
Received: January 17, 2023. Revised: May 10, 2023. 150

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

A Cost-Sensitive Approach applied on Shallow and Deep Neural Networks for

Classification of Imbalanced Data

A Lamyaa Sadouk1* Taoufiq Gadi1, El Hassan Essoufi1 Mohamed Elhassan Bassir2

1Faculty of Science and Technology Settat, University Hassan I, Morocco.

2National Schools of Applied Sciences Berrechid, University Hassan I, Morocco.
* Corresponding author’s Email: lamyaa.sadouk@gmail.com

Abstract: In this study, we propose a cost-sensitive learning approach applied on neural networks to deal with

classification under imbalanced domains. Our approach is able to automatically learn robust features for both frequent

and rare classes by automatically assigning misclassification penalties to each class based the frequency of occurrence

of that class. This approach is investigated in the context of shallow networks (multi-layer perceptrons) and deep

networks (convolutional neural networks). Moreover, it offers not only a better convergence but also a faster

convergence since it can boost optimization by increasing weight gradients which are getting small due to their fitting

to the frequent classes. Extensive experiments were carried out on one- and two-dimensional datasets. Running

experiments using several loss functions showed the efficacity of our approach on loss functions which do not have

probability estimates. Additionally, our approach achieved a good performance compared to common undersampling

and oversampling methods as well as models based on generative adversarial networks.

Keywords: Cost-sensitive learning, Data imbalance, Loss functions, Multilayer perceptrons, Convolutional neural

networks.

1. Introduction

Recently, growing advances in science and

technology have resulted in the availability of data

and its expansion in several fields. The presence of

this massive volume of data contributes to the

development of data mining tasks, but also brings in

some challenges such as data imbalance. Even though

the amount of annotated data has increased, these

data have imbalanced distributions, which means that

frequent classes (also denoted as negative or majority

classes) are abundant while others (referred to as

positive or minority classes) only have limited

representations.

And, in real-world scenarios, several imbalanced

classification tasks focus on correctly classifying the

minority class. One example is the medical diagnosis

of a particular disease (such as tumor diagnosis)

where this latter is dangerous and should still be

detected even though it occurs rarely. Given such

imbalanced data at training, standard algorithms

produce trained models that tend to learn more from

instances belonging to the more observed or over-

represented class than from those belonging to the

less observed or under-represented class since they

are unable to learn proper decision rules, resulting in

imbalanced and erroneous performance on test data.

In other words, imbalanced data causes trained

classification models to be biased towards frequent

classes. However, to ensure an efficient learning from

existent models, it is important to obtain a good

accuracy within both frequent and rare class instances.

In this work, we attempt to solve the issue of bad

classification within imbalanced datasets by

proposing a cost-sensitive learning strategy which

improves the sensitivity of multi-class neural

networks toward minority classes. The key

contributions of this study are as follows.

1) An approach to train shallow and deep neural

networks (such as multi-layer perceptrons and

convolutional neural networks) with imbalanced

Received: January 17, 2023. Revised: May 10, 2023. 151

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

datasets, thus handling classification of 1-, 2-,

and 3-dimentional input datasets.

2) A boosting technique in optimization which

makes a faster NN learning and thus a faster

convergence.

3) A method which works with all loss functions

which do not have a probability estimate.

4) An empirical evaluation of the proposed

approach against the state of the art.

The remainder of this paper is organized as follows.

We briefly discuss the related work in the next

section. Afterwards, we introduce and describe our

proposed cost-sensitive learning algorithm (Section

3.1), analyze which loss functions are the most

efficient when applied to the cost-sensitive strategy

(Section 3.2), and discuss the convergence speed

once the cost-sensitive technique is applied (Section

3.3). Implementation details including the description

of datasets as well as NN hyper-parameters are

provided in Section 4. Then, experiments and results

are summarized in Section 5. Finally, a conclusion is

given in Section 6.

2. Related work

There is a large literature on solving the

imbalanced data problem. Existing approaches can be

classified into algorithm-level and data-level

approaches.

Data-level methods. The data-level techniques, also

called “re-sampling techniques”, do not affect the

learning algorithm itself but rather modify the data

distribution to solve the imbalanced classification

problem. These techniques can group into four

categories. Over-sampling is one of them and its

methods consist of increasing the quantity of

minority class instances by replicating them [1-5], or

synthesizing new ones using the SMOTE technique

[1] or one of its variants (Borderline SMOTE [2],

Safe-level SMOTE [3], Local neighborhood SMOTE

[4], ADASYN [5], etc.) to balance the data

distribution. Nonetheless, these methods are

criticized for the over-fitting problem [6] and for their

inefficiency when dealing with high-dimensional

data.

Another direction to balance the data distribution

is the under-sampling category. Standard under-

sampling consists of randomly under-sampling the

majority class instances to construct the balanced

positives and negatives. More advanced under-

sampling methods include one-sided selection (OSS)

[7] and nearest neighbor cleaning rule [8]. However,

such methods are only suitable for training low

dimensional, highly structured and size limited data

(which is often in vector form) and do not behave

satisfactory for high-dimensional, unstructured and

large datasets.

A novel attempt to balance data is through

dynamic sampling. For instance, the work of [9]

proposes to train a deep learning model

(convolutional neural network) using dynamic

sampling, whereby the performance metric on the

reference dataset is utilized to adjust the class

distribution of training samples of the next iteration.

In other words, more samples of classes with low F1-

scores will be selected in the next iteration.

Algorithm-level methods. The goal of such methods

is to directly modify the learning procedure to

improve the sensitivity of the classifier towards

minority classes. To this matter, several learning

algorithms/classifiers have been proposed such as

cost-sensitive SVM learning [10], neuro-fuzzy

modeling [11], an extreme learning machine (ELM)

with a weighting based on Adaboost [12], and an

ensemble of soft-margin SVMs formed using

boosting [13].

In the scope of shallow neural networks also

known as multi-layer perceptions (MLP), several

cost-sensitive approaches applied to imbalanced

problems have been proposed in [14, 16-20]. Such

approaches are similar with respect to the loss

function which is the 𝐿2 loss (Euclidean loss), with

respect to the cost function formulation which is

based on the dissociation of the class objectives, and

also with respect to the learning rule used namely the

extension of the backpropagation algorithm [15]. The

peculiarities of these methods are in the strategies

used to incorporate costs into the classes. In the study

of [14], authors proposed to weight the 𝐿2 loss

function of a RBF neural network with the parameter

𝛾𝑘 =
𝑚𝑎𝑥(𝑁𝑗)

𝑁𝑘
, where 𝑁𝑘 is the number of examples

of the 𝑘 th class, and 𝑚𝑎𝑥(𝑁𝑗) is the number of

examples of the majority class. Authors also argued

that the values of 𝛾𝑘 should be gradually diminished

along the training. Following the same direction as

[14], the work of [16] consists of weighting the same

𝐿2 loss function for a NN defining but this time with

𝛾𝑘 =
1

𝑁𝑘
. Another study [17] which assumes a two-

class MLPs, also proposes to intensify the error signal

resulting from the target output neuron of the

minority class by setting the parameters that control

the order of the modified cost function unequal and

equal to 2 and 4 for the dominant and rare classes

respectively. Another attempt to deal with binary

imbalanced classification was made by [18] which

incorporates into the loss function parameters 𝛾1 =

Received: January 17, 2023. Revised: May 10, 2023. 152

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

𝑁2

𝑁1+𝑁2
 and 𝛾2 =

𝑁1

𝑁1+𝑁2
 to weight positive and

negative classes respectively. Meanwhile, the study

of [19] proposes an improved Metropolis Hasting

(IMH) algorithm to sample absent minority class

samples by collecting samples rejected by the

majority class approximation process. Those sampled

absent minority samples are then provided to neural

networks to address the data imbalance problem. In

the work of [20], authors combine the Bayesian

formulation with threshold-based regression methods,

where the decision is based on thresholds over the

output of a neural network.

In the scope of deep neural networks, recently,

several studies integrated existing class imbalance

solutions into deep learning models. The study [21]

introduces a cost-sensitive convolutional neural

network (CNN) whose class-dependant cost matrix ℰ

(or weight) is optimized along with neural network

parameters during the training phase. With ℰ𝑝,𝑞

denoting the misclassification cost of classifying an

instance belonging to a class 𝑝 into a different class

𝑞, the goal is to turn ℰ𝑝,𝑞 = 0 as 𝑝 = 𝑞 during the

backpropagation process. On the other hand, a novel

approach based on an learned embedding with CNN

is addressed by [22] whereby a CNN is trained with

instances selected through a new quintuplet sampling

scheme and the associated triple-header hinge loss.

Another attempt to solve class imbalance with CNNs

is made by [23] using a weighted softmax loss

function where 𝛾𝑘 = 1 +
𝑚𝑎𝑥(𝑁𝑗)−𝑁𝑘

𝛽∗𝑚𝑎𝑥(𝑁𝑗)
, with 𝛽 a

parameter that controls the scaling of the weighted

loss (𝛽 was chosen to be 20). The study of [24] is an

extension of [16] for CNNs for binary classification

where authors first propose 𝛾𝑘 =
1

𝑁𝑘
 then propose

𝛾𝑘 =
𝐹𝐸𝑘

𝑁𝑘
 where 𝐹𝐸𝑘 = ∑ ∑ (𝑦̂𝑚

(𝑖)
− 𝑦𝑚

(𝑖)
)

2
𝑀
𝑚=1

𝑁𝑘
𝑖=1 ,

𝑀 being the number of classes.

Hybrid methods. Another way to address class

imbalance is to adopt a hybrid (algorithm and data)

approach. In [25], a novel oversampling method

called Ripple-SMOTE is combined with the

weighted loss function suggested in [23]. Also,

frameworks based on Generative Adversarial

Networks (GAN) were introduced to fuse between

data generation of minority class instances and

classifier training and reduce misclassifications for

minority class instances, such as conditional GAN

(cGan) [26], balancing GAN (BAGAN) [27],

Generative adversarial minority oversampling

(GAMO) [28], oversampling near the borderline

GAN (OBGAN) [29].

To handle the class imbalance problem, we

introduce a cost-sensitive approach which has the

following properties:

- Our approach is able to classify high dimensional

data, which is a common issue faced by data-

level methods.

- Unlike data-level methods and hybrid methods

based on Generative Adversarial Network

architectures, our approach does not alter the

original data distribution, resulting in a lower

computational cost during the training process.

- Our algorithm is rather an extension of cost-

sensitive algorithms dealing with binary

classification [14,16-18]. It handles multi-class

classification tasks by providing an asymmetrical

learning of NN via a modified (backpropagation)

weight update rule.

3. Methodology

In this section, we introduce the proposed cost-

sensitive loss function for classification under

imbalanced domains.

3.1 Cost-sensitive learning

Given a highly imbalanced training dataset

{(𝒙𝑠 , 𝑦𝑠)}𝑠=1
𝑆 where 𝑆 is the total number of

instances (e.g., samples) in the training set, a neural

network is trained by a function 𝝎(.) , under the

minimization of our cost-sensitive loss function using

backpropagation [15] and stochastic gradient descent.

Training this network generates tuned parameters 𝜽

which define a mapping between the input vector 𝒙𝑠

and the output 𝑦𝑠, represented by:

𝑦̂𝑠 = 𝜔(𝒙𝑠, 𝜽) (1)

where 𝑦̂𝑠 is the estimated output value.

The training process of a neural network is

accomplished through the minimization of an

objective function that measures the error between

the target class (ground-truth value) and the estimated

value (prediction) as follows,

minimize
𝜽

 𝐸(𝜽) (2)

where

𝐸(𝜽) =
1

𝑁
∑ 𝐸(𝑖)(𝜽)𝑵

𝒊=𝟏 = ∑ 𝑙(𝐲(𝑖), 𝐲̂(𝑖))𝑁
𝑖=1 (3)

where 𝑁 is the number of instances per batch, 𝑙(∙) is

the loss function, 𝒚(𝑖) is the true label as one-hot

encoding and 𝒚̂(𝑖) is the predicted output vector e.g.,

Received: January 17, 2023. Revised: May 10, 2023. 153

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

the output of the last layer of the network, for an

instance 𝑖 within the batch.

Empirical studies performed with the

backpropagation algorithm show that the imbalance

problem is due to the contribution to loss function,

from the positive classes (e.g., minority classes) in

relation to negative classes (e.g., majority classes),

where the most contribution to the loss function is

produced by negative classes. Therefore, the training

process is dominated by these latter.

In order to achieve solutions that are sensitive to

the importance of each class e.g., that give equal

importance to each class, we propose a cost-sensitive

cost function for the parameter estimation of neural

networks. Given 𝑀 classes and 𝑁 training samples

𝑁 = ∑ 𝑛𝑚
𝑀
𝑚=1 with 𝑛𝑚 the number of samples of the

𝑚 th class, the expression of this cost function is

defined as the weighted sum of functionals 𝐸(𝑖)(𝜽)

given by,

(𝐸(𝜽))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

=
1

𝑁
∑ 𝜆(𝑚) ∑ 𝑙(𝐲(𝑖), 𝐲̂(𝑖))

𝑛𝑚
𝑖=1

𝑀
𝑚=1

(4)

where 𝜆(𝑚) is the weighting parameter

corresponding to the class 𝑚.

The question is how to find the proper parameter

𝜆(𝑚) that maximizes classification performance

given imbalanced datasets. The solution proposed by

[14] was to set 𝜆(𝑚) =
𝑚𝑎𝑥(𝑛𝑘)

𝑛𝑚
 , where 𝑘 = 1, … , 𝑀

and 𝑚𝑎𝑥(𝑛𝑘) is the number of examples of the most

frequent class. However, with such a method, 1 ≤

𝜆 ≤
𝑚𝑎𝑥(𝑛𝑘)

𝑚𝑖𝑛(𝑛𝑘)
 implying that 𝜆 does not have a fixed

bound and can get very high as 𝑛𝑚 ≪ 𝑚𝑎𝑥(𝑛𝑘) (e.g.,

as the number of instances of the most frequent class

is much higher than the one of the rarest class). Thus,

this method can yield to an aggressive weighting of

the loss function.

Another solution is to come up with a fixed

bounded 𝜆. As such, we first define the relevance of

a class 𝑚 as,

∅(𝑚) = 1 −
𝑛𝑚

𝑚𝑎𝑥(𝑛𝑘)
 (5)

where the relevance ∅(𝑚) is a probability ranging

from 0 to 1. ∅(𝑚) increases as the class 𝑚 is more

positive (more infrequent) and decreases as the class

𝑚 is more negative (more frequent). For instance,

∅(𝑚) ≈ 1 for 𝑛𝑚 ≪ 𝑚𝑎𝑥(𝑛𝑘) and ∅(𝑚) = 0 for

𝑛𝑚 = 𝑚𝑎𝑥(𝑛𝑘).

Afterwards, the parameter 𝜆(𝑚) is obtained,

𝜆(𝑚) = 1 + 𝜏 ∅(𝑚) (6)

where 𝜏 is the parameter that regulates the weighting

of the relevance ∅(𝑚) , defined as 𝜏 ≥ 1 .

Accordingly, the parameter 𝜆(𝑚) ranges from 1 to

1 + 𝜏 . For example, given 𝜏 = 1 and an instance 𝑖
whose target is the most frequent class, then 𝜆(𝑚) =
1; so no extra weight is attributed to the functional or

error 𝐸(𝑖)(𝜽). On the other hand, with an instance 𝑖
whose target is the most rare class, 𝜆(𝑚) = 2; so the

𝐸(𝑖)(𝜽) is multiplied by 2.

In order to show the impact of the cost-sensitive

approach on the neural network (NN) learning

process, let’s analyze the cost-sensitive gradient of

the loss function. Given the simple functional Eq. (3),

let’s compute its scalar gradient calculated for a given

weight 𝜃𝑝,𝑘 of the network (𝑘 being one of the 𝑀

output nodes located at the last NN layer 𝑙 and 𝑝

being one of the input nodes at layer 𝑙 − 1), using the

standard backpropagation algorithm [15]. The

functional gradient with respect to 𝜃𝑝,𝑘 can be written

as,

∇𝐸(𝜃𝑝,𝑘) =
1

𝑁
∑

𝜕𝑙(𝑦𝑘
(𝑖)

,𝑦̂𝑘
(𝑖)

)

𝜕𝑦̂𝑘
(𝑖) 𝑥𝑝

(𝑖)𝑁
𝑖=1 (7)

where 𝑦𝑘
(𝑖)

 and 𝑦̂𝑘
(𝑖)

 are the true label and the

predicted NN output respectively at node 𝑘 for

instance 𝑖,
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂
𝑘
(𝑖) is the partial derivative of the

loss with respect to 𝑦̂𝑘
(𝑖)

, and 𝑥𝑝
(𝑖)

 is the value of the

input node 𝑝 at the same instance. Let’s note that, in

our case, no activation function is present between

the sum of weighted input nodes (e.g. the linear

combination of inputs) and the loss function. We will

further show in section 3.2 that omitting this

activation function is responsible for improving the

efficiency of our cost-sensitive approach.

On the other hand, given the cost-sensitive

functional Eq. (4), its gradient with respect to 𝜃𝑝,𝑘 is

given by,

(∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

=
1

𝑁
∑ 𝜆(𝑖) 𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖) 𝑥𝑝

(𝑖)𝑁
𝑖=1

(8)

where 𝜆(𝑖) = 𝜆(𝑚(𝑖)) for simplicity, with 𝑚𝑖 being

the target class (label) of instance 𝑖, and
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖) is

the standard (pure) partial derivative of that loss

function.

Then, using Eq. (6) and Eq. (7), Eq. (8) becomes,

Received: January 17, 2023. Revised: May 10, 2023. 154

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

(∇𝐸(𝜃𝒑,𝒌))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

= ∇𝐸(𝜃𝒑,𝒌) +

1

𝑁
 ∑ 𝜏 ∅(𝑖) 𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖) 𝑥𝑝

(𝑖)𝑁
𝑖=1 (9)

where ∅(𝑖) = ∅(𝑚(𝑖)) , suggesting that

(∇𝐸(𝜃𝒑,𝒌))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

 is simply ∇𝐸(𝜃𝑝,𝑘) (first term

of Eq. (9)) plus an extra cost (second term of Eq. (9))

whose value depends on the relevance of instances

within the batch. We notice that this extra cost gets

higher as the relevance of the instances 𝑖 𝜖 {1, … , 𝑁}

is higher e.g., as the classes of instances are less

frequent . And conversely, this extra cost goes to 0 as

the classes of instances are more frequent.

Consequently, (∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

≫ ∇𝐸(𝜃𝑝,𝑘) for

less frequent instances and (∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

≈

𝛻𝐸(𝜃𝑝,𝑘) for more frequent instances. Hence, more

learning occurs at rare instances (positives).

Moreover, along the training process, the impact

of the extra cost of the gradient diminishes since

𝜕𝑙(𝑦𝑘
(𝑖)

,𝑦̂𝑘
(𝑖)

)

𝜕𝑦̂𝑘
(𝑖) gets smaller over epochs.

3.2 Efficiency of the cost-sensitive learning based

on the loss function used

Now that the cost-sensitive cost function is

defined, it is necessary to define the proper loss

function for our cost sensitive approach. To do, we

lay out a background on different loss functions for

classification, then we discuss which ones are the

most suitable to our approach.

3.2.1. Background on loss functions for classification

Several loss functions for multiclass

classification exist. The most famous ones are listed

in Table 1. Knowing that the true label 𝐲(𝑖) of instance

𝑖 is a one-hot encoding vector, then 𝑦𝑘
(𝑖)

 the true label

at a certain node 𝑘 can be either 0 or 1. Accordingly,

graphical representations of loss functions within

Table 1 are displayed in Figure.1.a for 𝑦𝑘
(𝑖)

= 1 and

in Figure.1.b for 𝑦𝑘
(𝑖)

= 0. From these figures we note

that: (i) ℎ𝑖𝑛𝑔𝑒, ℎ𝑖𝑛𝑔𝑒2, and ℎ𝑖𝑛𝑔𝑒3 are variants of

𝑚𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑚𝑠ℎ𝑖𝑛𝑔𝑒2 , and 𝑚𝑠ℎ𝑖𝑛𝑔𝑒3 respectively

where 𝑚𝑎𝑥
𝑞≠𝑡

ŷ𝑞
(𝑖)

= 0 , (ii) in order to visualize the

cross-entropy loss, the activation function 𝜎(∙) is

chosen to be the sigmoid function instead of the

softmax function.

In our study, we call “probability estimate loss

functions” loss functions which are applied to

Table 1. List of loss functions used in our analysis. 𝐲(𝑖)

and 𝐲̂(𝑖) represent respectively the true label and the

predicted output at the last network layer at instance 𝑖.
∙𝑚 denotes the 𝑚th dimension/element of a given vector

and 𝜎(∙) denotes a probability estimate such as the

softmax function or the sigmoid function. Full names of

proposed loss functions are given in the Appendix.

Loss function Equation 𝒍(𝐲𝒊, 𝐲̂𝒊)

𝑳𝟐 ‖y(𝑖) − ŷ(𝑖)‖
2

2

𝑳𝟐 ∘ 𝝈 such that

𝝈(∙) = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅
‖y(𝑖) − p(𝑖)‖

2

2
 where p(𝑖) = 𝜎(ŷ(𝑖))

𝑴𝒔𝒉𝒊𝒏𝒈𝒆 𝑚𝑎𝑥 {0, 1 + 𝑚𝑎𝑥
𝑞≠𝑡

ŷ𝑞
(𝑖)

− ŷ𝑡
(𝑖)

} ,

y𝑡
(𝑖)

= 1

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟐
 𝑚𝑎𝑥 {0, − (1 + max

𝑞≠𝑡
ŷ𝑞

(𝑖)

− ŷ𝑡
(𝑖)

)
2

} , y𝑡
(𝑖)

= 1

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟑
𝑚𝑎𝑥{0, (1 + max

𝑞≠𝑡
ŷ𝑞

(𝑖)
− ŷ𝑡

(𝑖)
)

3

},

y𝑡
(𝑖)

= 1

𝒍𝒐𝒈 ∘ 𝝈

such that
𝝈(∙)
= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙

− ∑ y𝑚
(𝑖)

 log (𝑝𝑚
(𝑖)

)𝑀
𝑚 where 𝑝𝑚

(𝑖)
=

𝜎(ŷ𝑚
(𝑖)

) =
𝑒ŷ𝑚

(𝑖)

∑ 𝑒
ŷ

𝑗
(𝑖)

𝑀
𝑗=1

 and 𝑀 denotes the

total number of neurons in the final

output layer (e.g., 𝑀 equals the

number of classes)

probability estimates 𝜎(∙) such as softmax or

sigmoid functions. In other words, these loss

functions are connected to final layer activations

(output neurons) which are based on probability

estimates. In Table 1, examples of such loss functions

are 𝑙𝑜𝑔 ∘ 𝜎 and 𝐿2 ∘ 𝜎 , while the rest of loss

functions are applied to final layer activations based

on a linear output.

3.2.2. Cost-sensitive learning applied on loss functions

In order to see the impact of the cost-sensitive

approach on loss functions, we choose to plot in Fig.

2 (a) and (b) respectively the standard and cost-

sensitive partial derivatives of loss functions

displayed in Fig. 1 with respect to output neuron.

For the cost-sensitive version of loss functions,

we pick an instance 𝑖 whose class 𝑚(𝑖) is very rare

such that ∅(𝑚(𝑖)) = 0.9, and we set 𝜏 = 1 to obtain

𝜆(𝑚(𝑖)) = 1.9 . Fig. 2. (a) and Fig. 2 (b) depict

respectively
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
𝑖 and

(
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖))

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

at 𝑦𝑘
(𝑖)

= 1.

Received: January 17, 2023. Revised: May 10, 2023. 155

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

(a)

(b)

Figure. 1 Plots (a) and (b) represent different loss

functions 𝑙(𝐲(𝑖), 𝐲̂(𝑖)) at an instance 𝑖 with respect to

neuron predicted output 𝑦̂𝑘
(𝑖)

 when 𝑦𝑘
(𝑖)

= 1 and 𝑦𝑘
(𝑖)

= 0

respectively. 𝜎(∙) denotes the sigmoid function

By analyzing plots of Fig. 2 (a) and Fig. 2 (b), we

observe that, for a prediction 𝑦̂𝑘
(𝑖)

= 0 far from the

true label 𝑦𝑘
(𝑖)

= 1 ,
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖) is equal to −1 , −2 ,

−12 and −2 for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 ,

and 𝐿2 respectively, and to −0.5 and −0.25 for

𝑙𝑜𝑔 ∘ 𝜎 and 𝐿2 ∘ 𝜎 respectively. This suggests that

probability estimate loss functions (e.g., 𝑙𝑜𝑔 ∘ 𝜎 and

𝐿2 ∘ 𝜎) produce absolute values of partial derivatives

smaller than those of other loss functions.

Meanwhile, after applying the cost sensitive

strategy on these loss functions, for the same

prediction 𝑦̂𝑘
(𝑖)

= 0 , the value of

(
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂
𝑘
(𝑖))

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

 is −1.9, −3.8, −22.8 and

−3.8 for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , and 𝐿2

respectively, compared to −0.95 and −0.475 for

𝑙𝑜𝑔 ∘ 𝜎 and 𝐿2 ∘ 𝜎 respectively. Therefore,

(a)

(b)

Figure. 2 Plots in (a) and (b) represent respectively

standard and cost-sensitive partial derivatives of different

losses at instance 𝑖 with respect to 𝑦̂𝑘
(𝑖)

. Instance 𝑖 is

chosen to have a high relevance ∅(𝑚𝑖) = 0.9, and 𝜏 is

set to 1

𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , and 𝐿2 loss

functions yield relatively high

|(
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖))

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

|, compared to probability

estimate loss functions which have relatively low

|(
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖))

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

|.

In general, as the prediction gets further from the

true label (such that 𝑦̂𝑘
(𝑖)

≪ 𝑦𝑘
(𝑖)

 at 𝑦𝑘
(𝑖)

= 1),

|
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖) | of probability estimate loss functions

increases at a slow rate, as opposed to |
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂
𝑘
(𝑖) | of

𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , and 𝐿2 loss functions. As a

result, multiplying partial derivatives by 𝜆(𝑚𝑖) still

Received: January 17, 2023. Revised: May 10, 2023. 156

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

produces a small |(
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂𝑘
(𝑖))

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

| for

probability estimate loss functions and a relatively

high |(
𝜕𝑙(𝑦𝑘

(𝑖)
,𝑦̂𝑘

(𝑖)
)

𝜕𝑦̂
𝑘
(𝑖))

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

| for other loss

functions as shown in Fig. 2 (b). Hence, the impact of

the cost-sensitive approach will be very sparse for the

probability estimate loss functions and relatively high

for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3, and 𝐿2.

3.3 Faster convergence / Boosting network

learning

One of the factors responsible for the fast NN

convergence is the use of an adaptable learning rate

𝛼 e.g., an 𝛼 not too high for the network to diverge

and not too low for it to converge too slowly. Below

we show that our cost-sensitive approach is able to

improve the network convergence via a dynamic

learning rate per instance 𝛼(𝑖) which depends on the

rarity or relevance of that instance.

Using the cost-sensitive gradient Eq. (8), the

Stochastic Gradient Descent learning rule is obtained

as,

𝜃𝑝,𝑘 ≔ 𝜃𝑝,𝑘 −
1

𝑛
 ∑ 𝛼(𝑖)

𝜕𝑙(𝐲(𝑖),𝐲̂(𝑖))

𝜕𝑦̂
𝑘
(𝑖) 𝑥𝑝

(𝑖)𝑁
𝑖=1 (10)

where 𝛼(𝑖) = 𝛼 𝜆(𝑖) and 𝛼 ≤ 𝛼(𝑖) ≤ (1 + 𝜏)𝛼.

So, we can consider 𝛼𝑖 as a dynamic learning rate

which changes with respect to the rarity or relevance

of the instance, by increasing up to (1 + 𝜏)𝛼 for the

rarest instances and decreasing to the original

learning rate 𝛼 for the most frequent instances.

As such, our cost-sensitive gradient

(∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

 has the property of boosting

learning as it helps the network converge faster.

Indeed, our gradient has the property/particularity of

increasing small weight updates, which is one of the

2 objectives of the Adam optimizer [30] (whole goal

is to make relatively small weight update bigger and

relatively high weights updates smaller).

In order to show this property, let’s consider

training a two-class neuron network (NN) under

imbalanced domains using (stochastic gradient

descent with) a batch of size 10. By applying the

standard cost function Eq. (3), this NN tends to

classify negative or frequent instances as negative

and positives or rare instances as negatives. For

example, given a run composed of 8 negative

instances and 2 positives ones, the NN is more likely

to correctly classify the 8 negatives as negatives and

to wrongly classify the 2 positives as negatives,

resulting in a relatively small average gradient

(∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

 and thus a small learning.

So, more backpropagation runs are needed in order to

learn from positive instances. However, employing

the cost-sensitive approach produces a higher

average error (since the loss of every positive

instance is increased), and a higher average gradient,

which makes learning from positive instances greater

and faster. So, the cost-sensitive loss boosts learning

by making small gradients bigger.

4. Experimental study

4.1 Datasets

1D datasets. Experiments were carried out on eight

real one-dimensional datasets (e.g., whose input data

is a vector) extracted from the UCI Database

Repository (http:www.ics.uci.edu/∼mlearn). “PID”

and “WPBC are used as abbreviations of “Pima

Indians Diabetes” and “WP Breast Cancer”

respectively. The datasets and some of their

characteristics are summarized in Table 2. All these

datasets have passed through the following pre-

processing steps: categorical attributes were

expanded into the corresponding binary vectors, and

then each attribute (metric or binary) was normalized

to the interval [0, 1]. Furthermore, the “yeast_8l”

dataset is simply the “yeast” dataset with class 9 and

10 removed (since these latter contain very few

instances, which makes the NN hard to train).

2D dataset: MNIST. MNIST is considered a simple

dataset generally used for digits' images classification

tasks. It consists of grayscale images of size 28 × 28

with ten classes corresponding to digits from 0 to 9.

The number of instances per class in the original

training dataset ranges from 5421 in class 5 (e.g.,

number “5”) to 6742 in class 1 (e.g., number “1”). In

our study, we subsample uniformly at random each

class to obtain no more than 600 examples par class.

This dataset is referred to as “Mnist”.

Afterwards, in order to show the performance of

our cost-sensitive algorithm, the “Mnist” dataset

needs to be imbalanced. To do so, we defined the

ratio between the number of examples in majority

classes and the number of examples in minority

classes as follows, 𝑟 =
𝑚𝑎𝑥

𝑘
{𝑛𝑘}

𝑚𝑖𝑛
𝑘

{𝑛𝑘}
. As such, for r equal

to 10, 30, 40 or 50, classes 1 and 3 both have 60, 30,

15 or 12 instances respectively. These datasets are

denoted as “Mnist10”, “Mnist30”, “Mnist40” and

“Mnist50” respectively.

Received: January 17, 2023. Revised: May 10, 2023. 157

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

Table 2. Characteristics of the 1D datasets.

Dataset No. of

Attrib

utes

No.

classes

No. of

instan-

ces

Class

distribution

Ionosphere 34 2 181 126/55

PID 8 2 768 268/500

WPBC 30 2 198 47/151

SPECTFH

eart

43 2 267 55/212

Yeast_8l 8 8 1645 464/430/424/163

/51/47/35/31

Car 6 4 1728 1210/384/69/65

Satimage 36 6 6435 1533/703/1358/

626/707/1508

Thyroid 21 3 7200 166/368/6666

Mnist 28x28 10 6000 600 for all classes

Mnist10 28x28 10 4920 60 for class 1,3

600 for others

Mnist30 28x28 10 4860 20 for class 1,3

600 for others

Mnist40 28x28 10 4850 15 for class 1,3

600 for others

Mnist50 28x28 10 4824 12 for class 1,3

600 for others

4.2 Training and experimental setup

In our study, a multi-layer perceptron with three

hidden is used to train the 1D datasets, whereas the

2D datasets are trained using a convolutional neural

network (CNN) with two convolutional layers and

two fully connected layers. The optimization

algorithm used for experiments within Section 5.1

and 5.2 is stochastic gradient descent (SGD) with

momentum value of 0.9 and a weight decay of 0.0005.

As for experiments of section 5.3, SGD with the same

momentum and weight decay is used for training

CNNs, whereas the Adam optimizer [30] is used for

training MLPs with the exponential decay rate for 1st

and 2nd moment estimates 𝛽1and 𝛽2 set to 0.9 and

0.999 respectively, the offset 𝜀 set to 10−8 , and a

starting learning rate of 0.0001. Hyper-parameters

such as the learning rate, batch size and network

architecture vary from one dataset to another and are

set according to Table 3. Note that learning rates

displayed in Table 3 (a) are used when the optimizer

is SGD with momentum. On the other hand, when

dealing with the Adam optimizer, the learning rate is

set to 0.001 for all datasets within Table 3 (a). The

dropout rate for CNN is set to 0.5. Training is

performed for 15 to 100 epochs, depending on the

dataset used and the experimental method employed.

We report results with 3-fold cross validation.

As for parameters of the cost-sensitive approach,

𝜏 is set to 2 and 50 for the MLP and CNN models

respectively. Indeed, as the proposed CNN

Table 3. Training hyper-parameters for the 1D datasets

in: (a) and the 2D datasets in (b). For these datasets, the

MLP used has 𝑛1, 𝑛2 and 𝑛3 neurons in the first, second

and third layer respectively and (b) the architecture of the

CNN used for the 2D datasets is defined

(a)

Dataset Learning

rate

Batch

size

[𝒏𝟏, 𝒏𝟐, 𝒏𝟑]

Ionosphere 0.010 5 500, 50, 2

PID 0.010 5 200, 20, 2

WPBC 0.005 5 500, 50, 2

Yeast_8l 0.001 10 200, 100, 8

Car 0.010 10 150, 75, 4

Satimage 0.010 50 600, 100, 6

Thyroid 0.010 50 350, 70, 3

(b)
Layer Depth Kernel size Stride

Convolution 20 5x5 1

ReLU 20 - -

Max-pooling 20 2x2 2

Convolution 50 5x5 1

ReLU 50 - -

Max-pooling 50 2x2 2

Fully connected 500 4x4 1

ReLU 500 - -

Dropout 500 - -

Fully connected 10 1x1 1

architecture has more hidden layers than the proposed

MLP architectures, the magnitude of the gradients

with each subsequent layer of the CNN gets

exponentially smaller in the backpropagation process,

which results in very slow learning of weights in the

CNN lower layers. So, in order for CNN lower layers’

weights to be affected by the cost-sensitive technique,

the weighting parameter 𝜆 needs to be relatively high

compared to 𝜆 of a MLP.

As for the performance metric, the most widely

one for evaluating performance in the context of

multiclass classification within neural networks

(MLPs or CNNs) is overall accuracy which is the

proportion of test examples that were correctly

classified. However, this metric has some significant

and long acknowledged limitations, particularly in

the context of imbalanced datasets. Specifically,

when the test set is imbalanced, accuracy will favor

classes that are overrepresented in some cases leading

to highly misleading assessment. In order to make

classification performance of each class equally

represented in the evaluation measure, [31] suggested

the G-mean as the geometric means of recall values

for the bi-class scenario. Expanding this measure to

the multiple class scenario was introduced by [32]

whereby the G-mean is the geometric means of recall

values of every classes as follows,

Received: January 17, 2023. Revised: May 10, 2023. 158

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

𝐺 − 𝑚𝑒𝑎𝑛 = (∏ 𝑖
𝑚
𝑖=1)1/𝑚 (11)

Where 𝑖 is the recall value of class 𝑖 and 𝑚 is the

number of classes.

As each recall value representing the

classification performance of a specific class is

equally accounted, G-mean is the proper metric for

our study as it is able to measure the balanced

performance among imbalanced classes.

5. Experiments and results

Training MLPs on the 1D datasets and CNNs on

the 2D datasets is performed using the standard

version of loss functions mentioned in Table 1

(Section 3) as well as the cost-sensitive version of

these loss functions. These latter include 𝐿2 ,

𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , 𝑙𝑜𝑔 °𝜎 (where

𝜎(∙) corresponds to the softmax function), and 𝐿2°𝜎

(𝜎(∙) being the sigmoid function). However, 𝐿1 loss

function was dismissed from this experiment since it

does not learn at all due to “jumps" in the NN model

caused by its partial derivatives with respect to the

predicted network output being either -1 or 1 (as seen

in Fig. 2 (a). Each experiment is repeated three times

and its mean performance across all three runs is

depicted in Table 4. Convergence rates are visualized

through learning curves of each experiment (of 1 run

only) which are displayed in Fig. 3.

5.1 Effect of cost-sensitive learning on

classification performance

From results in Table 4, we observe that applying

the cost-sensitive approach on 𝐿2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 ,

𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 loss functions improves

the G-mean performance in overall. Indeed G-mean

results for the cost-sensitive version of these loss

functions are higher than results for the standard

version for all 1D and 2D datasets (except “WB

breast cancer” dataset for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3). For instance,

the cost-sensitive approach boosts performance from

0% to 60.69% for the “thyroid” dataset when applied

on 𝑀𝑠ℎ𝑖𝑛𝑔𝑒, from 0% to 60.66% for the “Yeast_8l”

dataset when applied on 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2, and from 0% to

98.41% for the “Mnist50” dataset when applied on 𝐿2.

However, we can see that applying the same cost-

sensitive approach on log °𝜎 loss function seems to

decrease performance for several datasets (such as

“Ionosphere”, “Yeast_8l”, “Mnist30”, “Mnist40” and

“Mnist50”) and to increase performance for the rest

of the datasets. The same behavior is observed for

𝐿2°𝜎 loss function with a decrease in performance

for datasets “Ionosphere”, “PID”, “WB breast

cancer”, and “Satimage”, versus an increase in

performance for the other datasets.

Given these observations, the following

reflections can be made:

(i) When dealing with 𝐿2, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2

and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 loss functions, our cost-sensitive

approach is able to capture more relevant features

e.g., features that are shared between positive and

negative instances. Indeed, at each instance 𝑖 ,

multiplying such loss functions by λ contributes

in balancing weights θ between positives and

negatives, thus generating better weights.

Furthermore, the positive impact of this approach

with such loss functions is drawn for both the

shallow NN models (MLPs) and deep learning

ones (CNNs). Thus, our cost-sensitive approach

can be regarded as a reliable technique when

applied on loss functions 𝐿2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 ,

𝑀𝑠ℎ𝑖𝑛𝑔𝑒2, and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3.

(ii) However, results convey that our cost-sensitive

approach is not suitable for probability estimate

loss functions (log °𝜎 and 𝐿2°𝜎), which

confirms the graphical interpretation of section

3.2. Indeed, as 𝜎(∙) turns predicted outputs into

probabilities, partial derivatives of the loss

function with respect to this output tend to be

small (within the range [0,1]), making partial

derivatives of the cost-sensitive loss function

small with little impact on NN learning.

(iii) Also, let’s note that the non-linearity present

within partial derivatives of loss functions log °𝜎

and 𝐿2°𝜎 is not the property responsible for the

inefficiency of the cost-sensitive approach.

Indeed, even with the non-linearity of 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3

partial derivative, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 along with the

cost-sensitive method improves classification

performance.

5.2 Effect of cost-sensitive learning on

convergence speed

From plots in Fig. 3 (a), (b), (c), (d), (e) and (f)

corresponding to learning curves of NNs for

𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , 𝐿2 , 𝐿2 ∘ 𝜎 and

𝑙𝑜𝑔 ∘ 𝜎 loss functions respectively in the standard

and cost-sensitive form, we observe that the cost-

sensitive strategy increases the convergence speed

for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 and 𝐿2 loss

functions. As explained in the methodology (Section

3.3), this improvement over the NN convergence

speed is due to the coefficient 𝜆(𝑚(𝑖)) within the

gradient which acts like a learning rate magnifier for

any positive instance 𝑖 and boosts the learning

Received: January 17, 2023. Revised: May 10, 2023. 159

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

(a) (b)

(c) (d)

(e) (f)

Figure. 3 Learning curves of NNs for different loss functions with and without the cost-sensitive approach applied. Each

of the plots is a result of NN training on a specific dataset which is mentioned in parentheses: (a) 𝑚𝑠ℎ𝑖𝑛𝑔𝑒

(“Ionosphere”), (b) 𝑚𝑠ℎ𝑖𝑛𝑔𝑒2 (“Ionosphere”), (c) 𝑚𝑠ℎ𝑖𝑛𝑔𝑒3 (“Ionosphere”), (d) 𝐿2 (“PID”), (e) 𝐿2 ∘ 𝜎 (“WPBC”) and

(f) 𝑙𝑜𝑔 ∘ 𝜎 (“Satimage”)

process for 𝑖 . Nonetheless, we notice a different

behavior for 𝑙𝑜𝑔 ∘ 𝜎 and 𝐿2 ∘ 𝜎 where the cost-

sensitive approach either does not affect convergence

speed as it is the case for 𝑙𝑜𝑔 ∘ 𝜎 Fig. 3 (f) or reduces

convergence speed as observed for 𝐿2 ∘ 𝜎 Fig. 3 (e).

This confirms our earliest assumption (section 3.2)

that the impact of the cost-sensitive technique on loss

functions with probability estimates such as 𝑙𝑜𝑔 ∘ 𝜎

and 𝐿2 ∘ 𝜎 has a sparse impact on the network

learning compared to the large impact given loss

functions with no probability estimates.

Received: January 17, 2023. Revised: May 10, 2023. 160

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

5.3 Comparative results

An empirical study was conducted to evaluate the

effectiveness of the cost-sensitive algorithm in

improving the performance of both shallow and deep

neural networks (MLPs and CNNs). Our approach

was compared with seven benchmark methods:

SMOTE [1], Borderline-SMOTE [2], ADASYN [5],

simple over-sampling, simple undersampling. the

cost-sensitive method ST1 [14], and the generative

adversarial network based framework GAMO [28].

The oversampling methods (SMOTE, Borderline-

SMOTE and ADASYN) were implemented using the

The imbalanced-learn library [33]. As for the

configuration of GAMO, the official GAMO library

at GitHub was used. A pure neural network, e.g.,

without any strategy to deal with imbalanced data,

was also tested within exactly the same conditions of

the other algorithms. ADAM was used as the

optimization algorithm for training MLPs (with 1D

datasets) while SGD momentum was used for

training CNNs (with 2D datasets) since, as stated in

[7], ADAM shows large performance improvement

over SGD with momentum for MLPs versus marginal

improvement for CNNs.

In these experiments, the chosen loss function to

conduct all these methods is 𝐿2 . Morevoer, each

experiment is conducted three times and its mean G-

mean classification result is reported in Table 4. From

obtained results, our approach competes with state-

of-the-art approaches. Furthermore, several

observations can be drawn:

(i) Our cost-sensitive method surpasses by far the

baseline and undersampling techniques. Indeed,

as we undersample, we are able to balance the

data for proper neural network training, but we

remove training instances which could hold

valuable characteristics, thus losing relevant

information.

(ii) Although our approach performs less than

oversampling methods (simple oversampling,

SMOTE, Borderline-SMOTE and ADASYN) for

low-dimensional datasets (e.g., 1D datasets), it

performs slightly better these methods for high-

dimensional datasets (e.g., 2D datasets). For

almost all datasets (except “PID” and “Thyroid”),

the performance of our approach is higher than

the oversampling technique. This is because

oversampling generates redundant instances

which might cause overfitting of the NN

especially if dealing with a complex NN such

as CNN.

(iii) Our approach is observed to perform better than

the ST1 technique. This can be explained by the

fact that ST1 upweights minority class (positive)

instances with an unbounded weight which could

get very high as 𝑛𝑚 ≪ 𝑚𝑎𝑥(𝑛𝑘) (𝑛𝑚 and

𝑚𝑎𝑥(𝑛𝑘) being respectively the number of

minority class instances and the number of the

most frequent class instances), thus making the

resulting network too biased toward majority

classes. On the other hand, our method upweights

these instances with a bounded weight that varies

from 0 to 𝜏 +1.

(iv) In general, our approach competes with the

GAMO framework. Interestingly, our approach

performs better than GAMO given very rare

instances. Indeed, for Mnist10 and Mnist30,

GAMO’s performance surpasses the

performance of our approach. But, as the number

of minority class instances decreases, our

approach is observed to perform slightly better

than GAMO. This may be due to the fact that a

higher weight-updating is given to minority

classes as these latter are more infrequent, which

contributes to a better learning of these classes

and thus to a higher performance.

6. Conclusion

Our approach addresses the class imbalance

problem which is commonly encountered when

dealing with real-world datasets, by introducing a

cost-sensitive strategy applied on neural networks at

the training phase. Based on a cost-sensitive error

function, its objective is to correctly classify minority

classes and favour them as much as the frequent ones

by assigning a weighted misclassification cost based

on the distribution of classes. By properly weighting

the loss function, weight-updating is intensified for

the minority class based on the probability of their

occurrence. Throughout this paper, results on several

popular datasets showed that: (i) our approach has a

better convergence than the baseline algorithm and

competes with state-of-the-art techniques including

oversampling methods and the deep learning method

based on generative adversarial networks GAMO, (ii)

it also offers a faster convergence by boosting the

optimizer when positive instances are present, (iii) it

can be applied on shallow and deep neural networks

(MLPs and CNNs), which allows classification of

imbalanced datasets with 1-,2-, and 3-dimentional

inputs. We also show that the cost-sensitive approach

is efficient only for loss functions with no probability

estimates. Therefore, the cross entropy loss, which is

the most commonly used loss function in the majority

https://github.com/SankhaSubhra/GAMO

Received: January 17, 2023. Revised: May 10, 2023. 161

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

Table 4. Mean classification results of neural networks over 3 runs using different loss functions in terms of average

values of g-mean (in %). Best rates per loss function and per dataset are in bold. The abbreviation “Stand.” stands for

“Standard”

 𝒍𝒐𝒈 °𝝈 𝑴𝒔𝒉𝒊𝒏𝒈𝒆 𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟐 𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟑 𝑳𝟐°𝝈 𝑳𝟐

 Stand. Ours Stand. Ours Stand. Ours Stand. Ours Stand. Ours Stand. Ours

Ionosphere 90.60 88.29 86.25 89.17 86.25 87.72 89.17 90.93 85.29 82.02 70.26 81.58

PID 75.52 76.38 75.22 75.27 75.50 76.54 74.65 75.77 76.08 32.12 75.77 75.97

WBBC 92.83 93.36 92.40 93.19 92.17 92.62 94.13 93.98 93.27 89.38 82.30 89.88

SPECTF_Heart 79.66 81.18 83.68 83.68 80.52 82.12 81.32 83.68 73.49 82.02 80.05 82.90

Yeast_8l 58.72 58.02 56.36 59.84 0.00 60.66 53.11 59.43 0.00 0.00 57.32 63.15

Car 98.01 100.00 98.75 99.63 98.50 99.94 98.67 99.82 87.57 96.52 96.56 99.57

Satimage 87.83 87.94 86.86 88.73 87.60 88.94 87.58 88.58 88.34 82.74 85.55 88.12

Thyroid 51.03 54.93 0.00 60.69 57.97 72.26 50.51 72.65 0.00 41.08 46.75 73.14

Mnist10 94.88 95.15 94.78 96.55 94.96 95.18 95.18 95.92 90.74 96.21 91.76 96.27

Mnist30 92.00 90.94 91.95 93.45 91.89 92.50 90.31 90.75 90.43 92.36 90.43 92.64

Mnist40 97.77 98.50 95.81 98.41 87.81 97.13 96.80 98.52 0.00 97.81 0.00 98.41

Mnist50 98.70 98.11 97.89 98.70 98.66 98.29 98.61 98.67 0.00 97.05 0.00 98.43

Table 4. Comparative results between different methods in terms of the G-mean performance metric (in %).

Dataset 𝑳𝟐 SMOTE

[1]
Borderline-

SMOTE [2]

ADASYN

[5]

Over-

sampling

Under-

sampling

Ours ST1

[14]
GAMO

[28]

PID 0.760 0.789 0.762 0.737 0.786 0.754 0.772 0.762 0.760

WBBC 0.928 0.931 0.943 0.939 0.926 0.926 0.943 0.931 0.948

yeast_8l 0.590 0.640 0.640 0.571 0.620 0.559 0.630 0.625 0.641

thyroid 0.824 0.932 0.942 0.938 0.937 0.776 0.864 0.931 0.941

car 0.987 0.980 0.976 0.984 0.996 0.940 0.996 0.993 0.985

satimage 0.893 0.946 0.940 0.930 0.924 0.913 0.935 0.898 0.941

mnist10 0.974 0.988 0.990 0.981 0.980 0.939 0.988 0.963 0.989

mnist30 0.960 0.989 0.986 0.847 0.906 0.888 0.990 0.962 0.991

mnist40 0.941 0.988 0.990 0.976 0.959 0.837 0.996 0.976 0.992

mnist50 0 0.991 0.990 0.993 0.985 0.772 0.994 0.941 0.991

of studies, is not a good choice as it comes to

classifying imbalanced datasets with our cost-

sensitive approach.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Supervision, Taoufiq Gadi and El Hassan Essoufi;

Review and editing, Mohamed Elhassan Bassir.

Acknowledgments

This research received no specific grant from any

funding agency.

Data availability

The data that support the findings of this study are

openly available at the URL:

https://github.com/lsadouk/imbalanced_classificatio

n

References

[1] N. V. Chawla, K. W. Bowyer, L. O. Hall, and

W. P. Kegelmeyer, “{SMOTE}: synthetic

minority over-sampling technique”, Journal of

Artificial Intelligence Research, Vol. 16, pp.

321–357, 2002.

[2] H. Han, W. Y. Wang, and B. H. Mao,

“Borderline-SMOTE: A New Over-Sampling

Method in Imbalanced Data Sets Learning”, In:

Proc. of International Conference on Intelligent

Computing, pp. 878–887, 2005.

[3] C. Bunkhumpornpat, K. Sinapiromsaran, and C.

Lursinsap, “Safe-Level-SMOTE: Safe-Level-

Synthetic Minority Over-Sampling TEchnique

for Handling the Class Imbalanced Problem”, In:

Proc. of the 13th Pacific-Asia Conference on

Advances in Knowledge Discovery and Data

https://github.com/lsadouk/imbalanced_classification
https://github.com/lsadouk/imbalanced_classification

Received: January 17, 2023. Revised: May 10, 2023. 162

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

Mining, pp. 475–482, 2009.

[4] T. MacIejewski and J. Stefanowski, “Local

neighbourhood extension of SMOTE for mining

imbalanced data”, In: Proc. of IEEE SSCI 2011:

Symposium Series on Computational

Intelligence - CIDM 2011: 2011 IEEE

Symposium on Computational Intelligence and

Data Mining, pp. 104–111, 2011.

[5] H. He, Y. Bai, E. A. Garcia, and S. Li,

“ADASYN: Adaptive synthetic sampling

approach for imbalanced learning”, In: Proc. of

the International Joint Conference on Neural

Networks, pp. 1322–1328, 2008.

[6] J. Song, Y. Shen, Y. Jing, and M. Song,

“Towards Deeper Insights into Deep Learning”,

In: Proc. of the 25th international conference on

Machine learning, Vol. 2, pp. 674–684, 2017.

[7] M. Kubat and S. Matwin, “Addressing the curse

of imbalanced training sets: One sided selection”,

In: Proc. of the 14th International Conference

on Machine Learning, pp. 179–186, 1997.

[8] J. Laurikkala, “Improving Identification of

Difficult Small Classes by Balancing Class

Distribution”, In: Proc. of Conference on

Artificial Intelligence in Medicine in Europe, pp.

63–66, 2001.

[9] S. Pouyanfar, Y. Tao, A. Mohan, H. Tian, A. S.

Kaseb, and K. Gauen, “Dynamic Sampling in

Convolutional Neural Networks for Imbalanced

Data Classification”, In: Proc. of IEEE 1st

Conference on Multimedia Information

Processing and Retrieval, no. June, pp. 112–117,

2018.

[10] D. Zhang, Yong and Wang, “A cost-sensitive

ensemble method for class-imbalanced datasets”,

Abstr. Appl. Anal., Vol. 2013, 2013.

[11] M. Gao, X. Hong, and C. J. Harris,

“Construction of neurofuzzy models for

imbalanced data classification”, IEEE

Transactions on Fuzzy Systems, Vol. 22, No. 6,

pp. 1472–1488, 2014.

[12] K. Li, X. Kong, Z. Lu, L. Wenyin, and J. Yin,

“Boosting weighted ELM for imbalanced

learning”, Neurocomputing, Vol. 128, pp. 15–21,

2014.

[13] B. X. Wang and N. Japkowicz, “Boosting

support vector machines for imbalanced data

sets”, Knowledge and Information Systems, Vol.

25, No. 1, pp. 1–20, 2010.

[14] R. Alejo, V. Garcia, J. M. Sotoca, R. A.

Mollineda, and J. S. Sanchez, “Improving the

performance of the RBF neural networks trained

with imbalanced samples”, Computational and

Ambient Intelligence, Vol. 4507, pp. 162–169,

2007.

[15] D. E. Rumelhart, J. L. McClelland, C. Asanuma,

F. H. C. Crick, J. L. Elman, and G. E. Hinton,

“Parallel Distributed Processing: Explorations in

the Microstructure of Cognition”,

Computational Models of Cognition and

Perception, pp. 318–362, 1986.

[16] C. L. Castro and A. D. P. Braga, “artificial neural

networks learning in roc space”, In: Proc. of the

International Joint Conference on

Computational Intelligence, pp. 484–489, 2009.

[17] S. H. Oh, “Error back-propagation algorithm for

classification of imbalanced data”,

Neurocomputing, Vol. 74, No. 6, pp. 1058–1061,

2011.

[18] C. L. Castro and A. P. Braga, “Novel cost-

sensitive approach to improve the multilayer

perceptron performance on imbalanced data”,

IEEE Transactions on Neural Networks and

Learning Systems, Vol. 24, No. 6, pp. 888–899,

2013.

[19] Z. A. Huang, Y. Sang, Y. Sun, and J. Lv, “Neural

network with absent minority class samples and

boundary shifting for imbalanced data

classification”, Neural Computing and

Applications, pp. 1–17, 2023.

[20] M. Lázaro and A. F. Vidal, “Neural network for

ordinal classification of imbalanced data by

minimizing a Bayesian cost”, Pattern

Recognition, vol. 137, pp. 109303, 2023.

[21] S. H. Khan, M. Hayat, M. Bennamoun, F. Sohel,

R. Togneri, and C. V Mar, “Cost-Sensitive

Learning of Deep Feature Representations from

Imbalanced Data”, IEEE Transactions on

Neural Networks and Learning Systems, Vol. 29,

No. 8, pp. 3573–3587, 2018.

[22] C. Huang, Y. Li, C. C. Loy, and X. Tang,

“Learning Deep Representation for Imbalanced

Classification”, In: Proc. of 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 5375–5384, 2016.

[23] S. Yue, “Imbalanced Malware Images

Classification: a CNN based Approach”, arXiv

Prepr. arXiv1708.08042, 2017.

[24] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and

P. J. Kennedy, “Training Deep Neural Networks

on Imbalanced Data Sets”, In: Proc. of Neural

Networks (IJCNN), 2016 International Joint

Conference on, pp. 4368–4374, 2016.

[25] R. Harliman and K. Uchida, “Data- and

algorithm-hybrid approach for imbalanced data

problems in deep neural network”, International

Journal of Machine Learning and Computing,

Vol. 8, No. 3, pp. 208–213, 2018.
[26] G. Douzas and F. Bacao, “Effective data

generation for imbalanced learning using

Received: January 17, 2023. Revised: May 10, 2023. 163

International Journal of Intelligent Engineering and Systems, Vol.16, No.4, 2023 DOI: 10.22266/ijies2023.0831.13

conditional generative adversarial networks”,

Expert Syst. Appl., Vol. 91, pp. 464–471, 2018,

[27] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas,

and C. Malossi, “BAGAN: Data Augmentation

with Balancing GAN”, arXiv.org, 2018.

[28] S. S. Mullick, S. Datta, and S. Das, “Generative

adversarial minority oversampling”, In: Proc. of

the IEEE International Conference on Computer

Vision, Vol. 2019-Octob, pp. 1695–1704, 2019.

[29] W. Jo and D. Kim, “OBGAN: Minority

oversampling near borderline with generative

adversarial networks”, Expert Systems With

Applications, Vol. 197, p. 116694, Jul. 2022,

[30] D. Yun, H. Lee, and S. H. Choi, “A deep

learning-based approach to non-intrusive

objective speech intelligibility estimation”,

IEICE Transactions on Information and Systems,

Vol. E101D, No. 4, pp. 1207–1208, 2018.

[31] M. Kubat, R. C. Holte, and S. Matwin, “Machine

Learning for the Detection of Oil Spills in

Satellite Radar Images”, Machine Learning, Vol.

30, pp. 195–215, 1998.

[32] Y. Sun, Yanmin and Kamel, S. Mohamed and

Wang, “Boosting for Learning Multiple Classes

with Imbalanced Class Distribution”, In: Proc.

of the Sixth International Conference on Data

Mining, pp. 592-602, 2006.

[33] G. Lemaître, F. Nogueira, and C. K. Aridas,

“Imbalanced-learn: A python toolbox to tackle

the curse of imbalanced datasets in machine

learning”, Journal of Machine Learning

Research, Vol. 18, pp. 1–5, 2017.

Appendix

Table 1. List of notations used in this paper

Symbol Description

NN Neural Network

MLP Multi-Layer Perceptrons

CNN Convolutional Neural Networks

𝜽 Parameters of the neural network

𝑬(∙) Objective function

𝒊 Instance of a batch taken from a

given dataset

𝒚(𝒊) the true label (as one-hot

encoding) of instance 𝑖
𝒚̂(𝒊) predicted output vector of the

neural network of instance 𝑖
𝑵

number of instances per batch

𝒍(∙) Loss function

𝝀(𝒎) weighting parameter

corresponding to the class 𝑚

∅(𝒎) Relevance of the class m

𝒙𝒑
(𝒊)

 Value of the input node 𝑝 at

instance i

𝑳𝟐 Squared loss function

𝑴𝒔𝒉𝒊𝒏𝒈𝒆 Multiclass structured hinge loss

(Crammer-Singer loss)

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟐 Squared Multiclass structured

hinge loss

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟑 Cubed Multiclass structured hinge

loss

𝝈(∙) A propability estimate function

(such as the softmax and sigmoid

function)

𝒍𝒐𝒈 ∘ 𝝈 Cross entropy loss

ReLU Rectified Linear Unit

G-Mean Geometric Mean

SGD Stochastic Gradient Descent

