed method

introduces linearly descending and adaptive inertial

Received: May 19, 2023. Revised: July 25, 2023. 503

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

weight strategy that aids in providing a balance of

local and global search for optimal scheduling of

tasks.

Mohammad zadeh et.al [16] presented an

improved chaotic binary grey wolf optimization

(IGWO) algorithm, that aimed at minimizing

execution cost and makespan time when compared

with existing approaches. The proposed approach

targeted on leveraging the convergence speed and

avoiding the algorithm from falling into local

optimum, using the cha’s theory and hill climbing

techniques that rendered improved performance.

Hongji Liu et.al [17] proposed an adaptive ant

colony optimization algorithm for task scheduling in

cloud environment. The work shows improvement in

terms of adaptive updating of pheromone values for

improving the convergence speed of contributed

algorithm, resulting in improved execution time, cost

and improved load balancing compared with

traditional ACO algorithm.

Zade et.al [18] contributed a two-phase algorithm

which resulted in improved performance with first

phase dealing with meta scheduling that assigns the

tasks to host machine and in the second phase the

scheduling is rein enforced using parallel

reinforcement learning caledonian crow for optimal

local scheduling to present optimal mapping of tasks

and VMs.

Sudheer Mangalampalli et.al [19] proposed an

optimal scheduler which targets reduced energy

consumption and power costs at datacenters by

considering the priorities of tasks and VM’s. The

optimizer uses an improved whale optimization that

prioritizes energy parameters pertaining to multi-

objective fitness function for scheduling the

appropriate tasks to relative VM’s thereby improving

the quality metric of reduced power consumption and

makespan again existing approaches.

Lewei Jia et.al [20] proposed an improved whale

optimization algorithm for efficient scheduling, cost

reduction and resource utilization. The author’s work

initially performs task scheduling and designs a

distributed model, successively generating an

optimal and feasible plan for each individual whale

by considering inertial weight strategy. This aids in

improving local weight ability and avoids early

convergence.

Jian Li et al. [21] proposed an improved FIFO

scheduling algorithm which initially builds a task

model and resource model. Further task preferences

are considered for which resource clusters are

assigned that are constructed based on fuzzy

clustering. The author’s work success in bringing

down the tasks waiting time and improves resource

utilization.

Jivrajani et.al. [22] contributed a scheduling

approach by grouping similar jobs into batches using

hierarchical clustering for executing them on

clustered virtual machines with similar resource

characteristics. The proposed method excels in

improved makespan time, as it selects the best cluster

of machines for executing the grouped tasks. The

work focuses on reduced energy consumption.

Junqing Li et.al [23] proposed a hybrid approach

based artificial bee colony algorithm (ABC) for

handling issues related to scheduling. The approach

includes an enhanced perturbation structure for

extended searching proficiency and improved

selection and updating mechanism leveraging

outcome. The work sheerly aids in minimizing the

makespan time and holds to be robust enough with

various problems.

Sudheer M et.al [24] have contributed an efficient

W-Scheduler that mainly relies on the SLA

specifications of the task being considered. The work

progresses by taking the task priorities and VM’s,

relative to their SLA policies which is subjected to

Whale Optimization for enhanced scheduling aiding

in lowered make span and SLA Violations in

comparison to other competitive approaches.

As per the literature survey many metaheuristic

algorithms reflected improved performance by

scheduling user tasks to VMs in cloud environment

but still left scope for improvements in aspects like

efficient resource utilization and task requirements.

Majority of earlier research contributions are looked

upon for improvement pertaining to resource

capability and user requirements.

3. System model and problem description

This section describes the design of the system

and problem description for optimal task scheduling

in the proposed approach.

System model: Scheduling problems deal with the

proper assignment, ordering, and managing of tasks

in a timely fashion. In a cloud environment,

heterogeneous tasks with heterogeneous resource

requirements assemble for execution, which needs to

be scheduled effectively for improved parameters

like makespan time, execution cost etc. Cloud-based

systems formulate scheduling issues as a methodical

approach for mapping 'N' jobs on 'M' machines that

ensures balanced task distribution on every machine

resulting in reduced execution time. The ideal goal of

the scheduling algorithm is improved task allotment

across VMs and maintaining minimum variation

among workloads of available VMs.

Problem description: This section explores the

mathematical characteristics pertaining to task

https://www.researchgate.net/profile/Junqing-Li-4

Received: May 19, 2023. Revised: July 25, 2023. 504

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

scheduling problem. Tasks owe to be the needs of the

user to be accomplished by the computing devices.

Assuming ‘N’ independent Tasks whose dimensions

are characterized with parameters as follows:

𝑇𝑎𝑠𝑘𝑖 =

{
𝑇𝑎𝑠𝑘𝑖𝑑,𝑇𝑎𝑠𝑘𝑙𝑒𝑛,𝑇𝑎𝑠𝑘𝑝𝑒𝑠,𝑇𝑎𝑠𝑘𝑏𝑑𝑤𝑖𝑑𝑡ℎ,
𝑇𝑎𝑠𝑘𝑠𝑡𝑜𝑟𝑎𝑔𝑒,𝑇𝑎𝑠𝑘𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒,𝑇𝑎𝑠𝑘𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑖𝑙𝑒

} (1)

Where i=1,2,..,N and for each ith task, 𝑇𝑎𝑠𝑘𝑖𝑑 the ID

of the task, 𝑇𝑎𝑠𝑘𝑙𝑒𝑛, is million instructions per

second(MIPS), 𝑇𝑎𝑠𝑘𝑝𝑒𝑠 is the processing unit (PE)

of the task, 𝑇𝑎𝑠𝑘𝑏𝑑𝑤𝑖𝑑𝑡ℎ is the bandwidth (unit is

MB) of current network, 𝑇𝑎𝑠𝑘𝑠𝑡𝑜𝑟𝑎𝑔𝑒 to store the

task (unit is MB), 𝑇𝑎𝑠𝑘𝑖𝑛𝑝𝑢𝑡, 𝑇𝑎𝑠𝑘𝑜𝑢𝑡𝑝𝑢𝑡 are size of

input and output files respectively. In addition,

consider ‘M’ virtual machines with variable

performance aspects at the data centers and each

virtual machine has the following properties defining

its capabilities as below.

𝑉𝑀𝑗 = {
𝑉𝑀𝑖𝑑,𝑉𝑀𝑝𝑒𝑠𝑛𝑢𝑚,𝑉𝑀𝑚𝑖𝑝𝑠,

𝑉𝑀𝑏𝑑𝑤𝑖𝑑𝑡ℎ,𝑉𝑀𝑠𝑖𝑧𝑒,
} (2)

Where j=1,2,..,M and 𝑉𝑀𝑖𝑑,is the ID of the resource,

𝑉𝑀𝑝𝑒𝑠 is the quantities of CPU, 𝑉𝑀𝑚𝑖𝑝𝑠 is million

instructions per second (MIPS) of a CPU, 𝑉𝑀𝑏𝑑𝑤𝑖𝑑𝑡ℎ

is the bandwidth and 𝑉𝑀𝑠𝑖𝑧𝑒 is the storage capacity

of 𝑉𝑀𝑗.

Therefore, the Expected computing time

considered for Taski, i=1,2,..N requests on VMj,

j=1,2,..M, number of virtual machines is given as

ECT and Task scheduler engages in proper task

scheduling decisions. Basically, the ECT of a Taski

on VMj and makespan is given as below:

 𝐸𝐶𝑇 =
𝑇𝑎𝑠𝑘𝑙𝑒𝑛

𝑉𝑀𝑚𝑖𝑝𝑠∗ 𝑉𝑀𝑝𝑒𝑠𝑛𝑢𝑚
 (3)

 𝑀𝑆𝑇 = 𝑚𝑎𝑥 ∑ 𝐸𝐶𝑇𝑖𝑗
𝑁
𝑗=1 (4)

Our approach promises to attain the objective

function improving the overall performance with

minimized makespan time (MST), herewith the

objective function is given as follows:

 𝑂𝑜𝑏𝑗_𝑓𝑢𝑛 = min(𝑀𝑆𝑇) (5)

4. Methodology

Our approach initiates with a pre-processing

mechanism facilitating efficient and accurate results.

Figure. 1 Flowchart of proposed method

The processed data pertaining to user tasks are

classified into groups of similar characteristics,

followed by efficient mapping of task groups to

relevant VM groups using an enhanced coot

optimization algorithm (ECOA-TS). This algorithm

accelerates for finding best solutions by improving

the convergent evolution of the nearest optimal

solutions using Cauchy mutation to prevent from

entering local optimization and balance its

exploration and development capabilities. Fig. 1

describes the flow of proposed work.

4.1 Dataset analysis

The Google cluster traces [25] containing cell

information of around 29 days, were made available

by Google in May 2019, where each cell is made up

of a collection of machines that use the same cluster

management system.

The proposed work considers job-id, task-id,

status, plan-CPU, plan-memory, real-CPU, real-

memory, average-CPU, average- memory, start and

finish timestamps of tasks. The jobs with finished

status are considered for analysis purposes. As

memory and CPU are key factors in determining

resource usage, this study takes into account the

average CPU in core, normalized average memory,

and job execution time in seconds.

Received: May 19, 2023. Revised: July 25, 2023. 505

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

Algorithm 1: Data cleansing and normalization

Input: N as the input

Output: Cleaned and Normalized data

1: Initialize k=0

2: While k<=Sizeof (N),

3: If nan (Nk), then use the function nan to

verify the vector items.

4: Approximate (Nk)

* Calculate the average of the

neighboring points to estimate the missed

value. * /

5: End if

6: FindMaxMaxk (Nk)

7: Dk Normalize (Nk, Maxk)

8: End While.

Algorithm 2: Improved density based clustering

method to classify the tasks

Input: Google Cluster Traces.

Output: Clustered Tasks.

• Compute local density and distance levels

of sample data and arrange them in

descending sequence.

• Consider the x sample bearing the largest

density value satisfying neighbourhood

distance with min_pts criteria, and

compute ∅𝑎𝑣𝑔.

• Finally, the values with ∅𝑖 > ∅𝑎𝑣𝑔 are

designated as cluster centers that aid in

the formation of the decision graph.

• Execute the Fuzzy C Means for Task

Clustering.

• Let D ={d1,d2,d3…dn} be the set of data

points and C={c1,c2,c3…..Cc} the

cluster centres selected randomly.

• Membership functions are computed using

Eq. (8), Fuzzy centres computed by using

Eq. (9).

• Iterate above two steps until the minimal

value of objective function in Eq. (7) is

attained.

4.2 Pre-processing

Data collected is subjected to data cleaning, and

filtering activities aiding in accurate results. The

tuples with null values are removed in the first phase.

In the second stage, only tasks with a finished state

are filtered for this work. The third phase involves

choosing attributes for CPU, RAM, and execution

time whose values are finally normalized before

being used in the clustering method.

4.3 Phase I: Task classification by improved

density based clustering method

Clustering ascertains the number of classes and

the respective membership points of each class,

generating clustered labelled data. Fuzzy enhances

the clustering approach in our work by depicting the

possibility of assigning data points to more than one

cluster by calculating the membership function

belonging to available classes.

Improved density based clustering method

overcomes the sensitivity to initial clusters that keep

updating until optimal clustering, which adds to

initially fix the number of cluster centers for reducing

the number of iterations, and to form initial clusters

for improved convergence. The density peek (DP)

algorithm ascertains improvement by initially

locating each cluster centres with parameters ∅𝑖 and

𝛿𝑖 of the considered data set.

∅𝑖 = 𝛼𝑖𝛿𝑖 (5)

Compute the value of i for each data point through an

iterative sampling of data points. Initial z points are

retrieved by arranging the distances in descending

order. The average density distance is formulated as:

1

𝑥
 ∑ ∅𝑖

𝑥
𝑖=1 (6)

The higher the density distance values, the higher the

probability of being the cluster centre i.e., the chance

of maximum value aids in dictating the cluster centre.

Thus, this cluster centre is picked as input to the

second phase.

Consider the dataset D = {D1, D2, D3…Dn},

where Dn is a set of n samples tuple exhibits p

features. These samples are used to generate C fuzzy

groups. The FCM’s objective function is formulated

as:

 𝐽(𝐹, 𝑌) = ∑ ∑ 𝑓𝑖𝑗
𝑚 × 𝑑𝑖𝑠𝑖𝑗

2𝑛
𝑖=0

𝑠
𝑖=0 (7)

where 𝑓𝑖𝑗 is an (n × s) membership matrix, and

𝑑𝑖𝑠𝑖𝑗 is the Inverse Euclidean distance of the sample

j and the cluster center i.

The minimum objective function 𝐽(𝐹, 𝑌) of the

respective FCM approach is derived by computing

the F and Y values using the below formulation:

f𝑖𝑗 =
1

∑
𝑑𝑖𝑠𝑖𝑗

1
𝑚−2

𝑑𝑖𝑠𝑘𝑗

s
k=1

 (8)

Received: May 19, 2023. Revised: July 25, 2023. 506

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

Figure. 2 Architecture of proposed work

 Yi =
∑ (f𝑖𝑗)

𝑚
𝑥𝑖

𝑛
𝑎=1

∑ (f𝑖𝑗)
𝑚𝑛

𝑎=1

 (9)

The Novelty is ascertained in aspect that the

density peak ensures efficient clustering by tunning

parameters like neighbourhood radius and min-

points criteria. In addition, Fuzzy c means clustering

pertaining to inverse Euclidean distance promises

lowered sum of squared error (SSE). The resultant

clusters are categorized into four buffer groups

pertain to the low processor- memory intensive

group (LPMI), high processor-memory intensive

group (HPMI), processor intensive group (PI), and

the memory intensive group (MI). The LPMI queues

define tasks that have low memory and CPU needs.

Tasks with heavy needs are placed in the HPMI

queue, and higher CPU requirements and higher

Memory requirements are pipelined to PI and MI

queues respectively.

The VMs are divided into four major classes

class-1, class-2, class-3, and class-4 as per the task

resource requirement. The scheduling performance

is herewith enhanced by mapping appropriate tasks

from each task buffer queue to their optimal VM

type by using an enhanced coot optimization

algorithm. The following Fig. 2 describes the

architecture of the proposed work.

4.4 Phase II: Enhanced coot optimization

algorithm for optimal task scheduling (ECOA-TS)

Optimization algorithms aim at reducing the

complexity and search space resulting in an improved

and enhanced solution [26, 27]. They tend to evaluate

the possible solutions against each other, that better

fit into the objective function [28]. Our work focuses

on improving makespan time inspired by Coot birds'

natural behavior that overrides undesirable features

and gives efficient results.

Enhanced coot optimization algorithm:

A Coot bird is characterized to be a small water

bird [29] with variable movements and behavioural

aspects that make it an optimal choice. Our work

relies on the behaviour of coots that tend to cover

distances with several directions of motion. The

major movements imaging its behaviour are Random

motion to this and that direction, a chain movement,

adjusting position in accordance with the group

leaders and leader movement.

Eq. (10) aids in randomly generating coot

population by considering a small sample area.

CPos(𝑖) = 𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚) × (𝑢𝑏𝑑 − 𝑙𝑏𝑑) + 𝑙𝑏𝑑 (10)

Where CPos (𝑖) is the coot position, 𝑑𝑖𝑚 is the

number of problem dimensions, 𝑙𝑏𝑑 , 𝑢𝑏𝑑 are the

lower and upper limits of the search space that is

defined below.

𝑙𝑏𝑑 = [𝑙𝑏𝑑1 , 𝑙𝑏𝑑2 , 𝑙𝑏𝑑3 , … . , 𝑙𝑏𝑑𝑛]
𝑢𝑏𝑑 = [𝑢𝑏𝑑1 , 𝑢𝑏𝑑2 , 𝑢𝑏𝑑3 , … . , 𝑢𝑏𝑑𝑛] (11)

Random movement to this and that direction:

Various movements related to coot migration in

exploring search space are considered. The

movement of the coot bird will permit to avoid

converging at the local optima or getting looped in

the local optimal. Coot's updated position is

computed in Eq. (13).

Z =𝑟𝑎𝑛𝑑(1, 𝑑𝑖𝑚) × (𝑢𝑏𝑑 − 𝑙𝑏𝑑) + 𝑙𝑏𝑑 (12)

CPos(𝑖) = CPos(𝑖) + 𝐺 × 𝐾2 × (𝑍 −CPos(𝑖)) (13)

In the above equation 𝐾2 denotes a random number

generated using tent chaotic function accordingly and

𝐺 is computed as below.

𝐺 = 1 − 𝐼𝑡𝑒𝑟 × (
1

𝑀𝐼𝑡𝑒𝑟
) (14)

Received: May 19, 2023. Revised: July 25, 2023. 507

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

Where 𝐼𝑡𝑒𝑟 is the current iteration, 𝑀𝐼𝑡𝑒𝑟 is the

maximum iteration.

Tent map: Tent chaotic map is defined as a logistic

map that visualizes certain chaotic effects. It is

formulating as below.

 𝑠𝑟+1 = {
2𝑠𝑟, 𝑠𝑟 < 0.5

2(1 − 𝑠𝑟), 𝑠𝑟 >= 0.5
 (15)

Chain movement: The explored paths are connected

to form a chain movement using the mean positions

of both coots, which is formulated in Eq. (16) and is

used to calculate the coot's new position, where

CPos(𝑖 − 1) represents the second coot.

CPos(𝑖) = 0.5 × (CPos(𝑖 − 1) + CPos(𝑖)) (16)

Adjusting position in accordance with the group

leaders:

Each coot updates its position by considering

average position of Leaders and below Eq. (17) used

to choose the Leader.

𝐸 = 1 + (𝑖𝑀𝑂𝐷𝐿𝑐) (17)

Where 𝑖 represents the current coot index, 𝐿𝑐 , 𝐸

represents the count and index of Leaders.

Compute the position of next coot with respective

selected Leader by using Eq. (18)

𝐶𝑃𝑜𝑠(𝑖) = (𝐿𝑝𝑜𝑠(𝐸) + 2 × 𝐾1

× 𝑐𝑜𝑠(2𝐾𝜋) × (𝐿𝑝𝑜𝑠(𝐸) − 𝐶𝑃𝑜𝑠(𝑖) (18)

𝐶𝑃𝑜𝑠(𝑖) is Coot current location,𝐿𝑝𝑜𝑠(𝐸)is chosen

Leader position, 𝜋 =3.14, and 𝐾1 , 𝐾 are random

values in interval [0,1], [-1,1] respectively.

Leader movement: Leader positions are updated

with the formula provided below by searching around

optimal points and the selected leaders keep changing

their location to move the group of followers toward

the ideal region.

 𝐿𝑝𝑜𝑠(𝑖) =

{

 𝐻 ∗ 𝐾3 × 𝑐𝑜𝑠(2𝐾𝜋) × (𝐵𝑒𝑠𝑡𝑔 − 𝐿𝑝𝑜𝑠(𝑖))

+𝐵𝑒𝑠𝑡𝑔𝐾4 < 0.5

𝐻 ∗ 𝐾3 × 𝑐𝑜𝑠(2𝐾𝜋) × (𝐵𝑒𝑠𝑡𝑔 − 𝐿𝑝𝑜𝑠(𝑖))

−𝐵𝑒𝑠𝑡𝑔𝐾4 ≥ 0.5

 (19)

Where 𝐵𝑒𝑠𝑡𝑔 is the optimal position attained, 𝐾3

and 𝐾4 indicate random values between [0, 1], 𝐾, a

random number ranging between [-1,1] intervals. 𝐻

is formulated and computed as below.

𝐻 = 2 − 𝐼𝑡𝑒𝑟 × (
1

𝑀𝐼𝑡𝑒𝑟
) (20)

Cauchy mutation:

It is designated as an optimization tool that utilizes

the Cauchy distribution to introduce variations in

actual positions thereby exploring local

neighborhood. Its density function is given below:

𝑓𝑡(𝑦) =
𝑡

𝜋(𝑡2+𝑦2)
, −∞ < 𝑦 < +∞ (21)

where t > 0 is the scale factor, and the Cauchy

distribution is formulated as follows:

𝑓(𝑦) =
1

2
+

1

𝜋
arctan (

𝑦

𝑡
) (22)

The Cauchy exhibits similarity with density function

of Gaussian distribution entailing few notable

differences. The Cauchy distribution manifests

infinite variance promoting notable jumps for better

transition among discrete environments, thereby

avoiding the trap of local optima.

The proposed work employes a Cauchy

distribution with y value as 0 and t as 0.5 as it

promises optimal outcomes around these dimensions.

Our approach overrides the pitfalls of Coot algorithm

pertaining to local sub-optimal convergence and

lowered accuracy by exploring a novel search

position resulting from Cauchy distribution function

over two randomly selected coot positions.

𝑂𝑝𝑡 = 𝐶𝑎𝑢𝑐ℎ𝑦 (𝑌𝑟𝑎𝑛𝑑,1
𝑁 − 𝑌𝑟𝑎𝑛𝑑,2

𝑁) (23)

Hereby the Cauchy mutation utilizes Cauchy

distribution through Eq. (23).

𝑌𝑟𝑎𝑛𝑑,1
𝑁 and 𝑌𝑟𝑎𝑛𝑑,2

𝑁 represent randomly selected

coot positions from the population. The cauchy

variational operator 𝑂𝑝𝑡 encompasses the

aforementioned components.

5. Results and discussion

Experimental setup and simulation
The proposed algorithm is evaluated for

efficiency using the CloudSim simulation tool that

better depicts our approach providing accurate results.

The simulator succeeds in emulating the cloud

environment components in an enhanced way, and

also renders support to various well-versed

scheduling strategies. Our work simulates cloud

models based on a single data center, with

infrastructure as service (IaaS).

Received: May 19, 2023. Revised: July 25, 2023. 508

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

Algorithm3: Enhanced coot optimization algorithm for

task scheduling (ECOA-TS)

Input: Randomly initialize coot population as set

of Tasks and VMs.

Output: Optimally mapped Tasks and VMs.

• Initialize the coot population by Eq (10),

parameters Pr=0.5, Lcnt (Number of

Leaders), Cootcount (Number of Coots).

• Cootcount=Cootpop-Lcnt.

• Compute the fitness values of coots and

leaders,Identify the best coot or leader as

global optimum (Bestg).

• While End criteria not satisfied

 Compute G, H by using Eq. (14)

 and Eq. (20)

 If rand<Pr

 K, K1, and K3 are randomly

 selected dimensions.

 Else If

 K, K1 and K3 are a random

number

 End If

• For x=1 to Cootcount

 Calculate parameter E by Eq. (17).

 If rand >0.5

 Update coot location by Eq. (18).

 Else If rand <0.5~=1

 Update coot location by Eq. (16).

 Else

 Update coot location by Eq. (13)

 In Eq. (13), random number K2

 is computed using the Tent map as

 per proposed model.

 End If

• Compute Coot Fitness using Eq. (5)

 If Coot Fitness < Leader Fitness

 Swap (Coot, Leader).

 End If

 End For

• For Leaders count

 If K4 < 0.5

 Update Leader position by Eq.

(19.1)

 Else

 Update Leader position by Eq.

(19.2)

 End If

• If Leader Fitness< Bestg

 Swap (leader, Bestg) and revise

 global optimum.

 End If

 End For

• Perform Cauchy mutation for global

search

 Ht=Ht +1

 End while.

Table 1. Configuration of host in datacenter

Host Parameters Value

Processing element

(PE)
2-10

Processing capacity 20000-35000 MIPS

RAM capacity 8Gb,16GB and 32GB

Table 2. Configuration of VMs

VM Parameters Value

Pes in each VM 1

Processing capacity 500-4000 MIPS

RAM capacity 512-4196 MB

Table 3. Task parameters

Task Parameters Value

Length of Task 15000-900000MI

Size of Task 60-3000KB

The system configurations supporting the

simulation are Intel core i5 CPU with 1.80 GHz

processor, RAM 8 GB, Windows 64-bit, and

Windows 10 operating system. The configuration

parameters of simulated cloud data are shown below.

5.1 Performance analysis

The metric that provides efficient monitoring of

cloud components is performance, that ought to be

quantifiable and compatible with objectives for the

scheduling problem's performance. The ultimate goal

of scheduling algorithms is to keep the makespan of

the jobs to a minimum value for improved

performance. Using varied numbers of VMs and jobs,

three different experiments are carried out. The VM

count is kept at values 20,30 and 50, with task count

at intervals of 500. The resultant outcomes spotted

with varied spikes in graphs for tasks and resources

are depicted. Both the tasks and the resources in this

situation display varied traits.

For evaluation and comparison analysis, three

existing approaches including particle swarm

optimization (PSO), grey wolf optimization (GWO),

and whale optimization algorithm (WOA), are

Received: May 19, 2023. Revised: July 25, 2023. 509

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

Figure. 3 No. of Tasks vs Makespan(sec) with 20 VMs

Figure. 4 No. of Tasks vs Makespan(sec) with 30 VMs

considered as peer methods for our work. The

considered algorithms are individually executed over

google clustered traces and its performance

evaluations. In Fig. 3 ECOA-TS method has

demonstrated a reduction MST (Makespan Time) for

several counts of task ranges with 20 VMs. For

instance, with 500 tasks, the ECOA-TS approach

achieved a minimal MST of 598 but the PSO, GWO

and WOA algorithms presented high values of MST

of 780, 716, and 672 respectively. Continued with,

1000 tasks, the ECOA-TS approach presented

reduced MST of 1372 forasmuch the PSO, GWO, and

WOA algorithms have computed larger values of

MST of 1678, 1543, and 1498 respectively. In

addition to the aforementioned, when given 2000

tasks, the ECOA-TS algorithm produced a lower

MST of 3346, but the PSO, GWO, and WOA

techniques produced higher MSTs of 3820, 3690, and

3575, respectively.

Fig. 4 illustrates the performance comparison of

proposed work over the existing approaches for

several counts of task ranges with 30 VMs. For

instance, with 500 tasks, the ECOA-TS approach

Figure. 5 No. of Tasks vs Makespan(sec) with 50 VMs

offered minimal MST of 463 but the PSO, GWO and

WOA algorithms presented high values of MST of

742, 635, and 570 respectively. The PSO, GWO, and

WOA algorithms computed higher values of MST of

1510, 1385 and 1234, respectively, whereas the

ECOA-TS technique exhibited a lower MST of 1089

after 1000 tasks. Apart from above, with 2000 tasks,

the proposed algorithm rendered lowered MST of

2769 where the PSO, GWO and WOA methods

imaged higher MST of 3730, 3650, and 3455

respectively.

The results depicted in Fig. 5 proposed method

has promised to offer reduced MST for several counts

of task ranges with 50 VMs. For instance, with 500

tasks, the proposed method offered minimal MST of

438 but the PSO, GWO and WOA algorithms

presented high values of MST of 640, 590, and 525

respectively. Continued with, 1500 tasks, the ECOA-

TS approach presented reduced MST of 1043 sec

forasmuch the PSO, GWO and WOA algorithms

have computed larger values of MST of 1315, 1230

and 1178 respectively. Apart from above, with 2000

tasks, the ECOA-TS algorithm rendered lowered

MST of 1644 where the PSO, GWO and WOA

methods imaged higher MST of 1956,1825, and 1750

respectively.

Fitness analysis: The behavioral performance of

our proposed algorithm is evaluated by plotting

curves for fitness value against other comparison

algorithms for a variable count of iterations. Fig. 6

provide the fitness function evaluation of PSO, GWO,

WOA and proposed method for variable

permutations. The profound outputs shows that

ECOA-TS method has occupied the optimal outcome

with optimal fitness value in all iterations. By way of

illusion, when 100 iterations, the ECOA-TS offered a

reduced fitness value of 187.46 with PSO, GWO and

WOA offering a fewer improvement in fitness value

of 200.2,198.56,196.38. Consecutively, with 500

iterations, the ECOA-TS approach reflected reduced

Received: May 19, 2023. Revised: July 25, 2023. 510

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

Figure. 6 Fitness function over iterations

fitness value of 78.38 and the PSO, GWO, WOA

attained higher value of 102.78,98.56, 95.84.

Similarly, with 1000 iterations, the ECOA-TS

approach attained minimum fitness value of 77.66 in

contrast to PSO, GWO, WOA with fitness value of

102.78,98.56, 95.84.

In a nut shell our Enhanced coot optimization

algorithm for task scheduling (ECOA-TS) succeeds

in improving the performance by imaging the

experimental results in comparison to mentioned

approaches generating better makespan time for

datasets considered.

6. Conclusion

Our work explores a meta-heuristic framework

for task scheduling on cloud platforms that

guarantees optimal results. The realistic dataset

considered in our work pertains to Google cluster

traces. The framework originates with pre-processed

data pipelined into the classification process using the

improved density clustering method (IDCM)

algorithm where user tasks are categorized related to

resource needs and execution time. The resultant

outcome of cluster groups flows into queues

designated as low processing memory intensive

(LPMI), high processing memory intensive (HPMI),

processor intensive (PI), and memory intensive (MI)

tasks. The tasks moving out of the queue are assigned

the appropriate VMs on the respective physical

machines using proposed approach. Experimental

outcomes of the proposed ECOA-TS framework

delectably override the compared approaches by

lowering average makespan time by 15.33%,19.8%,

27.41%, over GWO, WOA and PSO algorithm

respectively. The miniature of our work is

materialized and simulated using CloudSim. Future

Scope of the work can be accelerated by considering

the dynamic nature of user tasks, where the tasks keep

reshaping their resource needs either by leveraging

their requirements or pulling down their needs

dynamically.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

The first author has done investigation, dataset

collection, implementation, result analysis, and

preparing original draft. The second author has done

supervision, review of work and validation.

References

[1] A. H. A. Halim and A. I. Hajamydeen, “Task

Scheduling Management for Load Balancing

Using Task Grouping Based on Cloud

Computing”, Asian Journal of Computer and

Information Systems, Vol. 9, No. 3, 2021.

[2] E. H. Houssein, A. G. Gad, Y. M. Wazery, and

P. N. Suganthan, “Task Scheduling in Cloud

Computing based on Meta-heuristics: Review,

Taxonomy, Open Challenges, and Future

Trends”, Swarm and Evolutionary Computation,

Vol. 62, p. 100841, 2021.

[3] S. Mohanty, P. K. Patra, M. Ray, and S.

Mohapatra, “A Novel Meta-Heuristic Approach

for Load Balancing in Cloud Computing”,

Research Anthology on Architectures,

Frameworks, and Integration Strategies for

Distributed and Cloud Computing, pp. 504–526,

2021.

[4] M. B. Gawali and S. K. Shinde, “Task

scheduling and resource allocation in cloud

computing using a heuristic approach”, Journal

of Cloud Computing, Vol. 7, No. 1, 2018.

[5] R. Kaur, V. Laxmi, and Balkrishan,

“Performance evaluation of task scheduling

algorithms in virtual cloud environment to

minimize makespan”, International Journal of

Information Technology, Vol. 14, No.6, pp. 79–

93, 2022.

[6] M. I. Alghamdi, “Optimization of Load

Balancing and Task Scheduling in Cloud

Computing Environments Using Artificial

Neural Networks-Based Binary Particle Swarm

Optimization (BPSO)”, Sustainability, Vol. 14,

No. 19, p. 11982, 2022.

[7] S. Borah and S. K. Mishra, “Scheduling Tasks in

Virtual Machines Using Ant Colony

Optimization Technique”, AI in Manufacturing

and Green Technology, pp. 11–18, 2020.

[8] A. M. S. Kumar, K. Parthiban, and S. S. Shankar,

“An efficient task scheduling in a cloud

Received: May 19, 2023. Revised: July 25, 2023. 511

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023 DOI: 10.22266/ijies2023.1031.43

computing environment using hybrid Genetic

Algorithm - Particle Swarm Optimization (GA-

PSO) algorithm”, In: Proc. of International Conf.

on Intelligent Sustainable Systems (ICISS), pp.

29-34, 2019.

[9] A. K. Maurya, “Resource and Task Clustering

based Scheduling Algorithm for Workflow

Applications in Cloud Computing Environment”,

In: Proc. of International Conf. on Parallel,

Distributed and Grid Computing (PDGC), pp.

566-570, 2020.

[10] W. Khallouli and J. Huang, “Cluster resource

scheduling in cloud computing: literature review

and research challenges”, The Journal of

Supercomputing, Vol. 78, No. 5, pp. 6898–6943,

2021.

[11] S. Kanwal, Z. Iqbal, F. A. Turjman, A. Irtaza,

and M. A. Khan, “Multiphase fault tolerance

genetic algorithm for vm and task scheduling in

datacenter”, Information Processing &

Management, Vol. 58, No. 5, p. 102676, 2021.

[12] S. P. Praveen, H. Ghasempoor, N. Shahabi, and

F. Izanloo, “A Hybrid Gravitational Emulation

Local Search-Based Algorithm for Task

Scheduling in Cloud Computing”, Mathematical

Problems in Engineering, Vol. 2023, pp. 1–9,

2023.

[13] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib,

“Heuristic initialization of PSO task scheduling

algorithm in cloud computing”, Journal of King

Saud University - Computer and Information

Sciences, Vol. 34, No. 6, pp. 2370–2382, 2022.

[14] P. Pirozmand, H. Jalalinejad, Hosseinabadi, A.

R. Asghar, M. Seyedsaeid, and Y. Li, “An

improved particle swarm optimization algorithm

for task scheduling in cloud computing”,

Journal of Ambient Intelligence and Humanized

Computing, Vol. 14, pp. 4313–4327 ,2023.

[15] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam,

“AdPSO: Adaptive PSO-Based Task Scheduling

Approach for Cloud Computing”, Sensors, Vol.

22, No. 3, p. 920, 2022.

[16] A. M. Zadeh, M. Masdari, F. S. G. Chopogh, and

A. Jafarian, “Improved chaotic binary grey wolf

optimization algorithm for workflow scheduling

in green cloud computing”, Evolutionary

Intelligence, Vol. 14, No. 4, pp. 1997–2025,

2020.

[17] H. Liu, “Research on cloud computing adaptive

task scheduling based on ant colony algorithm”,

Optik, Vol. 258, p. 168677, 2022.

[18] B. M. H. Zade, N. Mansouri, and M. M. Javidi,

“A two-stage scheduler based on New

Caledonian Crow Learning Algorithm and

reinforcement learning strategy for cloud

environment”, Journal of Network and

Computer Applications, Vol. 202, p. 103385,

2022.

[19] S. Mangalampalli, S. K. Swain, and V. K.

Mangalampalli, “Prioritized Energy Efficient

Task Scheduling Algorithm in Cloud

Computing Using Whale Optimization

Algorithm”, Wireless Personal Communications,

Vol. 126, No. 3, pp. 2231–2247, 2021.

[20] L. Jia, K. Li, and X. Shi, “Cloud Computing

Task Scheduling Model Based on Improved

Whale Optimization Algorithm”, Wireless

Communications and Mobile Computing, Vol.

2021, pp. 1–13, 2021.

[21] J. Li, T. Ma, M. Tang, W. Shen, and Y. Jin,

“Improved FIFO Scheduling Algorithm Based

on Fuzzy Clustering in Cloud Computing”,

Information, Vol. 8, No. 1, p. 25, 2017.

[22] A. Jivrajani, D. Raghu, A. KH, H. L.

Phalachandra, and D. Sitaram, “Workload

Characterization and Green Scheduling on

Heterogeneous Clusters”, 22nd Annual In: Proc.

of International Conf. On Advanced Computing

and Communication (ADCOM), 2016.

[23] J. Li and Y. Han, “A hybrid multi-objective

artificial bee colony algorithm for flexible task

scheduling problems in cloud computing

system”, Cluster Computing, Vol. 23, No. 4, pp.

2483–2499, 2019.

[24] S. Mangalampalli, S. K. Swain, G. R. Karri, and

S. Mishra, “SLA Aware Task-Scheduling

Algorithm in Cloud Computing Using Whale

Optimization Algorithm”, Scientific

Programming, Vol. 2023, pp. 1–11, 2023.

[25] Datasets:https://research.google/tools/datasets/g

oogle-cluster-workload-traces-2019/

[26] P. D. Kusuma and M. Kallista, “Stochastic

Komodo Algorithm”, International Journal of

Intelligent Engineering and Systems, Vol. 15,

No. 4, 2022, doi: 10.22266/ijies2022.0831.15.

[27] P. D. Kusuma and M. Kallista, “Quad

Tournament Optimizer: A Novel Metaheuristic

Based on Tournament Among Four Strategies”,

International Journal of Intelligent Engineering

and Systems, Vol. 16, No. 2, 2023, doi:

10.22266/ijies2023.0430.22.

[28] S. M. Menon and P. Rajarajeswari, “A Hybrid

Machine Learning approach for Drug

Repositioning”, International Journal of

Computer Science and Network Security, Vol.

20, No.12, pp. 217-223, 2020.

[29] I. Naruei and F. Keynia, “A new optimization

method based on COOT bird natural life model”,

Expert Systems with Applications, Vol. 183, p.

115352, Nov. 2021.

https://link.springer.com/journal/12652
https://link.springer.com/journal/12652

