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Abstract: Seed germination is a primary objective of precision agriculture. Precision agriculture, which makes 

extensive use of machine learning, has been the subject of recent studies on predictive analytics. These machine 

learning methods typically employ supervised learning models to make predictions about how successfully seeds will 

germinate. However, a major challenge that modern models face when attempting to make accurate predictions is the 

curse of dimensionality in the training corpus. The primary contribution of this manuscript is an ensemble-based 

method for predicting seed germination quality (EL-GQP) in precision agriculture. The accuracy of predictions can be 

improved using this ensemble method, which combines the positive aspects of a number of different models while 

minimising the negative aspects of the individual models. The proposed model is significantly superior to the current 

model, as demonstrated by experimental results of cross-validation on the benchmark dataset. During the simulation, 

work is done on the corpus dataset contains 4250 negative records and 6230 positive records. 

Keywords: Precision farming, Ensemble classification, Germination quality, Machine learning, Predictive analytics. 

 

 

1. Introduction 

[1] Asserts that seed quality is an essential 

component of agricultural production that directly 

influences yield. Utilizing high-quality seeds and 

inbreeding the plant lowers the cost of field 

experiments while increasing the likelihood of 

finding the best crop variety. As shown in [2] 

programmes for ensuring the quality of seeds use a 

range of methods to validate the traits of seed-like 

vigour and germination tests. These processes have 

limitations associated with the consumption of time, 

destructive nature, and subjectivity of measuring 

seed quality [3-5]. The work [6] presents that there 

has been a rapidly increasing demand for effective 

approaches, which might provide reliable, rapid, 

objective, and non-destructive identification of the 

quality of seed [6]. 

To a human society, seeds are required as the 

main source of food and service to be significant 

crops materials. The yield of a crop is heavily 

influenced by seed quality and environmental factors. 

According to [7], measuring seed germination is a 

necessary task for seed researchers in order to 

evaluate the various seed lots and enhance the 

efficiency of the food chain. It is important to note 

that worldwide crop product needs to be doubled to 

supply the increasing population by 2050 as in [8]. 

Traditional measures of seed testing, mainly tests of 

seed-vigor, have not been utilized extensively 

because of time-intensive and cumbersome protocols 

as in [9]. Moreover, many seed tests introduced by 

ISTA (international seed testing association) have 

been manually assessed by utilizing a standardized 
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process, which varies for diversified crops [10]. 

Concerning to the prologue abovementioned, it is 

necessary to contribute computer aided models those 

build on machine learning, artificial intelligence, and 

deep h platforms. In this context, a novel machine 

learning model, which is an ensemble learning-based 

seed germination quality check model has portrayed 

in this manuscript. 

EL-GQP, the proposed precision agriculture 

method, has several advantages over current methods. 

First, it uses ensemble-based modelling to improve 

prediction accuracy. This method reduces model 

drawbacks, improving predictions. Second, EL-GQP 

addresses the curse of dimensionality, which plagues 

machine learning models. Predictions are difficult 

when the training dataset has many variables. EL-

GQP solves this problem by using an ensemble of 

models to handle more variables and produce more 

accurate results. 

Third, EL-GQP accurately predicts seed 

germination. Precision agriculture aims to achieve 

this, and the suggested approach outperforms existing 

models. Cross-validation on the benchmark dataset 

shows that EL-GQP performs significantly better 

than existing models. 

The EL-GQP method has several advantages over 

current precision agriculture methods. Precision 

agriculture practitioners use it to integrate multiple 

models, overcome dimensionality, and accurately 

predict seed germination quality. 

This article has been organized into five parts. 

The first section discusses seed germination and how 

machine learning (ML) algorithms can be used to 

predict seed germination quality. The second section 

contains a comprehensive review of the most recent 

ML algorithms for predicting seed germination 

quality. The third section discusses the study's 

methods and materials, with a focus on an ensemble 

learning-based seed germination quality check model. 

Section four presents the results of an experimental 

study on seed germination quality prediction using 

the proposed model, as well as performance measures. 

Finally, the conclusion highlights the study's 

contribution and summarises the key findings. 

2. Related work 

Generally, variations in internal anatomical 

characteristics and chemical composition of seeds 

have been associated with loss of vigor and viability, 

as in [11]. However, these variations have been 

unlikely recognized through visual inspection. 

Moreover, approaches dependent on X-ray imaging 

and spectrometric strategies have been utilized 

successfully to gather data on complex traits 

associated with seed quality. In this case, FT-NIR 

(Fourier transform near-infrared) spectroscopy has 

demonstrated significant potential for identifying 

seed compounds by acquiring a large number of 

spectral details, as shown in [12-18]. FT-NIR 

spectroscopy can acquire a large amount of spectral 

data and is effective in identifying seed compounds, 

according to several studies. As shown in [19], the 

FT-NIR spectroscopy is dependent on 

electromagnetic radiation absorption at wavelengths 

ranging from 780 to 2500 nm. This wide range of 

wavelengths enables direct and simultaneous 

measurement of multiple constituents in seed 

samples. As a result, it is versatile for simultaneous 

and direct measurements of various constituents in 

seed samples, as demonstrated in [16, 20-23]. 

Previous research has found that these characteristics 

make it an effective method for analysing seed 

samples. On other dimensions, X-ray imaging has 

been dependent on X-ray attenuation variances in 

diversified tissues types [24]. Therefore, it might 

reveal a physical seed state with an internal 

morphology as in [11]. Even though these strategies 

have the maximal possibility for classification of seed 

quality, integrating the datasets might produce novel 

information regarding the samples of seed or enhance 

the performance of the classifier as in [25]. 

Current advancements of ML algorithms have 

revolutionized agriculture due to their fundamental 

for building approaches to categorize products, 

mainly seeds quality attributes. The robust algorithms 

might capture non-linear and linear associations, and 

they might attain maximal accuracy of classification. 

Various algorithms proved as effective to solve the 

issues in several researching domains like PLS-DA 

(partial least squares discriminant analysis), LDA 

(linear discriminant analysis), NB (naïve Bayes), 

SVM, and many more, as stated in [12, 15, 17, 25, 

26]. Nevertheless, distinct algorithms perform 

differently, and they might have diversified 

performances as in [26]. 

Even though models based on optical might 

produce accurate data on the quality of seed, 

combining datasets by ML algorithms might enhance 

the further performance of classification. There were 

no endeavors in utilizing FT-NIR integrated with X-

ray data images for categorizing the quality of seed. 

Hence, by utilizing U. Brizantha grass seeds as an 

approach, we have tested whether combined data 

from the X-ray imaging and FT-NIR with ML 

algorithms might enhance the vigor and germination 

of seed predictions. 

In order to cut down on the number of manual 

steps in the error-prone seed-testing process, several 

researchers have proposed models for automating 
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this process. Because they are easy to automate and 

provide more accurate measurements with fewer 

errors than alternative methods, traditional image 

analysis strategies are currently used to identify seeds. 

In contrast, many published algorithms predict the 

perimeter, roundness, colour, width, and perimeter 

values of the seed using colour-based thresholds. [32] 

Defines a "germinator" as a piece of software that, by 

calculating the variance and area between individual 

points in an image over time, predicts whether an 

Arabidopsis-thaliana seed will germinate. Different 

seeds require adjustments to different system 

components, and the system has probably failed in a 

variety of partial occlusion or illumination scenarios. 

Similar to [33], SVIS (Seed vigour imaging system) 

uses a flat-bed scanner to scan images and digitally 

process the RGB pixel values to determine the 

lengths of the seeds. The camera settings have been 

standardised to enhance performance on other 

dimensions when scanning in any lighting. In order 

to measure the seeds using this method, the 

researcher must be present during the entire 

germination simulation. KNN, SVM, NB, and ANN 

were previously compared to determine which ANN 

approaches had the highest accuracy and 

performance for recommended seed germination, as 

stated in [34]. As a result, the researchers manually 

performed an additional germination test using image 

processing to extract eleven features. Convolutional 

neural networks (CNN) are a relatively new 

technique for image processing, in contrast to deep 

learning [35]. CNNs use features that are 

automatically extracted and learned from the original 

images to solve a variety of image classification 

issues. One of the factors for success is a low reliance 

on clearly defined obstructions and illuminations to 

achieve maximum accuracy in computer vision tasks. 

Rice seed germination has already been 

automatically measured using CNNs [36]. This 

model could only forecast the final percentage of 

germination because images weren't taken until after 

the simulation of germination was complete. 

Machine learning-based germination quality 

prediction for seeds (GDPQA) [37, 40] is another 

contemporary model that endeavored to speed up the 

assessment of seed germination quality prediction. 

The other contemporary model, ―seed quality 

classification using merger data from spectroscopy 

and x-ray imaging (ML-SQC) [38, 41] has been 

aimed to avoid preprocessing of the input data to 

achieve rapid classification. However, these 

contemporary models do not address the curse of 

dimensionality that is considering lowering the 

prediction accuracy, specificity, and sensitivity. 

The purpose of this contribution is to lessen the 

consumption of time and human intervention for 

experiments on seed germination and to enhance the 

prediction model of germination, which has been (a) 

independent thresholds based on custom color and 

hence could be implemented to various illumination 

settings and seed cultivars and (b) could be utilized 

for exploring the vigorous germination of seed by 

predicting not only the ultimate percentage of 

germination however different indices such as 

uniformity and rate [44, 45]. 

According to the existing literature, variations in 

the internal anatomical characteristics and chemical 

composition of seeds have been linked to a loss of 

vigour and viability. X-ray imaging and 

spectrometric methods have been used successfully 

to collect data on complex traits related to seed 

quality. Machine learning algorithms have been 

successfully used to classify seed quality attributes. 

However, no attempt has been made to use FT-NIR 

combined with X-ray data images to categorise seed 

quality, and the curse of dimensionality limits 

prediction accuracy, specificity, and sensitivity. The 

goal of this research is to create an accurate, efficient, 

and robust model that can predict seed germination 

and investigate the vigorous germination of seeds 

using machine learning algorithms and data from FT-

NIR and X-ray imaging. The goal is to reduce the 

time and human intervention required for seed 

germination experiments, as well as to improve the 

germination prediction model, which is independent 

of thresholds based on custom colour and can be 

applied to various lighting settings and seed cultivars. 

3. Methods and material  

The characteristics of the dataset and their 

importance for the simulation study and systematic 

model of the suggested EL-GQP approach are 

examined in the subsections of this section (ensemble 

learning based seed germination quality prediction). 

3.1 Quantitative phase imaging principle 

The idea of quantitative stage imaging has been 

explained in this section. Seeds incident under a 

microscope can pass through a particular area and 

scatter at a particular sample area using light in the 

400–1100 mm range, framing a structured sample 

background and indicating a quantitative image. 

Additionally, over the course of 48 hours, the light 

incident procedure on target would be repeated at 

various seed intervals in order to collect the 

quantitative images phase of the necessary sample. 

Quantitative image phase processing can also be 

described mathematically as follows: 

The intensity of light perceived at the light 
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incident event on the required sample could be 

measured under the below inputs, modulation of 

phase, coordinates of the incident [x, y], and phase 

variance among pass through light and scattered light 

in the following Eq. 1. 
 

I∅
[x,y]

= (Lp)
2

+ (Ls
[x,y]

)
2

+

2(Lp)x (Ls
[x,y]

) x cos(∆∅[x,y] + ∅)                           (1) 

 

The variance of quantitative phase among pass 

through light and scattered light has been measured 

by utilizing below Eq. 2. 

 

∆∅[x,y] = arctan (
I3π/2

[x,y]
−Iπ/2

[x,y]

I0
[x,y]

−Iπ
[x,y] )                 (2) 

 

Microscopic images of these formulations at 

various quantitative stages might attain. 

 

0,
𝜋

2
, 3

𝜋

4
, 𝜋                              (3) 

 

There would be three quantitative phase images 

for each sample in the data corpus described in 

section 3.1, leading to a total of 1,324 and 2,144 

microscopic images for qualified and unqualified 

seeds, respectively. 

3.2 Morphological characteristics 

The non-variant moment’s characteristics have 

been considered morphological characteristics, 

which have been resourceful for exhibiting the 

variance among seeds’ optical phases. Moreover, 

these characteristics depend on examining the 

differences in volume and shape of quantitative and 

healthy phases of infested seed. 

The morphometric information has a significant 

role in exhibiting abnormal seeds detection. In the 

case of shape, anemia, and size of seeds became 

imbalanced regarding the everyday environment. 

There are nine shape features like major axis, minor 

axis, area, eccentricity, orientation, perimeter, 

circularity, and seven moments of invariant that have 

been mined. 

3.3 Choosing attributes  

Let set N depicts one of the quantitative phase 

features, and set M depicts other optical seeds phase 

features. 

Choose optimum features in respect to both 

seed’s optical phases in the following way 

 

o The feature will be optimum if coverage of the 

feature is for both optical phases has been 

covariant. If this property has been challenged 

through feature, where coverage at both infected 

and normal seeds would not be divergent, that 

feature would be eradicated. Also, this feature 

optimization has been carried out as follows: 

o Values perceived for overall considered features 

corresponding to both optical seed phases have 

been represented in a matrix format in the 

corresponding sequence. 

o The corresponding normal seeds matrix has been 

represented as follows: 

o Values perceived in each row have been for 

overall considered texture and morphological 

features resulting to normal-seed. 

o Similarly, the perceived values for each row in 

the infected seed matrix represent all of the 

factors that are thought to go into making an 

infected seed. 

o Furthermore, by predicting the z-score among the 

observed values for the resultant feature 

corresponding to both optical phases of the seed, 

the significance of each feature is assessed. The 

corresponding feature is deemed optimal when 

the composite variance is significant at a specific 

threshold probability. 

o By estimating the z-score between the values 

perceived for each feature during the two optical 

phases of the seed, the significance of each 

feature was also ascertained. The resulting 

feature is deemed ideal if the composite 

difference is significant at a specific probability 

threshold. 

3.4 Composite variance 

The datasets n-gram like generated attributes in 

the 2nd stage of the projected model that is organized 

further for attaining required attributes. Electing the 

required characteristics depends on variance among 

co-occurrence of 2 optical seed phases to cater to 

overall attributes. 

For estimating the difference of overall features, 

the optical phase’s co-occurrence in order in the 

recommended model depends on bi-face integrated 

variance estimation for statistical measurement. The 

significance of different assessment models has been 

concerned for the projected model. The Bi-face 

variance compound estimation has been held for 

choosing required attributes related to overall records 

in the learning database. Following is Manifold group 

values associated to two distinct vectors differential 

values set associated to two diversified vectors as 

explored for estimation has been formulated 
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Begin  

|𝒗𝟏|
∀

𝒊 = 𝟏

{𝒆𝒊∃𝒆𝒊

∈ 𝒗𝒊} 

// for overall elements 

presents in vector 

𝒂𝒗𝟏+= 𝒆𝒊 //identifying the 

accumulative of overall 

elements present in the 

vector 

|𝒗𝟐|
∀

𝒋 = 𝟏
{𝒆𝒊∃𝒆𝒋

∈ 𝒗𝟐} 

//for all elements 

presents in vector 

𝒂𝒗𝟐+= 𝒆𝒋 //identifying the 

accumulative of overall 

elements present in the 

vector  

𝝁(𝒗𝟏) =
𝒂𝒗𝟏

|𝒗𝟏|
 

//identifying average of 

overall elements presents 

in vector 

𝝁(𝒗𝟐) =
𝒂𝒗𝟐

|𝒗𝟐|
 

//identifying average of 

overall elements presents 

in vector 

𝒅𝒗𝟏+

= (𝝁(𝒗𝟏) − 𝒆𝒊)𝟐 

//Identifying the 

accumulative of 

squared-mean-distance 

of elements present in 

the vector 

𝒎𝒅(𝒗𝟏, 𝒗𝟐)

= 𝝁(𝒗𝟏) − 𝝁(𝒗𝟐) 

//identifying the variance 

among mean-values of 

elements resents in 

corresponding vectors 

𝝈(𝒗𝟏) = √
𝒅𝒗𝟏

|𝒗𝟏|
 

//Identifying standard-

deviation that is the 

square-root of variance 

perceived for vector v1 

𝝈(𝒗𝟐) = √
𝒅𝒗𝟐

|𝒗𝟏|
 

//Identifying standard-

deviation that is the 

square-root of variance 

perceived for vector v2 

𝒄𝒗
(𝒗𝟏,𝒗𝟐)=

𝒎𝒅(𝒗𝟏,𝒗𝟐)

𝝈(𝒗𝟏)+𝝈(𝒗𝟐)

 //Identifying composite 

difference of vectors that 

is the ratio of variance 

among mean-values in 

opposed to sum of 

standard deviations 

value perceived for both 

vectors. 

End  

 

Moreover, the degree of composite variance 

probability has been lower than the preset threshold 

level; then, it depicts that specified vector distribution 

has diversified. Hence, the attribute depicting the 

values of the resulting vector has been regarded to be 

the required attribute. 

3.5 Classification procedure 

This segment details the classifier utilized in this 

proposal, the model of the training stage, and the 

objective function that has been utilized in the 

classification procedure. 

3.5.1 Classifier 

The projected classifier has been designed on an 

adaptive boosting strategy. The classifier has been 

designed to integrate manifold Boolean-classifiers 

often signified to be weak-classifiers, which were 

built by utilizing Cuckoo-search that has been 

explored in one-time contribution. Every weak- 

classifier has been built by utilizing optimum features 

chosen from diversified quantitative stages. These 

unreliable classifiers divide the given test data 

according to whether the condition is true or false. 

Bipartite negatives, which can contain both false 

positives and false negatives, would be produced by 

a second weak classifier. Until the overall weak-

classifier was thought to have finished the job, this 

process was repeated. The combined results of all of 

these Weak-classifiers would also be included in the 

classification process' final outcomes. 

The projected model has been combined with 

each weak-classifier in this study to determine the 

most effective ways to extract quantitative seed 

features for binary classification. The classification 

process has also been repeated after each weak-

classifier iteration; the next iteration of the classifier, 

also known as boosting, would use the portion of the 

corpus that was incorrectly classified. Weight 

classification also recommends employing a weak 

classifier for each iteration. Records from each of 

these weak-classifiers would be accurately classified 

as a result of the iterative completion of weak-

classifiers. According to the suggested strategy, each 

AdaBoost algorithm weak-classifier correctly 

identifies a particular n-gram.  

Additionally, the output of weak classifiers can be 

used to establish the polarity of the given record. 

Adaboost classifier has been a resourceful solution to 

enhance the desired outcome of DT (decision trees) 

compared to other associated binary classification  
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Table 1. Corpus dataset of paddy-seed 

Total Positives 7920 

Total negatives 6140 

Positives for training 5607 

Negatives for training 5526 

Positives for testing 2313 

Negatives for testing 614 

 

 

 
Figure. 1 Precision observed for proposed method EL-

GQP, contemporary models ML-SQC, and GDPQA 

 

issues. It might be extensively utilized in augmenting 

the outcome of distinct algorithms related to ML. 

4. Experimental study 

4.1 The data 

The records corpus labeled negative and positive 

depicts the germination quality of paddy seed as 

stated in [39, 42] has been utilized in this simulation. 

The corpus dataset comprises of negative records 

4250, and the number of positive records is 6230. In 

table 1, the input corpus statistics have been stated. 

The condition’s performance depends on precision, 

TPR, TNR, and accuracy as significant optimum 

features elected depending on diversified thresholds 

set. The simulations have been conducted in cross-

validation of 10 folds’ format on both the projected 

EL-GQP model and existing approaches like ML-

SQC (machine learning for seed quality 

classification) [38, 41] and GDPQA (Accurate 

machine learning-based germination detection, 

prediction, and quality assessment) [37, 40]. 

Ensemble algorithms form the [43] authors’ are 

helpful to this research. Moreover, comparative 

analysis has been representing that the projected EL-

GQP model is a possible ensemble supervised 

learning approach under crucially measured 

conditions while compared with the performance of 

existing approaches like GDPQA and ML-SQC. 

In the article, performance metrics like precision, 

accuracy, and specificity are used to assess how well 

the ensemble-based precision forming method for 

predicting seed germination quality performs. 

 

• The percentage of correctly predicted positive 

samples (true positives) among all positively 

predicted positive samples (true positives plus 

false positives) is known as precision. When 

predicting seed germination, precision would be 

defined as the percentage of correctly predicted 

viable seeds among all seeds predicted to be 

viable. 

• The percentage of correctly predicted samples 

(true positives plus true negatives) among all 

samples is known as accuracy. The percentage of 

seeds that were correctly classified as viable or 

non-viable in a seed germination prediction 

would be considered accuracy. 

• The percentage of samples that were correctly 

predicted to be negative (true negatives) out of all 

samples that were predicted to be negative (true 

negatives plus false positives) is known as 

specificity. In the context of predicting seed 

germination, specificity would be defined as the 

percentage of correctly predicted non-viable 

seeds among all seeds predicted to be non-viable. 
 

The comparison has been carried out among 

projected model EL-GQP and existing models ML-

SQC and GDPQA by plotting a graph among ten 

folds on the x-axis and metric precision on the y-axis, 

as shown in Fig. 1. The metric precision is also called 

a positive predictive value. From the statistics, the 

average standard deviation of projected model EL-

GQP is 0.98818 ±0.001303 and contemporary 

models ML-SQC and GDPQA are 

0.97638±0.002464 and 0.96798±0.001635 in 

respective order. It has been determined that our form 

carry out enhanced than the ones currently in use. 

In Fig. 2, the graph has been plotted among ten 

folds on the x-axis and metric specificity on the y- 

axis for the projected EL-GQP and compared with 

other contemporary models like ML-SQC and 

GDPQA. From the statistics, the average standard 

deviation of specificity over the projected model EL-

GQP is 0.95689±0.004955, and contemporary 

models ML-SQC and GDPQA are 

0.91576±0.009092 and 0.88891±0.005879 

respectively. It has been determined that our form 

carry out enhanced than the ones currently in use. 

The comparison between projected model EL-

GQP and existing models ML-SQC and GDPQA by 

plotting graph among ten folds on the x-axis and 

metric accuracy on the y-axis as shown in Fig. 3. 

From the statistics, the average standard deviation of  
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Figure. 2 Specificity observed for proposed method EL-

GQP, contemporary models ML-SQC, and GDPQA 

 

 
Figure. 3 Accuracy observed for proposed method EL-

GQP, contemporary models MK-SQC, and GDPQ 

 

 

accuracy over the projected model EL-GQP is 

0.94887±0.003834and contemporary models ML-

SQC and GDPQA are 0.9232±0.004999 and 

0.89076±0.002999 in respective order. It has been 

determined that our form carry out enhanced than the 

ones currently in use. 

5. Conclusion  

The contribution of this paper endeavoured to 

deal with the constraints of the predictive analysis 

through classification to depict the seed germination 

quality. Unlike the contemporary models, the 

proposal is extracting values for the features from 

quantitative phases. It is observed that the 

contemporary models downgrade the prediction 

accuracy if the given microscopic images of seed at 

their premature level of infection. Predictive analysis 

based on classification is used in the healthcare 

industry. Since these microscopic images of seeds are 

provided, the proposed model, dubbed "Ensemble 

learning-based germination quality prediction" (EL- 

GQP), is meant to be trained using the values of the 

features observed at various quantitative phases. The 

performance analysis metrics of the EL-represented 

GQP outcomes were compared to those of existing 

models in the experimental study. The experimental 

study shows that the EL-GQP outperforms other 

contemporary models in terms of accuracy, 

sensitivity, and specificity. The fall-out and miss-rate 

of the proposal are also scaled low compared to 

contemporary models. But the ratio of fall-out and 

miss- rate observed from the proposed model EL-

GQP are considerable constraints, which leads to 

future research scope. 
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