
Received: April 8, 2023. Revised: June 14, 2023. 601

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

Cloud Computing for Task Scheduling Using Estimate of Distribution Algorithm

– KrillHerd Method

Vasantha Muniyappa1* Chandramouli Hattibelagal1

1Department of Computer Science and Engineering, East Point College of Engineering and Technology,

Bengaluru-560049, Karnataka, India

* Corresponding author’s Email: vasantha.nhce@gmail.com

Abstract: Cloud computing is a popular technology that allows customers to use computing resources remotely on a

pay-as-you-go basis. Task scheduling is one of the significant problems in cloud computing backgrounds since tasks

must be scheduled properly to reduce implementation time and cost while optimizing resource efficiency. In this

research, an estimate of the distribution algorithm for the Krill Herd (EDA-KrillHerd) method for multi-objective

scheduling tasks in cloud computing is developed and compared with the particle swarm optimization (PSO) and Krill

Herd algorithms. Most of the existing methods do not use EDA to the large potential in solving task scheduling problem

resulting in high completion time of tasks. The main objective of this work focuses on effectively using EDA combined

with KrillHerd algorithm to reduce the task completion time within task scheduling algorithms. The findings indicate

that the proposed EDA-Krill Herd algorithm excels in terms of time efficiency and faster convergence when it comes

to task scheduling, in comparison to the existing methods. Furthermore, in the presence of both small and large-scale

activities, the EDA-Krill herd algorithm has achieved greater efficiency on Makespan of 1000.74s, throughput of

64.30%, and resources utilization of 99.90% respectively.

Keywords: Cloud computing, EDA-krill herd, Makespan, Multi-verse optimizer, Task scheduling, Virtual machines.

1. Introduction

The exponential growth of internet information

processing resulted in the development of cloud

computing systems. Cloud computing is essential for

providing technological services through the internet.

It delivers a resource to users, such as processing

power, and data storage without requiring direct

active control [1]. The concept of cloud computing

was first proposed by Google. In later developments,

Amazon, Microsoft and the Apache Foundation

increased their research of cloud computing, and

academia has further studied the theory of cloud

computing [2]. Cloud computing is the most recent

technological development, providing for the

processing of large amounts of data. Cloud

computing is an effective technique for addressing

the requirements of large data applications. [3]. The

cloud environment is a difficult system with

numerous shared resources and unpredictability, and

it is affected by unexpected external events [4].

Cloud computing consists of a variety of

computing resources and data centers that receive a

variety of tasks for execution every minute. The

scheduling algorithm must select the optimal VM for

the task depending on its specific requirements [5].

Cloud task scheduling is a non-deterministic

exponential time-hard problem; finding an improved

task scheduling solution in a multi-cloud context is

challenging. [6]. In local scheduling tasks, a task

scheduling ordering technique is employed initially

to priority user tasks based on restrictions such as task

flexibility and task life duration. [7]. Scheduling

algorithms in cloud computing can have a direct

impact on a system's resource utilization and

operational costs. To increase the efficiency of cloud

task executions, several metaheuristic algorithms and

variants have been developed to optimize the

scheduling [8]. A task scheduling method based on

game theory is developed for large data in cloud

Received: April 8, 2023. Revised: June 14, 2023. 602

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

computing, and experiments demonstrate that the

approach could enhance cloud computing energy

management. [9]. However, scheduling a task is a

critical issue in the cloud computing environment

since it has a significant impact on system

performance. It requires an upgraded, efficient

algorithm to serve the work scheduling process [10].

The contribution of the work is as follows,

• To improve the efficiency of task executions

in a cloud computing system, the EDA-Krill

herd algorithm was proposed for multi-

objective task scheduling in cloud computing

to solve the problem.

• A new approach called EDA- Krill herd is

proposed for efficient task scheduling by

incorporating advanced optimization

strategies to improve both convergence speed

and accuracy.

• The design and implementation of EDA-Krill

herd and compare it with some existing

approaches including EMVO, MVO, PSO,

and Krill herd. The experimental results

demonstrate that EDA- Krill herd algorithm

can achieve better performance on Makespan,

Throughput, and Resource utilization for

scheduling the tasks.

The rest of this paper is organized as follows.

Section II described the related work. Section III

described the proposed EDA-Krill herd approach and

its implementation details in section IV. The

conclusion of this research is given in section V.

2. Related works

Kusuma and Dinimaharawati [11] proposed a

new metaheuristic algorithm known as a fixed-step

average and subtraction-based optimizer (FS-ASBO)

which is an improved version of the average and

subtraction-based optimizer (ASBO). This was

developed to replace the randomized step size in the

guided movement with the fixed step size, to add an

exploration mechanism after the guided movement in

every iteration when the new candidate fails to find a

better solution. However, for the purpose of solving

a combinatorial problem, this proposed algorithm

still has to be modified.

To address optimisation issues, Zeidabadi [12]

created the mixed leader based optimizer (MLBO).

The designed MLBO's goal was to combine the top

population member with a random member to create

a new member who would act as the algorithm's

population's leader. The MLBO's optimisation results

have demonstrated that the suggested algorithm is

effective at handling a variety of optimisation issues.

The future work of this research states that

implementing MLBO on real time optimization

issues can achieve in major contributions.

Shukri [13] designed an enhanced version of the

multi-verse optimizer (EMVO) to minimize the cost

and execution time of tasks. The EMVO was utilized

to plan work, manage issues, and allocate resources.

In terms of reducing makespan time and enhancing

resource usage, EMVO significantly improves both

PSO and MVO algorithms. However, one of the most

difficult difficulties in EMVO was scheduling a task,

which requires tasks to be planned to reduce

operation cost and time while improving resource

usage.

Rajakumari [14] proposed a dynamic weighted

round- robin algorithm for improving task scheduling

in cloud computing by solving the optimal task

scheduling issues. Along with this, a hybrid particle

swarm parallel ant colony optimization (HPSPACO)

was also proposed to solve the task execution delay

problem in deficit weighted round robin (DWRR)

based task scheduling. In order to optimise work

scheduling, the suggested fuzzy hybrid particle

swarm parallel ant colony optimisation

(FHPSPACO) on cloud computing reduced

execution and waiting times, boosts system

throughput, and maximises resource usage. However,

the complexity and imprecise data handling are the

limitations of this work.

Jamal and Muqeem [15] introduced a novel

adaptive strategy that combines the best-worst multi-

criteria decision-making (MCDM) with the

compromise ranking method (VIKOR). This paper

provided a method for mapping user requests to

virtual machines (VMs), where many competing

factors were taken into account in a cloud scheduling

strategy. The limitations such as complex calculation

of population, varying criteria will result in improper

decision.

Doumari [16] implemented a novel ring toss

game-based (RTGBO) for population-based

optimisation. The purpose of RTGBO is to imitate

player conduct and game rules in the construction of

the implemented algorithm. However, for some

optimisation situations, the RTGBO algorithm not be

appropriate, hence, when solving issues with

numerous variables or constraints, it not performs

well.

Zeidabadi and Dehghani [17] presented puzzle

optimization algorithm (POA) to solve the issues of

various optimization and to represent the puzzle-

solving process mathematically as an optimizer. The

key benefit and characteristic of the POA is, it does

not required parameter setting as POA has no

Received: April 8, 2023. Revised: June 14, 2023. 603

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

Figure. 1 The architecture of cloud computing for scheduling tasks

parameters of control. However, the POA has a loss

of control, lack of flexibility, and misuse of authority.

Low precision, complexity, complex calculation

of population, loss of control, lack of flexibility, and

misuse of authority are the drawbacks of the existing

methods. To overcome these methods an EDA-

KrillHerd is proposed in this research.

3. Proposed method for Eda- Krill Herd

Algorithm

To improve the performance of time-consuming

issues in the existing methods, the EDA-krill herd

algorithm is proposed. The EDA- krill herd algorithm

was used to decrease the Makespan, throughput, and

resources utilization time, which was discussed in the

experimental results. Users submit tasks to the cloud

system, and the cloud system includes three modules:

task manager, resource manager and scheduler.

Cloud computing delivers tasks to the taskbar and

processed them to collect the data. It handles all

virtual machines constantly and collects information

for computing speed. The scheduler starts working

after acquiring information on tasks provided by the

task administrator for faster processing of virtual

machines. According to this research, the EDA-krill

herd plays a crucial role in the scheduling of virtual

machine tasks. The structure of cloud computing for

scheduling tasks was illustrated in Fig. 1.

3.1 Mathematical technique

The proposed approach for mathematically

expressing the scheduling of n tasks across m virtual

machines involves accounting for their differing

computation rates. The multi-objective optimization

problem addresses many objectives at the same time

to identify load balancing and task completion time.

The computational time for the suggested

methodology was shown mathematically in the Eqs.

(1-3).

∑ ∑ 𝑥𝑖,𝑗,𝑟 = 1,𝑛

𝑟=1
𝑚
𝑗=1 𝑖 = 1,2, … 𝑛 (1)

∑ 𝑥𝑖,𝑗,𝑟 ≤ 1𝑛

𝑖=1 , 𝑗 = 1,2, … 𝑚; ∀𝑟 (2)

∑ 𝑥𝑖1,𝑗 𝑟+1 − ∑ 𝑥𝑖2,𝑗 𝑟 ≤ 0𝑛

𝑖2=1 𝑛
𝑖1=1 ,

 𝑗 = 1,2, … 𝑚; ∀𝑟 (3)

where Eq. (1) ensures the tasks that are scheduled

on VMs and only once; Eq. (2) ensures that each VMs

performs only one task at the same time; and Eq. (3)

indicates the work on a certain VMs has been

performed in a specific sequence.

3.2 Task model for completion time

From the input mathematical model to task model

VMs and task size computation speed are identified,

the ETC matrices can be considered at Eq. (4).

𝐸𝑇𝐶 (𝑡𝑖 , 𝑟𝑗) =
𝑇𝑆𝑖

𝑉𝑆𝑗
 (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚) (4)

Where, (𝑡𝑖 , 𝑟𝑗) indicates i required time to

Received: April 8, 2023. Revised: June 14, 2023. 604

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

complete the tasks in virtual machine running time j.

The completion time of the virtual machine to

aggregate the running times for all tasks given to it.

Each virtual machine's completion time can be

determined as Eq. (5).

𝑡𝑖𝑚𝑒 𝑗 = ∑ 𝐸𝑇𝐶 (𝑡𝑖 , 𝑟𝑗) 𝑘
𝑟=1 (5)

where k represents the task numbers allocated to

virtual machine j.

It describes that the entire runtime of total VMs

in completion time was similar to cloud computing.

The entire time for task completion was considered

using Eq. (6).

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑇𝑖𝑚𝑒 =

max{𝑡𝑖𝑚𝑒1, 𝑡𝑖𝑚𝑒2 … . 𝑡𝑖𝑚𝑒𝑚} (6)

3.3 Model for load balancing

From the input task model to load balancing was

to increase the degree of load balancing of the system

is defined as Eq. (7).

𝐷𝐵𝐿 =
∑ 𝑡𝑖𝑚𝑒 𝑗

𝑚
𝑗=1

𝑀 ×𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑇𝑖𝑚𝑒
 (7)

DBL denotes the load balancing degree. When it

comes to the execution of each VMs, has

approximately equal total processing times,

indicating the load for better balanced. As a result, the

DBL was regulated the load with greater load

balancing capacity.

3.3.1. Fitness function

From the load balancing to the fitness function,

the EDA-Krill herd algorithm's population indicates

a viable clarification to the challenge. The fitness

function was utilized to assess solution quality, it is

essential for avoiding an optimum and attaining the

ideal solution. It may create various fitness functions

based on the needs of the user. This paper considers

load balancing degree and total task completion, the

fitness function was determined in Eqs. (8) and (9).

𝐺𝑉𝑎𝑙𝑢𝑒 = 𝜔1 ∗
1

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑇𝑖𝑚𝑒
+ 𝜔2 ∗ 𝐷𝐵𝐿 (8)

𝜔1+ 𝜔2 = 1 (0 ≤ 𝜔1 , 𝜔2 ≤ 1) (9)

where 𝜔1 and 𝜔2 are weight coefficients,

according to different user requirements weight

coefficients can be set. For example, considering the

task completion for factor time, set 𝜔1 and 𝜔2. The

balancing load was considered, set 0 to 1, and two

factors are considered consecutively of sets 𝜔1 and

𝜔2 correspondingly. The GValue was larger and

better for the quality of the resolution [16].

3.4 EDA-Krill Herd hybrid algorithm

To schedule tasks in a computing cloud, the

suggested EDA-Krill Herd hybrid algorithm is

assigned the responsibility of load balancing. During

the experimental setup used to obtain results on a

specific scale, all options were set to a fixed value of

1/m for sampling purposes. Simultaneously, GValue

recommends evaluating all options and selecting

great ones. Second, employ the Krill herd to

undertake mutation and crossover procedures on the

selected great solutions, resulting in the generation of

new resolutions. Finally, sort the outstanding

resolutions from step 1 and resolutions from step 2 in

descending order. The elite population is made up of

the top p% of great answers. Finally, based on the

updated probability and elite population model gives

finite results to process the data. Run the algorithms

in this manner while the halting condition is reached,

and the output is the best result. The specific

development of the EDA- Krill herd algorithm is

mentioned as follows.

3.4.1. EDA operations

The data from the proposed method to EDA

operations were classified into initialization,

sampling method and fitness assessment described

below.

3.4.1.1. Initialization

The distribution of solutions can be better

understood and the characteristics of the problem can

be more easily reflected through the use of a

probability model. The possibility of techniques

constructed as shown in Eq. (10).

𝑃(𝑔) = [

 𝑝11(𝑔) 𝑝12(𝑔) 𝑝1𝑚(𝑔)

 𝑝21(𝑔) 𝑝22(𝑔) 𝑝2𝑚(𝑔)

 𝑝𝑛1(𝑔) 𝑝𝑛2(𝑔) 𝑝𝑛𝑚(𝑔)

]

(10)

In the gth iteration, 𝑃(𝑔) describes the mapping

connection among m machines and n tasks. To assure

the unpredictability of the initial population, all

probability values are fixed to 1/m at startup.

3.4.1.2. Sampling method

This coding method encodes the virtual machines

occupied by each task, and the length of each

Received: April 8, 2023. Revised: June 14, 2023. 605

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

individual is equal to the number of tasks. Each

position in the individual represents the task number,

and the value in this position represents the virtual

machine number assigned to the task. This individual

represents the first task assigned to the first virtual

machine, the second task assigned to the fourth

virtual machine, and the third task assigned to the

second virtual machine.

3.4.1.3. Fitness assessment

The allocation of tasks on virtual computers can

be achieved in the previous phase, based on the

coding output of each task. The individual's fitness

value is then calculated, and the tasks are ordered in

descending order based on their fitness value.

3.5 Operations of Krill heard algorithm

The data from the proposed method to operations

of krill herd the concentration appears to be quite

enormous and is often seen at a distance of 10-100 m.

The outcome of these arithmetic techniques cannot

take into account the migration of krill that developed

as Antarctic krill. The fitness characteristic for krill

movement is represented based on multiple distance

measures, that include the smallest space between

each krill and the minimum gap between the largest

herd solidity and each krill.

The decision of n-dimensional space is given by

Eq. (11).

𝑑𝑋𝑖

𝑑𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖 (11)

where 𝑁𝑖 is a measure indicated by krill

individuals, 𝐹𝑖 foraging activity, 𝐷𝑖 indiscriminate

diffusion, i = 1 to nk number of krill individuals.

The movement of each krill is represented by Eq.

(12).

𝑁𝑖
𝑛𝑒𝑤 =

[𝑁𝑚𝑎𝑥 ∑ [
𝑘𝑖− 𝑘𝑗

𝑘𝑤𝑜𝑟𝑠𝑡− 𝑘𝑏𝑒𝑠𝑡
]𝑁𝑁

𝑗=1 [
𝑋𝑗− 𝑋𝑖

𝑋𝑗− 𝑋𝑖+𝜀
] {2 (𝑟𝑎𝑛𝑑 +

1

𝐼𝑚𝑎𝑥
)

1

𝑘1,𝑏𝑒𝑠𝑡 𝑋1,𝑏𝑒𝑠𝑡
}] + 𝜔𝑛𝑁𝑖

𝑜𝑙𝑑 (12)

where, 𝑘𝑖 is the value of fitness, ith krill creature

(i=1 to nk), 𝑘𝑗 value of fitness for acquaintance (𝑗 =

1 𝑡𝑜 𝑁𝑁), 𝑘𝑤𝑜𝑟𝑠𝑡 , 𝑘𝑏𝑒𝑠𝑡 best case and the worst case

of each krill, 𝑋 exact location, 𝜀 positive minimum

number, 𝑁𝑚𝑎𝑥 large induced speed in 𝑚𝑠−1 , I

describe iteration calculation, 𝐼𝑚𝑎𝑥 denotes utmost

iteration calculation, 𝑘1,𝑏𝑒𝑠𝑡 rate of finest fitness of

ith krill, 𝑋1,𝑏𝑒𝑠𝑡 position of 𝑋1,𝑏𝑒𝑠𝑡 of i th krill, 𝜔𝑛

indicates an inertial weight range of (0,1), 𝑁𝑖
𝑜𝑙𝑑

denotes final inertial weight from 0 to 1.

The equation for distance sense is described in Eq.

(13).

𝑑𝑠,𝑖 =
1

5𝑁
 ∑ || 𝑋𝑖 − 𝑋𝑗||𝑁

𝑗=1 (13)

The calculation between the krill folks and

formulated distance is obtained. If this gap is less,

then they are assumed to be neighbors where 𝑁

represents the movement induced by each krill, 𝑉𝑓

foraging speed, 𝑚𝑠−1, 𝜔𝑓 weight inertia in the range

(0, 1), 𝑓𝑖
𝑜𝑙𝑑 motion of last foraging.

3.6 Updating method

From the input krill herd algorithm to updating

method, the possibility techniques were updated

using the population-based incremental learning

(PBIL) and elite population method was shown in

Eqs. (14-15).

𝑝𝑖𝑗(𝑔 + 1) = (1 − 𝜆) 𝑝𝑖𝑗(𝑔) + 𝜆
1

𝐸
 ∑ 𝐼𝑖𝑗

𝑘 (𝑔) 𝐸
𝐾=1

 (14)

𝐼𝑖𝑗
𝑘 (𝑔) =

{
1, 𝑖𝑓 𝑇𝑖 𝑜𝑛 𝑉𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑘 − 𝑡ℎ 𝑖𝑛𝑣𝑖𝑑𝑢𝑎𝑙

0 , 𝑒𝑙𝑠𝑒
 (15)

where 𝑝𝑖𝑗 (𝑔) describes the probability of task 𝑖

allocated to virtual machine 𝑗, 𝜆 ∈ (0, 1) describes

the rate learning, E describes the size of population

elite (𝐸 = 𝑃𝑆 × 𝑝%) , and 𝐼𝑖𝑗
𝑘 (𝑔) describes the

pointer function was similar to the kth elite population

of individual tasks.

4. Experimental results and implementation

The suggested method is given to the

experimental results, it contains experimental setup,

performances, comparative analysis, and graphical

representations and the outcomes of the suggested

techniques were described and discussed below.

4.1 Experiment setup

The suggested techniques were implemented

using Cloudsim version 3.0.3 and the outcomes were

run on a PC with the features such as OS: Windows

10, RAM: 16 GB, Memory: 1TB, Software:

NetBeans IDE 8.2 Java 1.8

Table 1 showed the characteristics of the algorithms.

The main objective of the suggested algorithm is to

discover the optimal sequence of tasks, where all

tasks are allocated to VMs and completion time is

reduced by utilizing the makespan time.

Received: April 8, 2023. Revised: June 14, 2023. 606

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

Table 1. Experimental environment parameters
Type Parameters Value

VM Processor speed Memory

Bandwidth

Image size

PesNumber

VMM

1000

512 MB

1000

10000

1

Xen

Host MIPS

Storage

VMM Monitor

Memory

Bandwidth

1000

1000000

Xen

25600 MB

50000

Data Center Arch

Operating system

VMM

Time_zone

Cost

Cost Per Memory

Cost Per Storage

Cost Per Bandwidth

X86

Linux

Xen

10.0

3.0

0.05

0.1

0.1

KrillHerd Size population 50

Selection for mechanism Roulette wheel

Cross over for krillHerd 0.9

Mutation for Krill Herd 0.2

Figure. 2 Makespan time results for VMs=50

4.2 Experimental results

The experimental results showed that results are

compared with existing method such as enhanced

multi-verse optimizer (EMVO) algorithm as

described below.

4.2.1. Quantitative analysis

The makespan time findings for the datasets are

represented in Fig. 2 for the EMVO. As compared to

previous results, the suggested EDA-Krill herd

method achieves a superior make span of 927.02

seconds (s). As a result, the first assumption is that

increasing the number of VMs to 50 can minimize the

makespan time. In terms of efficiency, it can be

shown that the suggested approach has achieved

better performances when compared to existing

techniques.

Fig. 3 shows the throughput results for this

experiment, which reflect the efficiency of the

algorithm in processing tasks proportional to the

number of active VMs=50. As compared to previous

findings, the suggested EDA-Krill herd method

achieved a throughput of 68.80%. These findings

show that the EDA-KrillHerd fared the best in both

Received: April 8, 2023. Revised: June 14, 2023. 607

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

Figure. 3 Throughput results for VM=50

Figure. 4 Resources Utilization results for VMs=50

local and global searches for the optimal solution in

terms of minimum makespan time and maximal

throughput.

The number of utilization resources in the

element is to be calculated in this experiment. The

resources indicated by the VMs were utilized, which

has VMs=50 for all datasets. MIPS ranged from 100

to 1000 for the VMs used. The average resource use

for all datasets is shown in Fig. 4. As compared to

previous findings, the suggested EDA-Krill herd

algorithm performed well in terms of resource usage,

with a range of 99.16.

This experiment was utilized to reduce the

makespan time results, since this reduced execution

and waiting time for a better scheduling technique.

Fig. 5 shows the makespan time findings for the three

techniques on regular-size datasets. By increasing the

number of tasks, the makespan time was reduced to

1006.7 (s). It can also be observed that the EDA-

KrillHerd method performed well when compared to

EMVO methods in all datasets for a given number of

VMs.

The throughput value is the second criterion for

evaluation because more throughput equates to

greater efficiency. The purpose of the tasks on better

throughput VMs. Throughput time findings for

regular-size datasets utilizing a varying number of

VMs were shown in Fig. 6. The throughput time was

reduced by increasing the number of tasks to 64.30

(%).

Fig. 7 shows that algorithms gave nearly identical

results. This means that the number of tasks is equal

to the three algorithms that were performed in equal

values, with minor changes. By increasing the

Received: April 8, 2023. Revised: June 14, 2023. 608

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

Figure. 5 Results of VMs for Makespan time

Figure. 6 Throughput time results of VMs

Figure. 7 Resources utilization time results of VMs

number of tasks, the resource time was reduced and

99.90 (%) was achieved.
4.2.2. Comparative analysis

In this section, the proposed method is compared

Received: April 8, 2023. Revised: June 14, 2023. 609

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

Table 2. Makespan outcomes of time for datasets using

variable number of tasks

Number

of tasks

Makespan (s)

FHPSPACO

[14]

MCDM

[15]

EDA-

KrillHerd

(Proposed)

10 20.00 50.00 18.45

20 22.45 54.00 20.34

30 25.00 59.00 22.46

40 27.56 80.00 25.36

50 30.00 100.00 27.52

Table 3. Throughput outcomes of time for datasets using

variable number of tasks

Number

of tasks

Throughput (%)

FHPSPACO [14] EDA-KrillHerd

(Proposed)

10 7.00 6.25

20 10.00 8.45

30 12.00 10.52

40 15.00 13.30

50 30.00 27.73

Table 4. Resource utilization outcomes of time for

datasets using variable number of tasks

Number

of tasks

Resource utilization (%)

FHPSPACO

[14]

MCDM

[15]

EDA-

KrillHerd

(Proposed)

10 93.00 72.00 96.00

20 90.00 76.00 94.00

30 87.00 66.00 91.00

40 84.00 68.00 88.00

50 80.00 88.00 85.00

to two existing techniques such as FHPSPACO [14]

and MCDM [15] as given in Table 2. The obtain

results shows that the proposed method archives

better makespan by varying number of tasks from 10

to 50 compared to references [14, 15].

The FHPSPACO [14] method uses objective

function related to resource availability and task

parameters only, it doesn't consider objective cost

and energy with respect to datacentre and also it uses

a simple optimization algorithm of ACO which has

lesser convergence over epochs in comparison to

existing optimization techniques. The MCDM [15]

method considers parameters defined manually

which has conflicts over dynamic allocation of task

scheduling strategy with respect to practical

simulation scenarios to balance the load effectively.

These limitations are overcome by the propose

method by considering, cost and energy factors along

with the appropriate task allocation in practical

scenarios.

Table 5. Nomenclature

Terms Representation

n Number of tasks

m Number of virtual machines

𝑥𝑖,𝑗,𝑟 represents that task 𝑖 is the 𝑟-th task

processed on virtual machine 𝑗

𝐸𝑇𝐶𝑛×𝑚 the matrix of size 𝑛 × 𝑚, represents the

running time of all the tasks on each

virtual machine.

𝑇𝑆𝑖 The size of task 𝑖
𝑉𝑆𝑗 The computing speed of virtual machine 𝑗

𝑘 Total number of tasks assigned to virtual

machine 𝑗

The throughput of the proposed method is

compared to FHPSPACO [14] as shown in Table 3.

The proposed method achieves better throughput

compared to ref [14].

The resource utilization of the proposed method

is compared to FHPSPACO [14] and MCDM [15] as

shown in Table 4. The proposed method uses highest

resources than the other task scheduling methods.

5. Conclusion

In this research, an EDA-Krill Herd method for

multi-objective scheduling tasks in cloud computing

was developed. The EDA-Krill Herd was then used

to map some tasks into the required number of VMs

to decrease makespan time, enhance throughput, and

increase resource usage. The EDA-Krill Herd was

utilized to schedule work, handle issues, and allocate

resources and used to improve task scheduling in the

cloud. The performance of the EDA-Krill Herd

method was compared to the FHPSPACO and

MCDM scheduling algorithms. The results

demonstrate that the EDA-Krill Herd mapped

workloads successfully with no extra overheads. As

compared to existing techniques, EDA-Krill shows

better performance and has a shorter computational

time in Makespan of 1000.74s, throughput of 64.30%,

and resource utilization of 99.90% respectively. In

the future, task scheduling in cloud computing must

concentrate on better scheduling techniques based on

multi-objective functions and add some more

parameters to improve the performance of the cloud

scheduling system. The representation of terms

which are used in the mathematical models are given

in Table 5.

Conflicts of interest

The authors declare no conflict of interest.

Received: April 8, 2023. Revised: June 14, 2023. 610

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.49

Author contributions

For this research work all authors' have equally

contributed in Conceptualization, methodology,

validation, resources, writing—original draft

preparation, writing—review and editing.

References

[1] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib,

“Heuristic initialization of PSO task scheduling

algorithm in cloud computing”, Journal of King

Saud University-Computer and Information

Sciences, Vol. 34, No. 6A, pp. 2370-2382, 2022.

[2] B. Liang, X. Dong, Y. Wang, and X. Zhang, “A

low-power task scheduling algorithm for

heterogeneous cloud computing”, The Journal

of Supercomputing, Vol. 76, No. 9, pp. 7290-

7314, 2020.

[3] X. Huang, C. Li, H. Chen, and D. An, “Task

scheduling in cloud computing using Particle

Swarm Optimization with time varying inertia

weight strategies”, Cluster Computing, Vol. 23,

No. 2, pp. 1137-1147, 2020.

[4] P. Pirozmand, A. A. R. Hosseinabadi, M.

Farrokhzad, M. Sadeghilalimi, S. Mirkamali,

and A. Slowik, “Multi-objective hybrid genetic

algorithm for task scheduling problem in cloud

computing”, Neural Computing and

Applications, Vol. 33, No. 19, pp. 13075-13088,

2021.

[5] K. R. P. Kumar and K. Kousalya, “Amelioration

of task scheduling in cloud computing using

crow search algorithm”, Neural Computing and

Applications, Vol. 32, No. 10, pp. 5901-5907,

2020.

[6] Q. H. Zhu, H. Tang, J. J. Huang, and Y. Hou,

"Task Scheduling for Multi-Cloud Computing

Subject to Security and Reliability Constraints",

IEEE/CAA Journal of Automatica Sinica, Vol. 8,

No. 4, pp. 848-865, 2021.

[7] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and

J. Zeng, “Q-learning based dynamic task

scheduling for energy-efficient cloud

computing”, Future Generation Computer

Systems, Vol. 108, pp. 361-371, 2020.

[8] X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu, Y.

Mao, and J. Murphy, "A WOA-Based

Optimization Approach for Task Scheduling in

Cloud Computing Systems", IEEE Systems

Journal, Vol. 14, No. 3, pp. 3117-3128, 2020.

[9] J. Yang, B. Jiang, Z. Lv, and K. K. R. Choo, “A

task scheduling algorithm considering game

theory designed for energy management in cloud

computing”, Future Generation Computer

Systems, Vol. 105, pp. 985-992, 2020.

[10] S. Velliangiri, P. Karthikeyan, V. M. A. Xavier,

and D. Baswaraj, “Hybrid electro search with

genetic algorithm for task scheduling in cloud

computing”, Ain Shams Engineering Journal,

Vol. 12, No. 1, pp. 631-639, 2021.

[11] P. D. Kusuma and A. Dinimaharawati, “Fixed

Step Average and Subtraction Based Optimizer”,

International Journal of Intelligent Engineering

and Systems, Vol. 15, No. 4, pp. 339-351, 2022.

[12] F. A. Zeidabadi, S. A. Doumari, M. Dehghani,

and O. P. Malik, “MLBO: mixed leader based

optimizer for solving optimization problems”,

International Journal of Intelligent Engineering

and Systems, Vol. 14, No. 4, pp. 472-479, 2021.

[13] S. E. Shukri, R. A. Sayyed, A. Hudaib, and S.

Mirjalili, “Enhanced multi-verse optimizer for

task scheduling in cloud computing

environments”, Expert Systems with

Applications, Vol. 168, p. 114230, 2021.

[14] K. Rajakumari, M. V. Kumar, G. Verma, S. Balu,

D. K. Sharma, and S. Sengan, “Fuzzy Based Ant

Colony Optimization Scheduling in Cloud

Computing”, CSSE-Computer Systems Science

and Engineering, Vol. 40, No. 2, pp. 581-592,

2022.

[15] M. K. Jamal and M. Muqeem, “An MCDM

optimization based dynamic workflow

scheduling used to handle priority tasks for fault

tolerance in IIOT”, Measurement: Sensors, Vol.

27, p. 100742, 2023.

[16] S. A. Doumari, H. Givi, M. Dehghani, and O. P.

Malik, “Ring Toss Game- Based Optimization

Algorithm for Solving Various Optimization

Problems”, International Journal of Intelligent

Engineering and Systems, Vol. 14, No. 3, pp.

545-554, 2021.

[17] F. A. Zeidabadi and M. Dehghani, “POA: Puzzle

Optimization Algorithm”, International Journal

of Intelligent Engineering and Systems, Vol. 15,

No. 1, pp. 273-281, 2022.

