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Abstract: Early discovery and precise classification of plant-lead diseases are used to handle their spread and enhance 

the overall yield and product quality. The deep learning approach attains significant achievements in image 

classification and recognition. Since the classification using deep learning mainly depend on large-scale dataset for 

preventing the overfitting issue. Image augmentation is required to be developed to eliminate the risk of overfitting 

during the classification. In this research, the deep learning model based augmentation namely uncertainty based 

progressive conditional generative adversarial network (UPC-GAN) is developed for improving the plant leaf disease 

classification. The UPCGAN is used to map the images from one domain to another domain in a paired manner and 

estimate the uncertainty with the created images. Moreover, UPCGAN performs pixel wise residual distribution using 

the independent distributed zero mean generalized Gaussian distribution (GGD). The progressive learning of UPC-

GAN increases the differences in the augmented synthetic images for improving the classification using DenseNet121. 

The dataset used to evaluate the proposed UPCGAN-DenseNet121 method is PlantVillage dataset. The performance 

of UPCGAN-DenseNet121 is analysed using accuracy, precision, recall and F1-score. Existing research such as deep 

convolutional GAN (DCGAN)-GoogleNet, conditional GAN (CGAN)-DenseNet121 and Fast wide and deep feature 

extraction block (WDBlock) based GAN namely FWDGAN are used to evaluate the UPCGAN-DenseNet121. The 

accuracy of UPCGAN-DenseNet121 for 10 classes is 98.2%, which is high when compared to the DCGAN-GoogleNet, 

CGAN-DenseNet121 and FWDGAN. 

Keywords: Deep learning model-based augmentation, Densenet121, Uncertainty based progressive conditional 

generative adversarial network, Plant leaf disease classification, Synthetic images. 

 

 

1. Introduction 

One of the significant characteristics of precision 

agriculture is dealing with plant disease. Plants are 

habitually suffered from various unknown diseases 

that decrease the overall yield and reduce production 

quantity and quality [1]. Plant disease creates a 

danger to global food security and smallholder 

farmers whose life mainly depends on healthy crop 

and agriculture. In developing countries, smallholder 

farmers create more than 80% of agricultural 

production, but statistics state that more than 50% of 

loss occurred because of pests and diseases. 

Subsequently, the overall world population is 

predicted to develop to more than 9.7 billion in the 

year 2050, hence developing food security is a higher 

concern in upcoming years [2]. The precise and 

timely plant disease diagnosis helps for supportable 

and accurate agriculture and is also used to prevent 

unwanted waste of financial and other resources [3] 

[4, 5]. On the other hand, imprecise disease 

calculations create faulty decisions or possibly return 

severe issues [6]. 

The discovery of plant disease using the naked 

eye is difficult for farmers and locating the expertise 

in plant disease is also a challenging task on the rural 

side [7, 8]. The pathogens are controlled when the 
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diseases are detected in a preliminary stage at plants. 

Some of the issues which frequently occurred during 

leaf disease classification are brightness, complex 

image background, pose, interclass similarities, color, 

and occlusion. Moreover, the initial identification of 

plant disease is frequently impossible in various parts 

of the world, because of insufficient resources [9]. 

Therefore, artificial intelligence is used in agriculture 

for gaining insights about crops and using the 

information to maximize overall production [10]. But 

the small or inadequate data frequently creates 

overfitting in the models and affects the 

performances during classification. This issue is 

eliminated by performing the data augmentation and 

annotations using a property of Deep Neural Network 

(DNN) namely transfer learning [11, 12, 13, 14]. 

Additionally, the DNN can use the raw data directly 

without any hand crafted features [15]. The general 

image augmentation approaches such as shift, zoom, 

and rotation are employed in existing research for 

allowing to create the new images from the original 

dataset and maximizing the number of images, but 

they cannot reduce the misclassifications. Moreover, 

the existing approaches based on tomato leaf disease 

was not efficient and leads to misclassification with 

less accuracy. The aforementioned issue is taken as 

the motivation for this research to develop an 

effective augmentation approach for improving 

classification performance. This research proposed 

UPCGAN which can improvise the classification 

efficiency by augmenting the image using a pixel 

wise residual approach. Moreover, the suggested 

approach has the tendency to learn and predict the 

optimal scale and shape of every pixels of the leaf 

image. 

The key contributions are concise as follows: 

 

• The UPCGAN based deep learning data 

augmentation is developed for generating 

effective augmented images in various 

resolutions. The progressive learning of 

UPCGAN considers the lower to higher 

resolutions of original images for improving 

the classification of plant leaf disease. 

• Further, the augmented images from 

UPCGAN and original images are used in the 

DenseNet121 to classify the plant leaf images. 

The DenseNet121 is considered in this 

research because it uses a higher amount of 

fully connected layers for obtaining a better 

representation of deeply hidden features. 

 

The paper is arranged as follows: section 2 

provides the related research about the data 

augmentation techniques developed for plant disease 

detection. A detailed explanation of UPCGAN-

DenseNet121 is provided in section 3 whereas the 

outcomes of the UPCGAN-DenseNet121 are given in 

section 4. Further, the conclusion is made in section 

5. 

2. Related work 

Pandian [16] developed the 14-layered deep 

convolutional neural network (14-DCNN) for 

detecting plant leaf diseases. The data augmentation 

approaches such as basic image manipulation, deep 

convolutional GAN, and neural style transfer were 

used for balancing the individual sizes of each class 

in the dataset. Here, appropriate hyperparameter 

values were chosen by using the random search with 

the coarse to a fine searching approach which was 

utilized to enhance the training performance of 14-

DCNN. However, the occlusion region during image 

segmentation was not considered which diminish the 

rate of accuracy during classification.   

Wu [17] implemented GAN-based data 

augmentation for enhancing the accuracy of tomato 

leaf disease classification. The deep convolutional 

GAN (DCGAN) was developed to generate the 

augmented images and GoogleNet was used for the 

disease prediction. The learning rate, batch size and 

momentum for generating more realistic and diverse 

samples were used to optimize the DCGAN. 

However, imbalance in efficiency was noticed due to 

usage of noise-to-image GANs which exhibit the 

image of healthy leaves as diseased leaves.  

Zhou [18] presented the fine-grained-GAN to 

perform local spot area data augmentation. The 

capacity of spot feature representation was achieved 

by using hierarchical mask generation in the grape 

leaf spot data augmentation that was used to enhance 

the detection of grape leaf spots. An enhanced rapid 

R-CNN was combined with fine-grained-GAN with 

a fixed size bounding box which was used to decrease 

the computations and avoided the scale variation that 

occurred by the classifier. But, the suggested 

approach was suited to detect only the visual leaf 

spots.  

Deng [19] developed the RAHC_GAN for 

increasing the tomato leaf data and discovering 

diseases. The continuous hidden variables were 

included in the generator input for controlling the 

occurred disease area size and for supplementing the 

intra-class data of the identical disease. For 

enhancing the concentration of the disease region, a 

residual attention block was incorporated into the 

generator. Next, the texture of created image was 

enriched by using a multi-scale discriminator. Further, 

ResNet, VGGNet, AlexNet, and GoogleNet were  
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Figure. 1 Block diagram for the overall UPCGAN-DenseNet121 method 

 

used by RAHC_GAN to perform classification. 

However, GAN creates variability while recognizing 

the images and diminish the overall efficiency.   

Abbas [20] presented the deep learning approach 

which used the conditional GAN (C-GAN) to create 

synthetic images for tomato plant leaves. The 

augmented synthetic images were further used to 

perform tomato disease identification. Further, the 

synthetic and real images were used to train the 

DenseNet121 for classifying tomato leaves diseases. 

However, the C-GAN was incapable to detect various 

stages of disease based on its appearance. 

Li [21] developed the fast wide and deep feature 

extraction block (WDBlock) based GAN namely 

FWDGAN for data augmentation of images. The 

WDBlock was developed along with two-path 

strategy for the generator of network. The depth 

features were obtained using ResNet and global 

features were obtained using InceptionV1 in 

WDBlock. The efficiency of augmented leaf disease 

images was enhanced by using the WDBlock. The 

Depthwise separable convolution Discriminator was 

incorporated in discriminator of network for 

minimizing the model parameters. The developed 

FWDGAN was required to be analyzed with all 

classes of tomato leaf disease for an effective 

prediction.   

The issues found from related work are 

mentioned as follows: accuracy reduction due to lack 

of image details, variations in the augmented images 

and inefficiency to detect the different types of 

diseases. The solutions given by proposed research 

are stated as follows: A better depiction of deeply 

hidden features is achieved by using the 

DenseNet121 with huge amount of fully connected 

layers. The pixel wise residual dissemination that 

identify the pixel’s optimal scale and shape which 

results in better classification of UPCGAN-

DenseNet121. 

3. UPCGAN-DenseNet121 method 

In this research, UPCGAN-based data 

augmentation is accomplished for improving the 

classification of plant diseases. The overall 

UPCGAN-DenseNet121 approach is divided into 

two sections where the UPCGAN generates the 

synthetic images followed by the classification of 

plant disease images done using the discriminator. 

The block diagram for the overall UPCGAN-

DenseNet121 method is given in Fig. 1. The input 

images are given to the generator module where a 

certain amount of noise is added along with a label 

for creating the pixel variations. Further, this 

UPCGAN provides augmented images which leads 

to improving accuracy. 
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3.1 Dataset acquisition 

In this research, the data is collected from 

publicly available tomato PlantVillage dataset [22] 

which is used for evaluating the UPCGAN-

DenseNet121 method. This PlantVillage dataset has 

16,012 leaf images where it has 10 different classes. 

In that 10 classes, 9 classes are from diseases and 

remaining one is healthy class. The ten classes are 

tomato healthy (TH), tomato mosaic virus (TMV), 

tomato early blight (TEB), tomato late blight (TLB), 

tomato bacterial spot (TBS), tomato leaf mold (TLM), 

tomato septoria leaf spot (TSLS), tomato target spot 

(TTS), tomato yellow leaf curl virus (TYLCV) and 

tomato two spotted spider mite (TTSSM). 

3.2 UPCGAN based data augmentation 

The volumetric CNN is considered for designing 

the proposed UPCGAN architecture. The UPCGAN 

has a generator module, refiner network, and 

descriptor. The generator produces the image objects 

and the refiner network is used for correcting and 

sharpening the created objects based on the learning 

from the real samples. A group of diverse compound 

objects from various types and input noise vectors are 

augmented by GAN. These objects are an obstacle to 

automatically attaining the label information. To 

overcome the aforementioned problem, the 

conditional GAN is used for handling the generator 

modes. Accordingly, the generator mode’s handling 

is used for specifying the object label. The encoded 

class vector is used along with a dimension 10 as an 

extra input layer for performing the conditioning in 

the generator and discriminator.  

The important reason for utilizing the GAN is that 

it generates a huge amount of different samples. But, 

the general issue of the GAN is the mode collapse. In 

that case, the generator module generates one or 

small subclasses of anticipated output. To overcome 

the mode collapse issue, the progressive 

augmentation of GAN is developed for gradually 

training the discriminator. The augmented input data 

with various resolutions are obtained from the 

generator which are given as input to the 

discriminator in the progressive training process. The 

descriptor gradually enhances the classifications 

based on the studied data dissemination between low 

and high resolutions samples over the UPCGAN. The 

feature space augmentation (FSA) approach is used 

in the discriminator for designing the UPCGAN. In 

FSA, the augmented synthetic input data are 

combined with the real sample’s feature 

representation in the intermediate hidden layers of the 

discriminator. The UPCGAN is used to map the 

images from one domain to another domain in a 

paired manner. The proposed UPCGAN has the 

ability to estimate the uncertainty with the created 

images. Moreover, UPCGAN performs pixel wise 

residual distribution using the independent 

distributed zero mean generalized Gaussian 

distribution (GGD). The GGD has a tendency to learn 

and predict the optimal scale and shape of every 

pixels of the leaf image. The multiphase images are 

created using UPCGAN with uncertainty estimates. 

The output obtained from one phase of the image is 

provided as the input to the next phase of UPCGAN. 

The inclusion of uncertainty principle in PCGAN 

helps to refine the regions which are seems to be 

poorly synthesized and helps in effective 

classification of diseased leaves.        

The 4 convolutional layers of kernel size 

4 × 4 × 4 are included in the generator 𝐺 along with 

the kernel strides are {1, 2, 2, 2} and the number of 

channels of {256, 128, 64, 1}. After each layer, the 

batch normalization and rectified linear unit (ReLU) 

activation layer are utilized as well as the sigmoid 

layer (𝜎(𝑥) = 1 1⁄ + 𝑒−𝑥)  is installed in the 

generator where 𝑥 is real sample. The discriminator 

𝐷 reflects a generator, however, it utilizes the leaky 

ReLU instead of conventional ReLU for performing 

continuous learning, even when there is a dead 

neuron. A dense layer with 𝑁 length (𝑁 denotes the 

number of classes) is incorporated for predicting the 

object class according to the softmax classifier in the 

classification of object label.  

The condition vector 𝑦𝑖  and input noise 𝑧  are 

integrated into a joint hidden depiction and given as 

input to the generator. The synthetic objects with the 

class label and real objects are passed to the 

discriminator for evaluating and classifying the 

synthetic object. The objective function for 

computing the adversarial loss of typical GAN is 

expressed in Eq. (1).  

 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥𝑖∈𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥𝑖)] + 

𝐸𝑧∈𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]          (1) 

 

Where, the binary cross-entropy function is 

denoted as 𝑉(𝐺, 𝐷); expectation operator is denoted 

as 𝐸; the dissemination of the real and the synthetic 

samples are represented as 𝑝𝑑𝑎𝑡𝑎(𝑥)  and 𝑝𝑧(𝑧) 
respectively. Eq. (2) shows the GAN’s adversarial 

loss with a conditional input 𝑦𝑖.  
 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥𝑖∈𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥𝑖|𝑦𝑖)] + 

𝐸𝑧∈𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧|𝑦𝑖)))]     (2) 
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Figure. 2 The architecture of refiner network 

 

The adversarial theory states that the generator 

makes an effort to cheat the discriminator by 

classifying their objects as actual by trying to 

decrease the objective function. However, the 

discriminator increases the objective function, so 

there is no chance for misclassification. These are the 

features of the discriminator and generator from a 

min-max approach mentioned in Eq. (2). 

Additionally, the object classification with UPCGAN 

in the framework of supervised learning is designed 

and the generator produces the labeled data samples 

based on the label and noise vector. Hence, the 

synthetic/fake sample is expressed as 𝑥𝑖 = 𝐺(𝑧, 𝑦𝑖). 
There are two different probabilities obtained from 

the discriminator such as probability dissemination 

over sources i.e., 𝑃(𝑟𝑒𝑎𝑙|𝑥𝑖)  and 𝑃(𝑟𝑒𝑎𝑙|𝑥𝑖)  and 

probability dissemination over the class label i.e., 

𝑃(𝑦𝑖|𝑥𝑖)  and 𝑃(𝑦𝑖|𝑥𝑖) . Therefore, the objective 

function for UPCGAN is expressed as shown in Eqs. 

(3) and (4). 

 

𝐿𝐷 = 𝐸[log𝑃(𝑟𝑒𝑎𝑙|𝑥𝑖)] + 𝐸[log𝑃(𝑓𝑎𝑘𝑒|𝑥𝑖)] + 

𝐸[log𝑃(𝑦𝑖|𝑥𝑖)] + 𝐸[log𝑃(𝑦𝑖|𝑥𝑖)]            (3) 

 
𝐿𝐺 = 𝐸[log 𝑃(𝑟𝑒𝑎𝑙|𝑥𝑖)] + 𝐸[log𝑃(𝑦𝑖|𝑥𝑖)]     (4) 

 
In UPCGAN, the 𝐿𝐺 is minimized by training the 

generator and 𝐿𝐷  is maximized by training the 

discriminator. The 1st two terms of Eq. (3) denote 

classifying both the real and fake samples precisely 

whereas the last two samples denote that both 

samples have accurate class labels. For the generator 

in Eq. (4), all the produced samples are predicted to 

be categorized as fake using the discriminator as well 

as it has an accurate class label. Further, the refiner 

network is added among the generator and the 

discriminator for obtaining the improved 

classification. The designed refiner network has 4 

blocks from the ResNet and it is illustrated in Fig. 2, 

where 𝑚  refers the amount of the filters and 𝑛 

denotes the volume size. 

The size of the input volume (𝑛) is similar to the 

augmented sample’s volume size acquired from the 

generator. Each convolution block used 16 

convolutional filters for optimizing the memory. The 

main objective of the refiner network is used for 

enhance the realism of fake samples and create them 

to be identical to the real images. Therefore, the 

training with augmented samples for enhancing the 

capacity of feature learning and maximizes accuracy. 

3.3 Classification of DenseNet121 

After performing the augmentation, the real 

images and augmented images from UPCGAN are 

given as input to the DenseNet121 for classifying the 

tomato leaf diseases. Generally, each layer of 

DenseNet is linked to each layer in a feed-forward 

way. This DenseNet121 has four dense blocks which 

take 224 × 224 image pixels as input. Here, the 1st 

convolution layer has 2000 convolution functions 

with 7 × 7  size and stride 2 . Next, a max pooling 

layer of 3 × 3 is used with stride 2. Further, a pooling 

layer and 3 dense blocks are used where each dense 

block is placed with the transition layer. The 

classification layer exists after the fourth dense block. 

The Fully-connected and softmax layers are 

eliminated for fine-tuning the pre-trained DenseNet 

over the images. Next, 2 Convolutional layers with  
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Table 1. Performance analysis of classifiers without data UPCGAN 

Case Classifier without data augmentation Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Case 1 VGG16 94.08 94.62 95.24 94.68 

VGG19 95.79 96.01 95.33 96.37 

AlexNet 92.36 92.64 93.46 94.29 

DenseNet121 97.11 98.25 97.06 98.32 

Case 2 VGG16 93.86 94.11 94.82 93.95 

VGG19 95.47 95.45 96.08 95.91 

AlexNet 91.28 91.34 90.26 91.56 

DenseNet121 96.24 97.08 96.37 97.11 

Case 3 VGG16 92.09 92.86 93.01 93.27 

VGG19 93.15 93.22 94.63 93.98 

AlexNet 90.68 91.26 90.08 91.72 

DenseNet121 94.56 96.31 95.94 96.94 

 

ReLU, a fully-connected layer, an average pooling 

layer, and a softmax layer are incorporated in the 

DenseNet121. Here, the DenseNet121 is trained to 

form 100 epochs with a batch size of 32 and a 

learning rate of 0.0001 where Adam’s optimizer is 

used to update the weights. 

4. Results and discussion 

The outcomes of the UPCGAN-DenseNet121 

method are explained in this section. The UPCGAN-

DenseNet121 method is designed and simulated in 

the Python 3.7 software where the system is operated 

with 8GB RAM and an i5 processor. The UPCGAN-

based data augmentation along with DenseNet121 

based classification is proposed for improving the 

classification of tomato leaf diseases. The 

performance metrics such as accuracy, precision, 

recall, and F1-score expressed in Eqs. (5) to (8) are 

used to evaluate the UPCGAN-DenseNet121. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100             (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                    (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                           (7) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100               (8) 

 
Where, 𝑇𝑃 is true positive; 𝑇𝑁 is true negative; 

𝐹𝑃 is false positive and 𝐹𝑁 is false negative. 

Detailed information about the dataset and 

performance evaluation are given in the following 

sections.  

4.1 Dataset 

The images of the tomato PlantVillage dataset 

[22] are resized into 224 × 224  to achieve faster 

computations. From each class of dataset, 300 images 

are randomly taken to avoid the data imbalance issue. 

Therefore a total of 10 × 300 = 3000  images are 

taken for evaluation. At the end of the augmentation 

performed by UPCGAN, 12,000 images are obtained 

and these images are combined with real images of 

the dataset. Hence, a total of 15,000 images are 

processed by DenseNet121 for classification. The 

dataset is divided into 60:10:30 as a training set, 

validation set, and test set for classification. Consider, 

there is no overlapping is occurred among the three 

sets. The training and validation sets are used to 

accomplish the training whereas the testing set is used 

to evaluate the classification.  

4.2 Performance evaluation of UPCGAN-

DenseNet121 

The performance of UPCGAN-DenseNet121 is 

evaluated for two different cases where different 

classes of tomato leaf disease are taken which are 

specified as follows: 

• Case 1: In this case, five classes from the 

dataset such as TH, TLB, TSLS, TTS and 

TYLCV are taken for analysis. 

• Case 2: This case 2 considers six different 

classes such as TH, TSLS, TBS, TLB, TTS 

and TYLCV for analysis. 

• Case 3: It considers all 10 classes from the 

dataset. 

For the aforementioned cases, the performances 

of UPCGAN-DenseNet121 are evaluated with 

different classifiers such as VGG16, VGG19, and 

AlexNet. In this section, the performances are 

evaluated for classifiers without data augmentation 

and classifiers with UPCGAN. The performance of 

UPCGAN-DenseNet121 without data augmentation 

for all three cases is given in Table 1. Next, the 

graphical illustration of case 3 performances is shown 

in Fig. 3. From the analysis, it is known that the 

DenseNet121 without UPCGAN provides higher  
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Figure. 3 Graphical results of classifiers without UPCGAN for case 3 

 

 
Figure. 4 Graphical results of classifiers with UPCGAN for case 3 

 

classification accuracy than the VGG16, VGG19, 

and AlexNet for all three cases. For example, the 

accuracy of DenseNet121 for case 1 is 97.11%, 

whereas VGG16 obtains 94.08%, VGG19 obtains 

95.79% and AlexNet obtains 92.36%. The 

DenseNet121 achieves better classification because 

of its higher amount of fully connected layers which 

helps to achieve a better representation of deeply 

hidden features.  

Table 2 shows the performance analysis of 

different classifiers (VGG16, VGG19, AlexNet and 

DenseNet121) with proposed UPCGAN based data 

augmentation. Next, the graphical results of 

classifiers with UPCGAN for case 3 are shown in Fig. 

4. From the analysis, it is concluded that the 

combination of UPCGAN and DenseNet121 

provides better performance than the other classifiers. 

For example, the accuracy of UPCGAN-

DenseNet121 for case 1 is 99.08%, whereas VGG16 

obtains 96.93%, VGG19 obtains 98.82% and 

AlexNet obtains 95.08%. Moreover, the accuracy of 

UPCGAN-DenseNet121 is higher than the accuracy 

of DenseNet121 without UPCGAN for all three cases. 

The augmented images with different resolutions 

obtained from the generator of UPCGAN are given 

as input to the discriminator. Therefore, the 

progressive training developed in this UPCGAN is 

used to enhance the classification of tomato leaf 

diseases. 

4.3 Comparative analysis 

Existing research such as DCGAN-GoogleNet 

[17], CGAN-DenseNet121 [20] and FWDGAN [21] 

are used to evaluate the efficiency of the UPCGAN-

DenseNet121 method for all three cases mentioned in 

the previous section. The DCGAN-GoogleNet [17] 

and FWDGAN [21] are implemented for the same 

cases mentioned in section 4.2 for comparison. The 

comparative analysis of UPCGAN-DenseNet121 

method is shown in the Table 3. Additionally, the 

graphical comparison of F1-score for UPCGAN is 

shown in Fig. 5. From the comparisons, it is  
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Table 2. Performance analysis of classifiers with UPCGAN 

Case Classifier with 

UPCGAN 

Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Case 1 VGG16 96.93 95.64 96.93 96.44 

VGG19 98.82 97.22 97.06 96.79 

AlexNet 95.08 95.93 94.28 94.77 

DenseNet121 99.08 98.74 99.21 99.03 

Case 2 VGG16 96.05 95.08 96.7 96.17 

VGG19 97.84 97.08 97.46 96.63 

AlexNet 94.47 94.84 95.05 95.08 

DenseNet121 98.64 98.5 98.74 98.93 

Case 3 VGG16 95.05 95.28 96.46 96.1 

VGG19 96.68 96.05 96.43 95.58 

AlexNet 93.35 94.58 94.58 93.09 

DenseNet121 98.2 98.34 98.34 98.06 

 
Table 3. Comparative analysis of UPCGAN-DenseNet121 

Case Methods 
Case 

Case 1 Case 2 Case 3 

Accuracy (%) 

DCGAN-GoogleNet [17] 94.33 92.04 90.48 

CGAN-DenseNet121 [20] 99.51 98.65 97.11 

FWDGAN [21] 98.71 96.48 95.14 

UPCGAN-DenseNet121 99.08 98.64 98.2 

Precision (%) 

DCGAN-GoogleNet [17] 93.47 91.86 90.35 

CGAN-DenseNet121 [20] 99 98 97 

FWDGAN [21] 98.09 96.27 96.83 

UPCGAN-DenseNet121 98.74 98.5 98.34 

Recall (%) 

DCGAN-GoogleNet [17] 94.70 92.09 89.34 

CGAN-DenseNet121 [20] 99 99 97 

FWDGAN [21] 97.19 95.47 96.97 

UPCGAN-DenseNet121 99.21 98.74 98.34 

F1-score (%) 

DCGAN-GoogleNet [17] 94.08 92.43 89.97 

CGAN-DenseNet121 [20] 99 98 97 

FWDGAN [21] 97.72 95.52 95.53 

UPCGAN-DenseNet121 99.03 98.93 98.06 

 

 
Figure. 5 Graphical comparison of F1-score for UPCGAN 

 
concluded that the UPCGAN-DenseNet121 

outperforms well than the DCGAN-GoogleNet [17], 

CGAN-DenseNet121 [20] and FWDGAN [21]. The 

performances of UPCGAN-DenseNet121 slightly 

varied when compared to the CGAN-DenseNet121 

[20], but the CGAN-DenseNet121 [20] provides 
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lesser performances when it analysed with huge 

amount of data samples. Specifically, the higher F1-

score of the UPCGAN-DenseNet121 shows that it 

does not consider the data imbalance during the 

classification. For instance, the UPCGAN-

DenseNet121 has obtained 98.06% F1-score for third 

case whereas DCGAN-GoogleNet [17] obtains as 

89.97%, CGAN-DenseNet121 [20] obtains as 97% 

and FWDGAN [21] obtains as 95.53 %. The better 

result of the proposed UPCGAN-DenseNet121 is due 

to the pixel wise residual distribution which predict 

the optimal scale and shape of every pixel of the leaf 

image and aids in better classification. 

5. Conclusion 

Many applications for the computerized 

diagnosis of plant leaf disease are developed 

according to deep learning techniques. However, the 

existing applications are suffered from overfitting 

issues, because of insufficient training data. In this 

paper, UPCGAN based augmentation is developed 

for generating synthetic images (augmented images) 

based on the input samples. The progressive learning 

of UPCGAN utilizes the lower to higher resolutions 

of input images for gradually improving the generator 

performance and generating informative objects. 

Further, the original images are trained along with the 

synthetic images for improving the classification of 

plant leaf diseases using DenseNet121. The 

augmented training samples with various resolutions 

are used to enhance the classification performances. 

From the results, it is concluded that the UPCGAN-

DenseNet121 provides better performance than the 

DCGAN-GoogleNet, CGAN-DenseNet121 and 

FWDGAN. The accuracy of UPCGAN-

DenseNet121 for 10 classes is 98.2%, which is high 

when compared to the DCGAN-GoogleNet, CGAN-

DenseNet121 and FWDGAN. In future, the deep 

learning with optimal learning rate for improving the 

classification of leaf diseases.  

Notation 

Parameter Description 

𝐺 Generator 

𝜎 Sigmoid layer 

𝑥 Real sample 

𝑁 Length of dense layer 

𝑦𝑖  Condition vector 

𝑧 Input noise 

𝑉(𝐺, 𝐷) Binary cross-entropy function 

𝐸 Expectation operator 

𝑝𝑑𝑎𝑡𝑎(𝑥) Dissemination of the real samples 

𝑝𝑧(𝑧) Dissemination of the synthetic samples 

�̂�𝑖 Synthetic/fake sample 

𝑃(. ) Probability dissemination 

𝐿 Objective function for UPCGAN 

𝑛 Size of the input volume 

𝑇𝑃 True positive 

𝑇𝑁 True negative 

𝐹𝑃 False positive 

𝐹𝑁 False negative 
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