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Abstract: SIFT-based techniques have achieved satisfying performance in detecting copy-move forgery (CMF). 

Typically, these techniques find the matched regions of an image and re-examine them using a variety of methods to 

determine whether CMF has occurred or not. However, these techniques have some shortcomings related to how 

they handle false matches, which usually occur due to image continuity or self-similarity. First, a spatial distance 

threshold or segmentation-based methods are commonly utilized to handle image continuity. Second, several 

external methods along with manually created thresholds are utilized to handle image self-similarity. In this paper, 

we propose a new matching strategy that is resistant to false matches while reducing reliance on external methods 

and thus avoiding several thresholds. We model the keypoint as a whole region rather than a single point and employ 

the intersection over union measure to deal with image continuity. To reduce false matches caused by image self-

similarity, we combine the cross-matching test with a modified distance ratio test. This combination takes into 

account the ability to detect multiple cloning. Moreover, we utilize a support vector machine to learn the threshold(s) 

needed to decide if CMF has occurred or not. The proposed methodology is evaluated over three challenging 

datasets: MICC-F600, Coverage, and MICC-F220. On MICC-F600 dataset, our proposed methodology outperforms 

other state-of-art techniques and achieves high precision of 99.38%, recall of 97.5%, and 98.42% of F1 score. 

Additionally, the comparative evaluation using Coverage, and MICC-F220 datasets proved the effectiveness of the 

proposed methodology to handle a variety of attacks. 

Keywords: Image forensics, Copy-move forgery detection, SIFT, Intersection over union, Distance ratio test, Cross-

matching, Support vector machine.  

 

 

1. Introduction 

Images represent a major source of information 

especially in the forensic evidence field [1]. But, it 

has become easy for even non-professionals to forge 

images [2]. Forged images can cause many troubles 

to individuals and misdirect the public opinion [1]. 

There are several ways to forge an image, but the 

cloning forgery is the hardest in its detection and the 

widespread one [3]. The cloning forgery is also 

known as the copy-move forgery (CMF) in which a 

source region(s) in an image is copied and pasted to 

different location(s) within the image itself [4, 5].  

Image cloning usually intends to modify the 

image's semantics by either repeating or omitting 

significant objects in the image [6]. Cloned regions 

often undergo two different sorts of operations: 

geometric transformations (e.g. rotation, and 

scaling) and post-processing operations (e.g. noise 

addition, blurring, and compression) [7]. These 

operations aim to deceive the eyes and make the 

forgery detection unattainable [8]. Fig. 1 shows a 

CMF example in which the source region is 

duplicated twice using different scaling factors. The 

source region is marked in green and the forged 

regions are marked in yellow. 

The problem of copy-move forgery detection 

(CMFD) has recently attracted the attention of many 

researchers, and their works can be partitioned into 

several categories: keypoint-based, block-based, 

deep learning-based, and hybrid techniques [5]. 

Each category has some advantages and  
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(a) 

 
(b) 

Figure. 1 CMF example: (a) authentic image and (b) 

tampered image 

 

disadvantages. 

Both keypoint-based and block-based techniques 

share the disadvantage of relying on numerous 

manually created thresholds. On the other hand, 

deep learning-based techniques are powerfully able 

to select the suitable thresholds [5]. However, deep 

learning-based techniques have a number of 

disadvantages such as its lengthy training process 

that requires high processing capacity [9]. In 

addition, a massive number of images with constant 

dimensions are needed in their learning process [1]. 

Furthermore, if the deep learning-based system is 

tested with images of a different nature from what it 

is learned on, its performance will decrease [10]. 

Block-based techniques are ineffective in 

dealing with geometric operations [10]. 

Additionally, the high complexity of the block-based 

techniques makes them inefficient as well [11]. In 

contrast, keypoint-based techniques are time-saving 

and have the ability to extract local image features 

being invariant to geometric operations [12].  

The standard phases in keypoint-based CMFD 

techniques are as follows [3, 7, 13]: First, the image 

undergoes pre-processing in order to improve the 

features that will be extracted from it. Second, a set 

of local invariant features (keypoints) along with 

their descriptors are extracted. Third, matched pairs 

are obtained by matching the keypoints descriptors. 

Finally, matched pairs are further verified through 

the post-processing in order to get rid of wrong 

matches and determine whether CMF has occurred. 

To extract keypoints from an image, there are 

numerous methods. However, the scale-invariant 

feature transform (SIFT) and the speeded up robust 

features (SURF) have experienced the most usage 

[14]. SURF is characterized by its speed in detecting 

keypoints, whereas SIFT is distinguished by its 

strong description ability [1].  

Because of the advantages of keypoint-based 

CMFD techniques, especially those based on SIFT, 

we employ SIFT in this research paper. Despite 

these advantages, there is a possibility of wrong 

matching which is typically brought on by image 

continuity or self-similarity. Spatially close 

keypoints are mismatched due to image continuity, 

while image self-similarity leads to a false matching 

between original similar parts of the image. In this 

work, we aim to minimize false matches through our 

new matching strategy. This work's main 

contributions can be summed up as follows:  

 

• A keypoint is modeled as an entire region 

determined by its center location and scale. 

This modeling facilitates using the 

intersection over union measure to handle 

image continuity. Thus, there is no need to 

use any thresholds or segmentation methods. 

• The cross-matching test is combined with a 

modified distance ratio test in a manner 

capable of coping with multiple clones. With 

this combination, it is possible to decrease 

the number of false matches brought on by 

image self-similarity while reducing the need 

to apply external methods that require some 

thresholds. 

• A support vector machine is trained to find 

the suitable decision boundary that 

distinguishes images with truly cloned 

regions from authentic images that might 

have original similar regions. 

• The comparative evaluation proved the 

superiority of the proposed methodology in 

detecting CMF in MICC-F600, coverage, 

and MICC-F220 datasets while being able to 

deal with various types of attacks. 

 

This research paper is structured as follows: 

First, we review the related works of keypoint-based 

CMFD techniques in section 2. Section 3 represents 

the proposed CMF detection methodology. The 

experimental analysis of the proposed methodology  
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Figure. 2 Standard phases of keypoint-based CMFD 

techniques 

 

and the conclusion are presented in sections 4 and 5, 

respectively. 

2. Keypoint-based CMFD techniques 

Fig. 2 depicts the standard phases of keypoint-

based CMFD techniques. A detailed explanation of 

each phase is provided in the following paragraphs. 

2.1 Pre-processing phase 

Converting colored images to gray scale is an 

initial preparation step for images before the feature 

extraction phase because the image keypoints are 

often localized within the luminance channel [6, 8, 

12]. Additionally, numerous filtering methods are 

utilized during the pre-processing for reducing noise 

or boosting the image contrast [13]. In [6] the 

stationary wavelet transform is applied to the input 

image for denoising.  

Keypoint-based techniques can't recognize the 

CMF existing in smooth regions since insufficient 

number of keypoints is located in smooth regions. In 

order to localize more keypoints in smooth regions 

by improving the image contrast, the dynamic 

histogram equalization algorithm and the contrast-

limited adaptive histogram equalization method are 

employed in [3, 15], respectively.  

2.2 Feature extraction phase 

The method used to localize and describe the 

image keypoints, as well as the detection 

threshold(s) applied to detect the keypoints, are two 

key factors that influence the feature extraction 

phase [5].  

To improve the CMF detection performance, 

many hybrid feature extraction approaches are 

presented. In [4] KAZE is combined with SIFT to 

extract the image keypoints because KAZE has a 

better ability to extract more keypoints from edges 

and boundaries of the objects. In [13] keypoints are 

described by fusing the histogram of the reduced 

local binary pattern with the SIFT descriptor to 

improve robustness to pixels variations. 

Some works have chosen the keypoints detection 

threshold(s) differently from the default settings in 

order to better cover images with keypoints. In [1] a 

low value is selected for the keypoints detection 

threshold. In [2, 9] image is divided into non-

overlapping superpixels. Two categories of 

superpixels—smooth and rough—are distinguished 

using the entropy measure. For each category, a 

different value of the keypoints detection threshold 

is chosen to cover the image with enough keypoints 

in a uniformly distributed manner. 

2.3 Matching phase 

The matching phase aims to find similar 

keypoints in an image that signify regions where 

CMF is initially suspected [5]. Two steps make up 

the matching phase. First, the nearest neighbours of 

each keypoint in the image are determined. Then, a 

matching method is applied to decide whether or not 

a given keypoint is matched to certain nearest 

neighbour(s). The distance ratio test and the 

generalized two nearest neighbor test (g2NN) are 

common matching methods [4,16]. 

For a keypoint 𝑘𝑝𝑖, the basis for determining its 

nearest neighbors is calculating the distances 

between the descriptors of those neighbors and the 

descriptor of 𝑘𝑝𝑖. Such distances 𝐷𝐿𝑖𝑠𝑡𝑘𝑝𝑖
 are sorted 

in ascending order and referred as follows [7, 9, 13]: 

 

𝐷𝐿𝑖𝑠𝑡𝑘𝑝𝑖
= {𝑑1, 𝑑2, … , 𝑑𝑁} , 𝑑1 ≤ 𝑑2 ≤  … ≤  𝑑𝑁 

(1) 

 

The distance ratio test (also known as the two 

nearest neighbor 2NN test) [17] assumed that a 

keypoint could only have one match which is the 

first nearest keypoint and the second nearest 

keypoint is being noise. The purpose of the 2NN test 

is to determine whether the first nearest keypoint 

can be distinguished from the second nearest 

keypoint. A keypoint 𝑘𝑝𝑖  is matched with its first 

nearest keypoint only if this condition is met: 

 
𝑑1

𝑑2
< 𝑇 , 𝑇𝜖 [0,1]                   (2) 

 

Where 𝑑1  and 𝑑2  denote the distance from 𝑘𝑝𝑖 

to its first nearest keypoint and second-nearest 

keypoint, respectively. Although the 2NN test is 

very useful in differentiating between truly cloned 

regions and similar but genuine regions, this test 

can't deal with multiple cloning.  

The g2NN method [18] is suggested to be 
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effective in handling multiple cloning. For each 

keypoint 𝑘𝑝𝑖  associated with its nearest neighbors 

and their sorted distances 𝐷𝐿𝑖𝑠𝑡𝑘𝑝𝑖
, the g2NN 

method repeats the 2NN test as long as the ratio 

𝑑𝑗/𝑑𝑗+1 is less than a threshold 𝑇  (where 1 ≥ 𝑗 <

𝑁 − 1). Then, all neighbors having 𝑑𝑗 < 𝑇 × 𝑑𝑗+1 

are matched with 𝑘𝑝𝑖 . But in multiple cloning, in 

many cases, the similar keypoints belonging to the 

cloned regions have very nearby distances and thus 

have high distance ratios. So, the g2NN matching 

method can't match them [3]. To address this 

drawback, we propose a modified distance ratio test 

in this research. Unlike the g2NN matching method, 

our modified distance ratio test does not demand 

that every match of a particular keypoint should 

have a distance ratio less than a given threshold. 

Speeding up the matching phase and choosing 

the suitable matching threshold are areas of focus 

for many researchers. In [19] customized values of 

the matching threshold and the keypoints detection 

parameters are selected for each image using the 

particle swarm optimization (PSO) algorithm. 

Nevertheless, PSO algorithm can easily fall into 

local optimum. In contrast, we employ support 

vector machine in this work to select the optimal 

matching threshold that encourages a large margin 

between authentic and forged images. In [9], K-

dimensional (KD) trees and superpixels 

segmentation are employed to expedite the matching 

phase. Using KD trees, the keypoints that are 

located in smooth superpixels are matched 

separately from those in the rough superpixels. But, 

the superpixels segmentation of an image is a 

lengthy process and thus the computational 

complexity of [9] is still high. So, in this work, we 

present an easier way to divide the keypoints into 

two clusters and match each cluster separately, 

depending only on the contrast values of the 

keypoints. 

2.4 Post-processing phase 

The post-processing phase aims to filter out 

erroneous matches as well as deciding if the CMF 

exists or not. There are two causes of false matches: 

image continuity or image self-similarity [5]. 

Image continuity results in some false matches 

since spatially neighboring keypoints are most likely 

have similar descriptors and it's possible to match 

them by mistake [12]. Accordingly, numerous works 

require a minimum spatial distance between 

keypoints to be matched through a threshold as in 

[9, 19]. However, such spatial distance threshold 

assumes a minimum spatial separation between 

cloned regions which is unknown. Thus, false 

negatives could occur if this threshold is chosen 

incorrectly.  

Different approach for handling image 

continuity is introduced in [4, 14]. In [14] two 

keypoints could be matched if they are located in 

separate superpixels in the image. In [4] image is 

segmented into bounding boxes or objects. 

Keypoints within the same bounding box can't be 

matched. An image is considered as tampered when 

the number of matches between two bounding boxes 

exceeds a certain threshold. The drawback of this 

approach is that the CMF will be undetectable if the 

cloned regions fall into the same image 

segment/bounding box. 

In this work, we did not use a spatial distance 

threshold or even a segmentation method, and thus 

we avoided their drawbacks that were mentioned 

earlier. Instead, we managed image continuity more 

effectively by relying on the keypoints properties 

and the intersection over union measure. 

Image self-similarity makes it possible for an 

image to contain genuine but similar regions that 

could be mismatched [16]. To handle image self-

similarity and verify the matched pairs, there are 

various methods. These verification methods are 

either based on the spatial density, the geometric 

consistency, or the pixel-level correlation [3]. 

2.4.1. Spatial density-based methods 

Matched pairs resulting from CMF are typically 

concentrated in specific patches of the image. In 

other words, wrong matches that arise from similar 

but authentic image regions are relatively dispersed 

[5]. Motivated by this idea, the hierarchical 

agglomerative clustering (HAC) is performed on the 

matched pairs based on their location coordinates in 

[1, 6, 7, 12, 16]. If there is a little number of 

matches in certain cluster, such cluster will be 

eliminated because it most likely contains erroneous 

matches [1, 16]. An image is treated as tampered if 

there are two or more clusters with three or more 

matching pairs [6]. Although many CMFD methods 

employ the HAC algorithm, it should be emphasised 

that it is susceptible to noise and outliers. 

As an alternative to HAC, The density-based 

spatial clustering of applications with noise 

algorithm is utilized in [3, 8, 15]. Similarly, in [9] 

wrong matches are filtered out using superpixels 

segmentation. If there is a little number of matched 

pairs in certain superpixel, these matched pairs are 

ignored [9]. 

Spatial density-based methods are usually based 

on clustering or segmentation algorithms. They thus 

experience high complexity. In addition, selecting a 
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clustering or segmentation algorithm and its 

parameters that are appropriate for all images is 

challenging. 

2.4.2. Geometric consistency-based methods 

Matched pairs are usually verified whether they 

are really belong to cloned regions by finding the 

geometric transformation between them and 

measuring their consistency with such estimated 

geometric transformation [5]. Thus, matched pairs 

are categorized as inliers or outliers depending on 

how well they conform to the estimated geometric 

transformation.  

Given the presence of mismatches, random 

sample consensus (RANSAC) is the most effective 

algorithm for estimating the geometric 

transformation between matched pairs. Also, 

RANSAC is widely utilized to exclude the 

incorrectly matched pairs as in [6, 12, 15, 16]. The 

success of RANSAC in estimating the geometric 

transformation between matched pairs is sufficient 

to declare the image as tampered as in [7]. However, 

there are few matched pairs in the case of small or 

smooth cloned regions. As a result, the CMF 

becomes undetectable because RANSAC probably 

fail to estimate the geometric transformation 

corresponding to these few matched pairs. 

2.4.3. Correlation-based methods 

Cloned regions in an image often exhibit a 

higher pixel-based correlation than similar but real 

regions [5]. Therefore, it is usual to evaluate the 

correlation coefficient between the corresponding 

image regions of matched pairs after geometric 

transformation. Then, compare it to a predetermined 

correlation threshold to indicate whether these 

matched pairs belong to cloned regions or not [7, 13, 

19]. In order to avoid confusion between cloned 

regions and similar but real regions, the correlation 

threshold must be set at an adequate value. In [19] 

the correlation map average is utilized to customize 

the correlation threshold value. 

In this research, we avoid using all these 

verification methods, and thus many thresholds have 

been eliminated. Instead, we were able to handle 

image self-similarity efficiently by including the 

cross-matching test in our new matching strategy 

and learning the suitable matching threshold using 

support vector machine. 

3. Proposed methodology 

Fig. 3 depicts the entire framework of the 

proposed methodology. Each process of the  
 

 
Figure. 3 Proposed methodology framework 

 

proposed methodology is covered in detail in this 

section. 

3.1 Image pre-processing 

We perform minimal pre-processing on the input 

image before extracting the SIFT keypoints from it. 

First, RGB images are converted to grayscale. 

Second, high resolution images having dimensions 

greater than 1500 pixels are resized by half in each 

dimension to reduce the processing time. 

3.2 SIFT keypoints extraction 

After pre-processing the input image, we extract 

the SIFT keypoints along with their descriptors to 

represent the image. The following is a concise 

summary of the SIFT algorithm [17]:  

 

• The SIFT detector generates a number of 

octaves. From one octave to the next one, the 

image dimensions are decreased by half. 

Each octave is a multi-scale representation 

for an image with fixed image dimensions. 

More specifically, an octave is a set of 

increasingly gaussian-smoothed layers.  

• The difference of the gaussians (DoG) is 



Received:  May 7, 2023.     Revised: June 2, 2023.                                                                                                           427 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.34 

 

derived from each octave.  

• SIFT keypoints are detected by locating the 

points corresponding to any local extrema in 

the DoG space whose contrast value is 

greater than a contrast threshold.  

• For each SIFT keypoint, a descriptor of 

length 128 is formed by describing the 

keypoint local neighborhood. 

 

In the following paragraphs, we concentrate on 

some crucial steps that we follow during the SIFT 

keypoints extraction process. 

3.2.1. Constructing two octaves only 

In this work, we solely extract keypoints from 

the first two octaves because they have higher image 

resolution, more details, and the majority of 

keypoints are extracted from them. Octaves above 

the second octave have a low resolution and are 

extremely blurry. Their extracted keypoints are few 

and each keypoint represents a big region in the 

original image. Thus, their keypoints are less useful 

and matching them is probably misleading. 

3.2.2. Lowering the contrast threshold 

One of the most crucial thresholds in the SIFT 

detector is the contrast threshold. It is known that 

employing the contrast threshold with its default 

value causes a scarcity of keypoints in the smooth 

regions, and thus the inability to detect the CMF in 

these regions. However, it must be taken into 

account that applying a zero contrast threshold 

would generate keypoints in extremely smooth 

background regions of the image. This poses a 

problem as these keypoints can be easily matched by 

mistake.  

Through our experiments, we chose the contrast 

threshold value to be 0.005 (for the SIFT 

implementation provided by opencv-python). This 

value prevents keypoints from being located in 

extremely smooth background regions while 

ensuring that the image is adequately covered with 

keypoints. 

3.2.3. Normalizing keypoints descriptors 

It's essential to normalize the keypoints 

descriptors to ensure invariance to variations in 

illumination and to prevent high value features from 

dominating other features. We utilize the L1 norm 

for normalizing the keypoints descriptors. 

 

𝑓𝑖 =  
𝑓𝑖
ꞌ

∑ |𝑓𝑖
ꞌ(𝑙)|128

𝑙=1

                  (3) 

Where 𝑓𝑖
ꞌ, 𝑓𝑖  denote the original and the 

normalized descriptors of keypoint 𝑘𝑝𝑖 respectively. 

3.3 Keypoints clustering 

Image regions of different roughness degree 

can't be matched, and calculating the distance 

between them is a waste of time. Some researchers 

applied this idea by dividing the image into two 

parts with different roughness degrees using an 

image segmentation method. Then, they applied the 

matching phase in each part separately. However, 

we propose a more straightforward alternative to 

implement the same idea based on the keypoints 

properties and without employing any image 

segmentation method.  

The contrast value of a keypoint reflects the 

roughness degree of the image region represented by 

that keypoint. Based on the contrast values of the 

keypoints, we employ a threshold to divide the 

keypoints into two clusters, one is smooth and the 

other is rough. The value of this threshold is the 

same value of the contrast threshold in the SIFT 

detector's default settings before we decrease it. 

3.4 Keypoints matching 

After clustering the keypoints into two clusters 

based on the keypoints contrast values, we carry out 

the keypoints matching in each cluster separately as 

shown in Fig. 4. First, we calculate the net-

similarities between keypoints in a way that 

considers handling image continuity. Second, net-

similarities are converted into distances to find 

initial matches using a modified distance ratio test. 

Finally, during the refined matching step, we filter-

out the initial matches using the cross-matching test. 

Each step is fully explained in the paragraphs that 

follow. 

3.4.1. Net-similarity calculation 

For each keypoint 𝑘𝑝𝑖, we calculate the distance 

between it and the rest of keypoints in the same 

cluster. For high dimensional descriptors like SIFT, 

manhattan distance (L1 distance) is preferred. Thus, 

we define the distance function 𝐷(𝑘𝑝𝑖, 𝑘𝑝𝑗)  that 

compares two keypoints 𝑘𝑝𝑖, 𝑘𝑝𝑗 as the L1 distance 

between their normalized descriptors (𝑓𝑖, 𝑓𝑗). Due to 

normalizing the keypoints descriptors, the distance 

between any two keypoints can't exceed the value of 

2. Mathematically, we have 

 

𝐷(𝑘𝑝𝑖 , 𝑘𝑝𝑗) =  ∑ |𝑓𝑖(𝑙) − 𝑓𝑗(𝑙)|128
𝑙=1           (4) 
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Figure. 4 Steps of the keypoints matching process 

 

The absolute similarity 𝑆`(𝑘𝑝𝑖, 𝑘𝑝𝑗)  between 

two keypoints 𝑘𝑝𝑖, 𝑘𝑝𝑗 is defined as the complement 

of their distance. Formally, 

 

𝑆`(𝑘𝑝𝑖, 𝑘𝑝𝑗) = (1 −
𝐷(𝑘𝑝𝑖,𝑘𝑝𝑗)

2
)             (5) 

 

Due to image continuity, neighboring keypoints 

are highly similar and should be avoided in the 

matching process. Most of the previous works 

measure the spatial separation between keypoints 

and depend on threshold(s) to avoid matching of 

neighboring keypoints. Furthermore, only the 

keypoints center locations are taken into account 

while deciding neighboring keypoints. 

To deal with image continuity, we employ the 

overlapping rather than the spatial separation 

between keypoints for two reasons. First, keypoints 

are not just single points but whole regions that are 

defined by the keypoints properties. Second, the 

amount of overlapping makes better use of the 

keypoint properties. Through this new modeling, we 

take into consideration the keypoints scales as well 

as its center locations while deciding if two 

keypoints are neighboring or not. Moreover, we 

avoid using any threshold. 

When calculating the net-similarity between two 

keypoints, their overlap is embedded and taken into 

consideration. More specifically, our idea is based 

on suppressing the absolute similarity score of 

overlapped keypoints by the amount of overlapping. 

We utilize the intersection over union (IoU) to 

measure the amount of overlapping between 

keypoints. We define the net-similarity 𝑆(𝑘𝑝𝑖, 𝑘𝑝𝑗) 

between two keypoints 𝑘𝑝𝑖, 𝑘𝑝𝑗  as their absolute 

similarity multiplied by the complement of their 

IoU. Formally, 

 

𝑆(𝑘𝑝𝑖 , 𝑘𝑝𝑗) = 𝑆`(𝑘𝑝𝑖, 𝑘𝑝𝑗) × (1 − 𝐼𝑜𝑈(𝑘𝑝𝑖 , 𝑘𝑝𝑗)) 

(6) 

 

For simplicity, we approximate a SIFT keypoint 

kpi as a square around its center location (𝑥𝑖, 𝑦𝑖) of 

length 2𝑟𝑖  where 𝑟𝑖  is positively correlated to the 

keypoint scale  𝜎𝑖 . The intersection over union 

𝐼𝑜𝑈(𝑘𝑝𝑖, 𝑘𝑝𝑗) between two keypoints 𝑘𝑝𝑖 , and 𝑘𝑝𝑗 

is calculated as 

 

𝐼𝑜𝑈(𝑘𝑝𝑖, 𝑘𝑝𝑗) =  
𝐼(𝑘𝑝𝑖,𝑘𝑝𝑗)

𝐴(𝑘𝑝𝑖)+𝐴(𝑘𝑝𝑗)−𝐼(𝑘𝑝𝑖,𝑘𝑝𝑗)
         (7) 

 

Where 𝐴(𝑘𝑝𝑖)  and 𝐴(𝑘𝑝𝑗)  denote the area of 

𝑘𝑝𝑖 and 𝑘𝑝𝑗 , respectively. 𝐼(𝑘𝑝𝑖 , 𝑘𝑝𝑗) denotes the 

intersection area between 𝑘𝑝𝑖 , 𝑘𝑝𝑗.  

3.4.2. Initial matching 

Let's assume that the cluster we are now 

matching its keypoints has N keypoints. For each 

keypoint 𝑘𝑝𝑖  in the current cluster, we obtain its 

initial matched keypoints using a modified distance 

ratio test as follows: First, we calculate the net-

similarities between 𝑘𝑝𝑖  and the remaining N-1 

keypoints, as previously explained. Second, in order 

to perform our modified distance ratio test, we 

convert the net-similarities into distances again 

(where distance = 1 – net-similarity). Third, we 

arrange these distances in ascending order and 

denote them by 𝐷𝐿𝑖𝑠𝑡𝑘𝑝𝑖
, as in Eq. (1). Thus, the 

nearest neighbors of 𝑘𝑝𝑖 are determined and denoted 

as follows: 

 

𝑁𝑁𝐿𝑖𝑠𝑡𝑘𝑝𝑖
= {𝑁𝑁𝑘𝑝𝑖

1 , 𝑁𝑁𝑘𝑝𝑖

2 , … , 𝑁𝑁𝑘𝑝𝑖

𝑁−1}     (8) 

 

Where 𝑁𝑁𝑘𝑝𝑖

𝑗
 denote the 𝑗𝑡ℎ nearest neighbor of 

keypoint 𝑘𝑝𝑖. Fourth, we calculate the ratio between 

each two consecutive distances in 𝐷𝐿𝑖𝑠𝑡𝑘𝑝𝑖
. 

Assuming that cloning doesn't occur more than five 

times in an image, we only compute the first five 

ratios. Such ratios are denoted as 𝑅𝑎𝑡𝑖𝑜𝐿𝑖𝑠𝑡𝑘𝑝𝑖
. 

Formally, 

 

𝑅𝑎𝑡𝑖𝑜𝐿𝑖𝑠𝑡𝑘𝑝𝑖
=  

{𝑟𝑎𝑡𝑖𝑜1, 𝑟𝑎𝑡𝑖𝑜2, … , 𝑟𝑎𝑡𝑖𝑜5}, 𝑟𝑎𝑡𝑖𝑜𝑗 =
𝑑𝑗

𝑑𝑗+1
        (9) 
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Finally, we choose the minimum ratio from 

𝑅𝑎𝑡𝑖𝑜𝐿𝑖𝑠𝑡𝑘𝑝𝑖
. If the minimum ratio is found at 

𝑟𝑎𝑡𝑖𝑜𝐽, the first 𝐽 nearest neighbors are regarded as 

initial matches of 𝑘𝑝𝑖. Define 𝑆𝐼𝑀 as the set of initial 

matched keypoints. In case of single cloning, 

𝑆𝐼𝑀 should contain only two keypoints, while it 

contains more keypoints in case of multiple cloning. 

Namely, 

 

𝑆𝐼𝑀 = 𝑘𝑝𝑖 𝑈 {𝑁𝑁𝑘𝑝𝑖

𝑘 : 1 ≤ 𝑘 ≤ 𝐽}            (10) 

 

The reason for choosing the minimum ratio is 

that the distance values before and after it differs 

significantly. Such significant difference probably 

reflects a switching from candidate matches to noisy 

matches of a certain keypoint. 

Our modified distance ratio test differs from the 

basic distance ratio test as it's able to deal with 

multiple cloning. Additionally, it differs from the 

g2NN method as it isn't required that each initial 

match of certain keypoint should have a distance 

ratio below some threshold which doesn't always 

happen in case of multiple cloning. 

3.4.3. Refined matching 

According to the cross-matching test, two 

keypoints are cross-matched if each is being the best 

match (the first nearest) of the other. Although the 

cross-matching test is one method for reducing false 

matches, it is rarely utilized because it is ineffective 

in case of multiple cloning. However in this 

research, we incorporate the cross-matching idea in 

a way that addresses multiple cloning. 

After performing the initial matching step, each 

keypoint yields a set of initial matched keypoints. 

Some of these initial matched sets are repeated 

several times. In other words, the same initial 

matched set could be obtained through more than 

one keypoint which is considered a form of cross-

matching. Depending on this phenomenon and using 

the cross-matching test, we can eliminate some 

initial matched sets, while verifying others during 

the refined matching step. More specifically, a set of 

initial matched keypoints 𝑆𝐼𝑀  is verified if all its 

member keypoints yield the same set. In other 

words, a set 𝑆𝐼𝑀 is verified if we get it a number of 

times equal to its cardinality. 

We use a distance feature and a distance ratio 

feature to describe each verified matched set. The 

distance feature is determined by averaging the 

distances between the keypoints of the matched set. 

It should be noted that the occurrences of the same 

matched set are usually detected with slightly 

different minimum distance ratios. Thus, the 

distance ratio feature of a matched set is computed 

by averaging the minimum distance ratios associated 

with its occurrences. 

3.5 CMF decision 

We perform the following steps in order to 

determine whether an input image contains CMF or 

not: First, we merge the verified matched sets that 

were acquired from the high and low contrast 

keypoints. Second, we select three verified matched 

sets with minimum distance feature. Third, image is 

represented by the features average of its selected 

matched sets. Using multiple matched sets and 

averaging their features enabled us to achieve 

resistance to outliers. Finally, we use the distance 

average and the distance ratio average to train a 

support vector machine, which will determine 

whether or not CMF has happened. The technical 

details that we followed for training the support 

vector machine are: 

 

• A small regularization parameter (C=1) is 

utilized to promote wide margin, and thus 

more general decision boundary. 

• The radial basis function (RBF) is utilized as 

a kernel function because of its excellent 

discrimination power and widespread. 

4. Experimental results 

In this section, we present the results achieved 

by the proposed CMFD methodology. The utilized 

datasets and evaluation metrics are explained in 

detail. Test results are compared with other state-of-

art CMFD systems. In addition, a visual analysis of 

our proposed matching strategy is provided to 

confirm its effectiveness against a variety of attacks 

and challenges.  

4.1 Test datasets 

Three challenging datasets are utilized to assess 

the competitive performance of the proposed CMFD 

methodology: MICC-F600 dataset [18], coverage 

dataset [20], and MICC-F220 [18]. 

MICC-F600 [18] dataset contains 440 authentic 

images and 160 tampered images. This dataset 

consists of images of JPEG and PNG file formats. 

The dimensions of these images range in size from 

800 × 533 to 3888 × 2592 pixels. Cloned regions 

within the tampered images are arbitrary shaped and 

vary in size. Tampered images can be divided into 

four categories. Each category contains 40 images 

and has a separate tampering attack. The first 

category consists of tampered images with single 
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plain cloning, while the second category includes 

samples of multiple cloning. The third category 

contains images with rotated cloned regions, while 

images in which the cloned regions have been scaled 

and rotated are found in the fourth category. 

Coverage [20] dataset consists of 100 authentic 

images and 100 tampered images with single 

cloning. The dataset's images are saved in TIFF 

format and have an average size of 400 × 486 pixels. 

Dealing with this dataset is a difficult challenge 

because its authentic images intensively introduce 

similar but genuine objects. Obviously, this dataset 

applies rotation and/or scaling to cloned regions as 

tampering attacks. Additionally, in some images, 

cloned regions are subjected to tampering attacks 

such as illumination change and free-form 

transform. 

MICC-F220 [18] dataset contains 110 authentic 

images and 110 tampered images with single 

cloning. The dataset's images are saved in JPEG 

format and range in size from 722 × 480 to 800 × 

600 pixels. Ten geometric transformations with 

different rotations and scaling factors were used to 

construct this dataset. The cloned regions are either 

square or rectangular in shape and account for 

approximately 1.2% of the size of the tampered 

images. 

4.2 Evaluation metrics 

To measure the performance of the proposed 

CMFD methodology and to perform comparative 

analysis, we utilize the following standard 

evaluation metrics [1]: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (11) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (12) 

 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑃𝑅) =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
     (13) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 (𝐹1) =  
2×𝑃×𝑅

𝑃+𝑅
                 (14) 

 

Where 𝑇𝑃  represents the number of tampered 

images correctly recognized as tampered. 𝐹𝑃 

represents the number of authentic images 

erroneously recognized as tampered. 𝑇𝑁  represents 

the number of authentic images correctly recognized 

as authentic. 𝐹𝑁 represents the number of tampered 

images erroneously recognized as authentic. A better 

CMFD performance is indicated by higher values of 

P, R, F1, and by a low value of FPR. 

 

Table 1. Comparative evaluation on MICC_F600 dataset 

Method P R FPR F1 

Elaskily et al. 

(2019) [12] 
78.02 91.48 9.37 84.22 

Sunitha et al. 

(2022) [1] 
91.74 96.8 3.18 94.2 

Harshith et al. 

(2023) [11] 
73.71 89.37 11.59 80.79 

Proposed 99.38 97.5 0.23 98.42 

 

 

Table 2. Comparative evaluation on coverage dataset 

Method P R FPR F1 

Park et al. 

(2020) [13] 
64.46 78.0 43.0 70.59 

Yue et al. 

(2022) [10] 
58.3 91.0 65.0 71.1 

Proposed 84.92 76.0 14.0 80.05 

 

4.3 Comparative evaluation 

Especially when the utilized datasets are limited 

in size, it is important to conduct a reliable 

evaluation of the support vector machine that is 

responsible for the CMF decision. Therefore, K-fold 

cross validation (where K=2) is utilized to prevent 

over-fitting, and provide reliable performance 

evaluation with low variance. 

For MICC_F600 dataset, we compare the 

performance of the proposed methodology with the 

following methods: (Elaskily et al., 2019), (Sunitha 

et al., 2022), and (Harshith et al., 2023). Such 

comparative evaluation on MICC_F600 dataset is 

summarised in Table 1 based on precision, recall, 

false positive rate, and F1 score. Table 1 shows that 

our proposed methodology achieves a precision of 

99.38%, recall of 97.5%, false positive rate of 

0.23% and 98.42% of F1 score. Therefore, in terms 

of all the evaluation metrics, our proposed 

methodology outperformed all the methods 

compared here. 

Table 2 summarizes the comparative evaluation 

on Coverage dataset where the proposed 

methodology's performance is compared with the 

following methods: (Park et al., 2020), and (Yue et 

al., 2022). On coverage dataset, our proposed 

methodology achieves a precision of 84.92%, recall 

of 76%, false positive rate of 14% and 80.05% of F1 

score. Although the methods of (Park et al., 2020), 

and (Yue et al., 2022) achieve higher recall rates 

than us, our proposed methodology is superior to 
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them in terms of precision and false positive rate. In 

addition, the proposed methodology generally 

achieves the best performance since it has the 

highest F1 score which is a generic evaluation 

metric that incorporates precision and recall. 

On coverage dataset, neither the proposed 

methodology nor the other methods have achieved 

comparable performance results to those obtained on 

MICC_F600 dataset. To investigate this 

phenomenon, Fig. 5 compares between the feature 

spaces of MICC_F600 and coverage datasets. The 

feature space of one partition of the MICC_F600 

dataset is shown in Fig. 5(a), while the feature space 

of one partition of the Coverage dataset is shown in 

Fig. 5(b). Where, authentic and tampered images are 

represented by green and red dots, respectively. In 

addition, the decision boundary that separates 

tampered images from authentic images is marked 

in gray. From Fig. 5, it is evident that authentic and 

tampered images overlap more in the coverage 

dataset's feature space. Naturally, this makes it 

difficult to distinguish between them, which results 

in poor results. More specifically, there are two 

reasons for these poor results on coverage dataset: 

the dataset's challenging attacks which were 

previously mentioned, and the low resolution of the 

dataset's images. 

4.4 Detection results under attacks 

One advantage of the MICC_F220 dataset is that 

it applies different geometric transformations to 

tampered images with varying attack levels. 

Therefore, we utilize this dataset to prove our 

robustness against geometric transformations. 

Furthermore, we provide an in-depth evaluation of 

our methodology and compare it to the work of [4] 

on the MICC_F220 dataset. 

To assess the proposed methodology's 

performance against rotation, forty-four tampered 

images and 11 authentic images were examined. 

Under rotation operation, we achieved a better F1 

score, which is 98.88%, while the work of [4] 

achieved 95.34% of F1 score. Thirty-three tampered 

images and 11 authentic images were examined to 

determine how well the proposed methodology 

performed against scaling. We achieved a higher F1 

score under the scaling operation, which is 96.97%, 

as opposed to the work of [4] achieved F1 score of 

95.37%. 

Under combined rotation and scaling, twenty-

two tampered images and 11 authentic images were 

examined. In this experiment, the work of [4] 

outperformed us and achieved F1 score of 93%, 

while our proposed methodology achieved 90.47%  
 

Table 3. In-depth comparative evaluation on MICC_F220 

dataset 

Transform Method P R F1 

Rotation 
[4] 97.61 93.18 95.34 

Proposed 97.78 100 98.88 

Scaling 
[4] 96.87 93.93 95.37 

Proposed 96.97 96.97 96.97 

Rotation + 

Scaling 

[4] 95.2 90.9 93 

Proposed 95 86.36 90.47 

Overall 
[4] 96.22 93.57 94.87 

Proposed 94.64 96.36 95.49 

 

 

of the F1 score. But in general, our proposed 

methodology is superior to the work of [4], as we 

achieves better F1 score on the whole dataset, which 

is 95.49%, while the work of [4] has F1 score of 

94.87% on the whole MICC_F220 dataset. Table 3 

details the comparative evaluation between our 

proposed methodology and the work of [4] on 

MICC_F220 dataset, including the results of each 

geometric attack as well as the aggregate results. 

In order to visualize the ability of our new 

matching strategy to deal with CMF with different 

attacks and challenging conditions, we generate a 

gray-scale similarity map for each input image. This 

similarity map is constructed from the verified 

matched keypoints that are resulted from the 

matching process. The construction of the similarity 

map is based on our ability to localize any keypoint 

within the image as a complete region given the 

keypoint properties. 

As mentioned earlier, each verified matched set 

of keypoints is associated with a distance feature 

and a distance ratio feature. However, since the 

distance ratio is more discriminative feature, we 

utilize it to build the similarity map. The similarity 

map is first initialized as a black image of the same 

size as the input image. Then, for each matched 

keypoints, we modify its corresponding regions 

within the similarity map with the complement of 

their distance ratio. The complement is used because 

similarity increases as the distance ratio decreases. 

We finally multiply the similarity map by a value of 

255 to display it as a gray-scale image because the 

distance ratio's value can't exceed 1. 

Fig. 6 shows our matching strategy's 

effectiveness on four challenging tampered images 

from MICC_F600 dataset. The first row of Fig. 6 

shows the tampered images. In Figs. 6(a) and 6(b), 

tampered images contain single cloning where both  
 



Received:  May 7, 2023.     Revised: June 2, 2023.                                                                                                           432 

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023           DOI: 10.22266/ijies2023.0831.34 

 

       
                                                  (a)                                                                                         (b)    

Figure. 5 Feature spaces comparison (a) MICC-F600 dataset and (b) Coverage dataset 
 

 
 

  
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

Figure. 6 Detection results of MICC-F600 dataset under different attacks: (a)-(d) the tampered images, (e)-(h) the ground 

truth localization masks, and (i)-(l) the obtained similarity maps 
 

rotation and scaling are taken place. However, Fig. 

6(b) depicts a case in which the cloned regions 

overlap with each other. In Figs. 6(c) and 6(d), 

tampered images contain multiple cloning. The 

example shown in Fig. 6(d) shows a smooth 

tampered image with relatively small cloned 

regions. The ground truth localization masks of the 

cloned regions and the similarity maps obtained 

from our matching strategy are shown in the second 

and third rows of Fig. 6. By comparing the obtained 

similarity maps with the ground truth localization 

masks, it's clear that the verified matched keypoints 

localize the cloned regions effectively. 

Fig. 7 shows the obtained similarity maps of two 

pairs of images from Coverage dataset. The first and 

second columns in Fig. 7 represent the authentic 

images and its obtained similarity maps. The 

tampered images and its obtained similarity maps 

are shown in the third and fourth columns. In each 

tampered image, the authentic source region is 

marked in green, while its duplicated forged region 

is marked in red. The forged region in Fig. 7(c) is a 

scaled-down copy of its source region, whereas in 

Fig. 7(g), an illumination change has been applied to 

the forged region. The similarity maps shown in Fig. 

7 demonstrate the ability of the proposed matching 

strategy to differentiate between authentic images 

that contain highly similar regions and forged 

images that really contain cloned regions. 

By viewing the similarity maps we obtained in 

Figs. 6 and 7, it is clear that the proposed matching 

strategy is able to deal with many challenges such 

as: multiple cloning, geometric transforms, similar 

but genuine regions, illumination change, and  
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure. 7 Detection results of coverage dataset under different attacks: (a),(e) the authentic images; (b),(f) the obtained 

similarity maps from the authentic images; (c),(g) the tampered images; and (d),(h) the obtained similarity maps from the 

tampered images 

 

overlap between cloned regions. It is worth noting 

that neither morphological operations nor even a 

thresholding operation were applied to the resulting 

similarity maps. This explains the discontinuity 

observed in the similarity maps which is due to the 

fact that keypoints are usually cover an image in a 

scattered manner. Particularly, in the similarity map 

shown in Fig. 7(h), a hole is observed inside the 

cloned region(s). This hole is caused by the lack of 

keypoints in its corresponding image region, which 

has undergone an illumination change and has 

become very smooth. 

5. Conclusion 

The proposed CMF detection methodology has 

achieved promising results while being able to cope 

with geometric transforms, multiple cloning, and 

intersection between cloned regions. More 

specifically, we achieved F1 score of 98.42% and 

95.49% on MICC-F600 dataset and MICC-F220 

dataset, respectively. The false positive rate is 

reduced and thus the overall F1 score is improved 

by two issues. First, instead of using fixed matching 

thresholds, they are more appropriately chosen 

through a machine learning process. Secondly, the 

cross-matching test is integrated during the 

matching process, and then the matching process 

became less error-producing. In addition, the image 

continuity is handled efficiently without the need for 

any thresholds by maximizing the utilization of the 

keypoints properties through the IoU measure. All 

these procedures contributed to the lack of the need 

for many external methods, such as the spatial 

density-based methods, the geometric consistency-

based methods and the correlation-based methods, 

which were commonly used in literature to enhance 

performance.  

It is worth noting that the proposed methodology 

has a reasonable ability to differentiate between 

truly cloned regions and similar but genuine regions. 

This is evident by our achievement of F1 score of 

80.05% on the Coverage dataset. However, this 

performance needs improvement. More specifically, 

in future works, we plan to improve the ability to 

differentiate truly cloned regions from similar but 

genuine regions, especially in the case of low-

resolution images. 

Notations 

Notation Description 

N Number of keypoints 

𝑘𝑝𝑖  𝑖𝑡ℎ keypoint 

(𝑥𝑖 , 𝑦𝑖) Center location of keypoint 𝑘𝑝𝑖  

𝜎𝑖 Scale of keypoint 𝑘𝑝𝑖  

𝐴(𝑘𝑝𝑖) Area of keypoint 𝑘𝑝𝑖  

𝑓𝑖
ꞌ 

Original descriptor of keypoint 𝑘𝑝𝑖  

before normalization 

𝑓𝑖 Normalized descriptor of keypoint 𝑘𝑝𝑖  

𝐷(𝑘𝑝𝑖 , 𝑘𝑝𝑗) 
Distance between two keypoints 𝑘𝑝𝑖  , 

and 𝑘𝑝𝑗 

𝑆`(𝑘𝑝𝑖 , 𝑘𝑝𝑗) Absolute similarity between 𝑘𝑝𝑖 , 𝑘𝑝𝑗 

𝑆(𝑘𝑝𝑖 , 𝑘𝑝𝑗) Net-similarity between 𝑘𝑝𝑖 , 𝑘𝑝𝑗  

𝐼(𝑘𝑝𝑖 , 𝑘𝑝𝑗) Intersection area between 𝑘𝑝𝑖 , 𝑘𝑝𝑗 

𝐼𝑜𝑈(𝑘𝑝𝑖 , 𝑘𝑝𝑗) 
Intersection over union between 

𝑘𝑝𝑖 , 𝑘𝑝𝑗 
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𝑁𝑁𝑘𝑝𝑖

𝑗
 𝑗𝑡ℎ nearest neighbor of keypoint 𝑘𝑝𝑖  

𝑁𝑁𝐿𝑖𝑠𝑡𝑘𝑝𝑖
 List of nearest neighbors of 𝑘𝑝𝑖  

𝑑𝑗 
Distance between a keypoint and its 

𝑗𝑡ℎ nearest neighbor 

𝐷𝐿𝑖𝑠𝑡𝑘𝑝𝑖
 

Sorted distances between 𝑘𝑝𝑖  and its 

nearest neighbors 

𝑟𝑎𝑡𝑖𝑜𝑗  
Ratio between each two consecutive 

distances in 𝐷𝐿𝑖𝑠𝑡𝑘𝑝𝑖
 

𝑅𝑎𝑡𝑖𝑜𝐿𝑖𝑠𝑡𝑘𝑝𝑖
 

First five distance ratios of keypoint 

𝑘𝑝𝑖  

𝑆𝐼𝑀 Set of initial matched keypoints 

𝑇 Matching threshold 
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