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Abstract: In this study, we propose a cost-sensitive learning approach applied on neural networks to deal with 

classification under imbalanced domains. Our approach is able to automatically learn robust features for both frequent 

and rare classes by automatically assigning misclassification penalties to each class based the frequency of occurrence 

of that class. This approach is investigated in the context of shallow networks (multi-layer perceptrons) and deep 

networks (convolutional neural networks). Moreover, it offers not only a better convergence but also a faster 

convergence since it can boost optimization by increasing weight gradients which are getting small due to their fitting 

to the frequent classes. Extensive experiments were carried out on one- and two-dimensional datasets. Running 

experiments using several loss functions showed the efficacity of our approach on loss functions which do not have 

probability estimates. Additionally, our approach achieved a good performance compared to common undersampling 

and oversampling methods as well as models based on generative adversarial networks. 

Keywords: Cost-sensitive learning, Data imbalance, Loss functions, Multilayer perceptrons, Convolutional neural 

networks. 

 

 

1. Introduction 

Recently, growing advances in science and 

technology have resulted in the availability of data 

and its expansion in several fields. The presence of 

this massive volume of data contributes to the 

development of data mining tasks, but also brings in 

some challenges such as data imbalance. Even though 

the amount of annotated data has increased, these 

data have imbalanced distributions, which means that 

frequent classes (also denoted as negative or majority 

classes) are abundant while others (referred to as 

positive or minority classes) only have limited 

representations.  

And, in real-world scenarios, several imbalanced 

classification tasks focus on correctly classifying the 

minority class. One example is the medical diagnosis 

of a particular disease (such as tumor diagnosis) 

where this latter is dangerous and should still be 

detected even though it occurs rarely. Given such 

imbalanced data at training, standard algorithms 

produce trained models that tend to learn more from 

instances belonging to the more observed or over-

represented class than from those belonging to the 

less observed or under-represented class since they 

are unable to learn proper decision rules, resulting in 

imbalanced and erroneous performance on test data. 

In other words, imbalanced data causes trained 

classification models to be biased towards frequent 

classes. However, to ensure an efficient learning from 

existent models, it is important to obtain a good 

accuracy within both frequent and rare class instances. 

In this work, we attempt to solve the issue of bad 

classification within imbalanced datasets by 

proposing a cost-sensitive learning strategy which 

improves the sensitivity of multi-class neural 

networks toward minority classes. The key 

contributions of this study are as follows. 

1) An approach to train shallow and deep neural 

networks (such as multi-layer perceptrons and 

convolutional neural networks) with imbalanced 
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datasets, thus handling classification of 1-, 2-, 

and 3-dimentional input datasets. 

2) A boosting technique in optimization which 

makes a faster NN learning and thus a faster 

convergence. 

3) A method which works with all loss functions 

which do not have a probability estimate. 

4) An empirical evaluation of the proposed 

approach against the state of the art. 

The remainder of this paper is organized as follows. 

We briefly discuss the related work in the next 

section. Afterwards, we introduce and describe our 

proposed cost-sensitive learning algorithm (Section 

3.1), analyze which loss functions are the most 

efficient when applied to the cost-sensitive strategy 

(Section 3.2), and discuss the convergence speed 

once the cost-sensitive technique is applied (Section 

3.3). Implementation details including the description 

of datasets as well as NN hyper-parameters are 

provided in Section 4. Then, experiments and results 

are summarized in Section 5. Finally, a conclusion is 

given in Section 6. 

2. Related work 

There is a large literature on solving the 

imbalanced data problem. Existing approaches can be 

classified into algorithm-level and data-level 

approaches.  

 

Data-level methods. The data-level techniques, also 

called “re-sampling techniques”, do not affect the 

learning algorithm itself but rather modify the data 

distribution to solve the imbalanced classification 

problem. These techniques can group into four 

categories. Over-sampling is one of them and its 

methods consist of increasing the quantity of 

minority class instances by replicating them [1-5], or 

synthesizing new ones using the SMOTE technique 

[1] or one of its variants (Borderline SMOTE [2], 

Safe-level SMOTE [3], Local neighborhood SMOTE 

[4], ADASYN [5], etc.) to balance the data 

distribution. Nonetheless, these methods are 

criticized for the over-fitting problem [6] and for their 

inefficiency when dealing with high-dimensional 

data.  

Another direction to balance the data distribution 

is the under-sampling category. Standard under-

sampling consists of randomly under-sampling the 

majority class instances to construct the balanced 

positives and negatives. More advanced under-

sampling methods include one-sided selection (OSS) 

[7] and nearest neighbor cleaning rule [8]. However, 

such methods are only suitable for training low 

dimensional, highly structured and size limited data 

(which is often in vector form) and do not behave 

satisfactory for high-dimensional, unstructured and 

large datasets.  

A novel attempt to balance data is through 

dynamic sampling. For instance, the work of [9] 

proposes to train a deep learning model 

(convolutional neural network) using dynamic 

sampling, whereby the performance metric on the 

reference dataset is utilized to adjust the class 

distribution of training samples of the next iteration. 

In other words, more samples of classes with low F1-

scores will be selected in the next iteration. 

 

Algorithm-level methods. The goal of such methods 

is to directly modify the learning procedure to 

improve the sensitivity of the classifier towards 

minority classes. To this matter, several learning 

algorithms/classifiers have been proposed such as 

cost-sensitive SVM learning [10], neuro-fuzzy 

modeling [11], an extreme learning machine (ELM) 

with a weighting based on Adaboost [12], and an 

ensemble of soft-margin SVMs formed using 

boosting [13].  

In the scope of shallow neural networks also 

known as multi-layer perceptions (MLP), several 

cost-sensitive approaches applied to imbalanced 

problems have been proposed in [14, 16-20]. Such 

approaches are similar with respect to the loss 

function which is the 𝐿2 loss (Euclidean loss), with 

respect to the cost function formulation which is 

based on the dissociation of the class objectives, and 

also with respect to the learning rule used namely the 

extension of the backpropagation algorithm [15]. The 

peculiarities of these methods are in the strategies 

used to incorporate costs into the classes. In the study 

of [14], authors proposed to weight the 𝐿2  loss 

function of a RBF neural network with the parameter 

𝛾𝑘 =
𝑚𝑎𝑥(𝑁𝑗)

𝑁𝑘
, where 𝑁𝑘 is the number of examples 

of the 𝑘 th class, and 𝑚𝑎𝑥(𝑁𝑗)  is the number of 

examples of the majority class. Authors also argued 

that the values of 𝛾𝑘 should be gradually diminished 

along the training. Following the same direction as 

[14], the work of [16] consists of weighting the same 

𝐿2 loss function for a NN defining but this time with 

𝛾𝑘 =
1

𝑁𝑘
. Another study [17] which assumes a two-

class MLPs, also proposes to intensify the error signal 

resulting from the target output neuron of the 

minority class by setting the parameters that control 

the order of the modified cost function unequal and 

equal to 2 and 4 for the dominant and rare classes 

respectively. Another attempt to deal with binary 

imbalanced classification was made by [18] which 

incorporates into the loss function parameters 𝛾1 =
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𝑁2

𝑁1+𝑁2
 and 𝛾2 =

𝑁1

𝑁1+𝑁2
 to weight positive and 

negative classes respectively. Meanwhile, the study 

of [19] proposes an improved Metropolis Hasting 

(IMH) algorithm to sample absent minority class 

samples by collecting samples rejected by the 

majority class approximation process. Those sampled 

absent minority samples are then provided to neural 

networks to address the data imbalance problem. In 

the work of [20], authors combine the Bayesian 

formulation with threshold-based regression methods, 

where the decision is based on thresholds over the 

output of a neural network. 

In the scope of deep neural networks, recently, 

several studies integrated existing class imbalance 

solutions into deep learning models. The study [21] 

introduces a cost-sensitive convolutional neural 

network (CNN) whose class-dependant cost matrix ℰ 

(or weight) is optimized along with neural network 

parameters during the training phase. With ℰ𝑝,𝑞 

denoting the misclassification cost of classifying an 

instance belonging to a class 𝑝 into a different class 

𝑞, the goal is to turn ℰ𝑝,𝑞 = 0 as 𝑝 = 𝑞 during the 

backpropagation process. On the other hand, a novel 

approach based on an learned embedding with CNN 

is addressed by [22] whereby a CNN is trained with 

instances selected through a new quintuplet sampling 

scheme and the associated triple-header hinge loss. 

Another attempt to solve class imbalance with CNNs 

is made by [23] using a weighted softmax loss 

function where 𝛾𝑘 = 1 +
𝑚𝑎𝑥(𝑁𝑗)−𝑁𝑘

𝛽∗𝑚𝑎𝑥(𝑁𝑗)
, with 𝛽  a 

parameter that controls the scaling of the weighted 

loss (𝛽 was chosen to be 20). The study of [24] is an 

extension of [16] for CNNs for binary classification 

where authors first propose 𝛾𝑘 =
1

𝑁𝑘
 then propose 

𝛾𝑘 =
𝐹𝐸𝑘

𝑁𝑘
 where 𝐹𝐸𝑘 = ∑ ∑ (�̂�𝑚

(𝑖)
− 𝑦𝑚

(𝑖)
)

2
𝑀
𝑚=1

𝑁𝑘
𝑖=1 , 

𝑀 being the number of classes.  

 

Hybrid methods. Another way to address class 

imbalance is to adopt a hybrid (algorithm and data) 

approach. In [25], a novel oversampling method 

called Ripple-SMOTE is combined with the 

weighted loss function suggested in [23]. Also, 

frameworks based on Generative Adversarial 

Networks (GAN) were introduced to fuse between 

data generation of minority class instances and 

classifier training and reduce misclassifications for 

minority class instances, such as conditional GAN 

(cGan) [26], balancing GAN (BAGAN) [27], 

Generative adversarial minority oversampling 

(GAMO) [28], oversampling near the borderline 

GAN (OBGAN) [29]. 

To handle the class imbalance problem, we 

introduce a cost-sensitive approach which has the 

following properties: 

- Our approach is able to classify high dimensional 

data, which is a common issue faced by data-

level methods. 

- Unlike data-level methods and hybrid methods 

based on Generative Adversarial Network 

architectures, our approach does not alter the 

original data distribution, resulting in a lower 

computational cost during the training process. 

- Our algorithm is rather an extension of cost-

sensitive algorithms dealing with binary 

classification [14,16-18]. It handles multi-class 

classification tasks by providing an asymmetrical 

learning of NN via a modified (backpropagation) 

weight update rule. 

3. Methodology 

In this section, we introduce the proposed cost-

sensitive loss function for classification under 

imbalanced domains. 

3.1 Cost-sensitive learning 

Given a highly imbalanced training dataset 

{(𝒙𝑠 , 𝑦𝑠)}𝑠=1
𝑆  where 𝑆  is the total number of 

instances (e.g., samples) in the training set, a neural 

network is trained by a function 𝝎(. ) , under the 

minimization of our cost-sensitive loss function using 

backpropagation [15] and stochastic gradient descent. 

Training this network generates tuned parameters 𝜽 

which define a mapping between the input vector 𝒙𝑠 

and the output 𝑦𝑠, represented by:  

 

�̂�𝑠 = 𝜔(𝒙𝑠, 𝜽)    (1) 

 

where �̂�𝑠 is the estimated output value. 

The training process of a neural network is 

accomplished through the minimization of an 

objective function that measures the error between 

the target class (ground-truth value) and the estimated 

value (prediction) as follows, 

 

minimize
𝜽

 𝐸(𝜽)   (2) 

 

where 

 

𝐸(𝜽) =
1

𝑁
∑ 𝐸(𝑖)(𝜽)𝑵

𝒊=𝟏 =  ∑ 𝑙(𝐲(𝑖), �̂�(𝑖))𝑁
𝑖=1     (3) 

 

where 𝑁 is the number of instances per batch, 𝑙(∙) is 

the loss function, 𝒚(𝑖)  is the true label as one-hot 

encoding and �̂�(𝑖) is the predicted output vector e.g., 
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the output of the last layer of the network, for an 

instance 𝑖 within the batch.  

Empirical studies performed with the 

backpropagation algorithm show that the imbalance 

problem is due to the contribution to loss function, 

from the positive classes (e.g., minority classes) in 

relation to negative classes (e.g., majority classes), 

where the most contribution to the loss function is 

produced by negative classes. Therefore, the training 

process is dominated by these latter.  

In order to achieve solutions that are sensitive to 

the importance of each class e.g., that give equal 

importance to each class, we propose a cost-sensitive 

cost function for the parameter estimation of neural 

networks. Given 𝑀  classes and 𝑁  training samples 

𝑁 = ∑ 𝑛𝑚
𝑀
𝑚=1  with 𝑛𝑚 the number of samples of the 

𝑚 th class, the expression of this cost function is 

defined as the weighted sum of functionals 𝐸(𝑖)(𝜽) 

given by, 

 

(𝐸(𝜽))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

=
1

𝑁
∑ 𝜆(𝑚) ∑ 𝑙(𝐲(𝑖), �̂�(𝑖))

𝑛𝑚
𝑖=1

𝑀
𝑚=1  

(4) 

 

where 𝜆(𝑚)  is the weighting parameter 

corresponding to the class 𝑚. 

The question is how to find the proper parameter 

𝜆(𝑚)  that maximizes classification performance 

given imbalanced datasets. The solution proposed by 

[14] was to set 𝜆(𝑚) =
𝑚𝑎𝑥(𝑛𝑘)

𝑛𝑚
 , where 𝑘 = 1, … , 𝑀 

and 𝑚𝑎𝑥(𝑛𝑘) is the number of examples of the most 

frequent class. However, with such a method, 1 ≤

𝜆 ≤
𝑚𝑎𝑥(𝑛𝑘)

𝑚𝑖𝑛(𝑛𝑘)
 implying that 𝜆  does not have a fixed 

bound and can get very high as 𝑛𝑚 ≪ 𝑚𝑎𝑥(𝑛𝑘) (e.g., 

as the number of instances of the most frequent class 

is much higher than the one of the rarest class). Thus, 

this method can yield to an aggressive weighting of 

the loss function. 

Another solution is to come up with a fixed 

bounded 𝜆. As such, we first define the relevance of 

a class 𝑚 as,  

 

∅(𝑚) = 1 −
𝑛𝑚

𝑚𝑎𝑥(𝑛𝑘)
  (5) 

 

where the relevance ∅(𝑚) is a probability ranging 

from 0 to 1. ∅(𝑚) increases as the class 𝑚 is more 

positive (more infrequent) and decreases as the class 

𝑚  is more negative (more frequent). For instance, 

∅(𝑚) ≈ 1  for 𝑛𝑚  ≪ 𝑚𝑎𝑥(𝑛𝑘)  and ∅(𝑚) = 0  for 

𝑛𝑚 = 𝑚𝑎𝑥(𝑛𝑘). 

Afterwards, the parameter 𝜆(𝑚) is obtained,  

 

𝜆(𝑚) = 1 + 𝜏 ∅(𝑚)  (6) 

 

where 𝜏 is the parameter that regulates the weighting 

of the relevance ∅(𝑚) , defined as 𝜏 ≥ 1 . 

Accordingly, the parameter 𝜆(𝑚) ranges from 1  to 

1 + 𝜏 . For example, given 𝜏 = 1 and an instance 𝑖 
whose target is the most frequent class, then 𝜆(𝑚) =
1; so no extra weight is attributed to the functional or 

error 𝐸(𝑖)(𝜽). On the other hand, with an instance 𝑖 
whose target is the most rare class, 𝜆(𝑚) = 2; so the 

𝐸(𝑖)(𝜽) is multiplied by 2.   

In order to show the impact of the cost-sensitive 

approach on the neural network (NN) learning 

process, let’s analyze the cost-sensitive gradient of 

the loss function. Given the simple functional Eq. (3), 

let’s compute its scalar gradient calculated for a given 

weight 𝜃𝑝,𝑘  of the network (𝑘  being one of the 𝑀 

output nodes located at the last NN layer 𝑙  and 𝑝 

being one of the input nodes at layer 𝑙 − 1), using the 

standard backpropagation algorithm [15]. The 

functional gradient with respect to 𝜃𝑝,𝑘 can be written 

as, 

 

∇𝐸(𝜃𝑝,𝑘) =
1

𝑁
∑

𝜕𝑙(𝑦𝑘
(𝑖)

,�̂�𝑘
(𝑖)

)

𝜕�̂�𝑘
(𝑖)  𝑥𝑝

(𝑖)𝑁
𝑖=1    (7) 

 

where 𝑦𝑘
(𝑖)

 and �̂�𝑘
(𝑖)

 are the true label and the 

predicted NN output respectively at node 𝑘  for 

instance 𝑖, 
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�
𝑘
(𝑖)  is the partial derivative of the 

loss with respect to �̂�𝑘
(𝑖)

, and  𝑥𝑝
(𝑖)

 is the value of the 

input node 𝑝 at the same instance. Let’s note that, in 

our case, no activation function is present between 

the sum of weighted input nodes (e.g. the linear 

combination of inputs) and the loss function. We will 

further show in section 3.2 that omitting this 

activation function is responsible for improving the 

efficiency of our cost-sensitive approach. 

On the other hand, given the cost-sensitive 

functional Eq. (4), its gradient with respect to 𝜃𝑝,𝑘 is 

given by,  

 

(∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

=
1

𝑁
∑  𝜆(𝑖) 𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖)  𝑥𝑝

(𝑖)𝑁
𝑖=1   

(8) 

 

where  𝜆(𝑖) = 𝜆(𝑚(𝑖)) for simplicity, with 𝑚𝑖  being 

the target class (label) of instance 𝑖, and 
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖)   is 

the standard (pure) partial derivative of that loss 

function. 

Then, using Eq. (6) and Eq. (7), Eq. (8) becomes, 
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(∇𝐸(𝜃𝒑,𝒌))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

= ∇𝐸(𝜃𝒑,𝒌) +                   

1

𝑁
 ∑ 𝜏 ∅(𝑖) 𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖)  𝑥𝑝

(𝑖)𝑁
𝑖=1   (9) 

 

where ∅(𝑖) = ∅(𝑚(𝑖)) , suggesting that 

(∇𝐸(𝜃𝒑,𝒌))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

 is simply ∇𝐸(𝜃𝑝,𝑘) (first term 

of Eq. (9)) plus an extra cost (second term of Eq. (9)) 

whose value depends on the relevance of instances 

within the batch. We notice that this extra cost gets 

higher as the relevance of the instances 𝑖 𝜖 {1, … , 𝑁} 

is higher e.g., as the classes of instances are less 

frequent . And conversely, this extra cost goes to 0 as 

the classes of instances are more frequent. 

Consequently, (∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

≫ ∇𝐸(𝜃𝑝,𝑘) for 

less frequent instances and (∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠.

≈

𝛻𝐸(𝜃𝑝,𝑘) for more frequent instances. Hence, more 

learning occurs at rare instances (positives). 

Moreover, along the training process, the impact 

of the extra cost of the gradient diminishes since 

𝜕𝑙(𝑦𝑘
(𝑖)

,�̂�𝑘
(𝑖)

)

𝜕�̂�𝑘
(𝑖)  gets smaller over epochs. 

3.2 Efficiency of the cost-sensitive learning based 

on the loss function used 

Now that the cost-sensitive cost function is 

defined, it is necessary to define the proper loss 

function for our cost sensitive approach. To do, we 

lay out a background on different loss functions for 

classification, then we discuss which ones are the 

most suitable to our approach.  

3.2.1. Background on loss functions for classification 

Several loss functions for multiclass 

classification exist. The most famous ones are listed 

in Table 1. Knowing that the true label 𝐲(𝑖) of instance 

𝑖 is a one-hot encoding vector, then 𝑦𝑘
(𝑖)

 the true label 

at a certain node 𝑘 can be either 0 or 1. Accordingly, 

graphical representations of loss functions within 

Table 1 are displayed in Figure.1.a for 𝑦𝑘
(𝑖)

= 1 and 

in Figure.1.b for 𝑦𝑘
(𝑖)

= 0. From these figures we note 

that: (i) ℎ𝑖𝑛𝑔𝑒, ℎ𝑖𝑛𝑔𝑒2, and ℎ𝑖𝑛𝑔𝑒3 are variants of 

𝑚𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑚𝑠ℎ𝑖𝑛𝑔𝑒2 , and 𝑚𝑠ℎ𝑖𝑛𝑔𝑒3  respectively 

where 𝑚𝑎𝑥
𝑞≠𝑡

ŷ𝑞
(𝑖)

= 0 , (ii) in order to visualize the 

cross-entropy loss, the activation function 𝜎(∙)  is 

chosen to be the sigmoid function instead of the 

softmax function. 

In our study, we call “probability estimate loss 

functions” loss functions which are applied to  

 

Table 1. List of loss functions used in our analysis. 𝐲(𝑖) 

and �̂�(𝑖) represent respectively the true label  and the 

predicted output at the last network layer at instance 𝑖. 
∙𝑚 denotes the 𝑚th dimension/element of a given vector 

and 𝜎(∙) denotes a probability estimate such as the 

softmax function or the sigmoid function. Full names of 

proposed loss functions are given in the Appendix. 

Loss function Equation 𝒍(𝐲𝒊, �̂�𝒊) 

𝑳𝟐 ‖y(𝑖) − ŷ(𝑖)‖
2

2
 

𝑳𝟐 ∘ 𝝈 such that 

𝝈(∙) = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅 
‖y(𝑖) − p(𝑖)‖

2

2
 where p(𝑖) = 𝜎(ŷ(𝑖))  

𝑴𝒔𝒉𝒊𝒏𝒈𝒆 𝑚𝑎𝑥 {0, 1 + 𝑚𝑎𝑥
𝑞≠𝑡

ŷ𝑞
(𝑖)

− ŷ𝑡
(𝑖)

} ,

y𝑡
(𝑖)

= 1 

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟐    
 𝑚𝑎𝑥 {0, − (1 + max

𝑞≠𝑡
ŷ𝑞

(𝑖)

− ŷ𝑡
(𝑖)

)
2

} , y𝑡
(𝑖)

= 1 

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟑    
𝑚𝑎𝑥{0, (1 + max

𝑞≠𝑡
ŷ𝑞

(𝑖)
− ŷ𝑡

(𝑖)
)

3

},

y𝑡
(𝑖)

= 1 

𝒍𝒐𝒈 ∘ 𝝈  

such that  
𝝈(∙)
= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 

− ∑ y𝑚
(𝑖)

 log (𝑝𝑚
(𝑖)

)𝑀
𝑚   where 𝑝𝑚

(𝑖)
=

𝜎(ŷ𝑚
(𝑖)

) =
𝑒ŷ𝑚

(𝑖)

∑ 𝑒
ŷ

𝑗
(𝑖)

𝑀
𝑗=1

 and 𝑀 denotes the 

total number of neurons in the final 

output layer (e.g., 𝑀 equals the 

number of classes) 

 

probability estimates 𝜎(∙)  such as softmax or 

sigmoid functions. In other words, these loss 

functions are connected to final layer activations 

(output neurons) which are based on probability 

estimates. In Table 1, examples of such loss functions 

are 𝑙𝑜𝑔 ∘ 𝜎  and 𝐿2 ∘ 𝜎 , while the rest of loss 

functions are applied to final layer activations based 

on a linear output. 

3.2.2. Cost-sensitive learning applied on loss functions 

In order to see the impact of the cost-sensitive 

approach on loss functions, we choose to plot in Fig. 

2 (a) and (b) respectively the standard and cost-

sensitive partial derivatives of loss functions 

displayed in Fig. 1 with respect to output neuron. 

For the cost-sensitive version of loss functions, 

we pick an instance 𝑖 whose class 𝑚(𝑖) is very rare 

such that ∅(𝑚(𝑖)) = 0.9, and we set 𝜏 = 1 to obtain 

𝜆(𝑚(𝑖)) = 1.9 . Fig. 2. (a) and Fig. 2 (b) depict 

respectively 
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
𝑖   and 

(
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖) )

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

at 𝑦𝑘
(𝑖)

= 1. 
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(a) 

 
(b) 

Figure. 1 Plots (a) and (b) represent different loss 

functions 𝑙(𝐲(𝑖), �̂�(𝑖)) at an instance 𝑖 with respect to 

neuron predicted output �̂�𝑘
(𝑖)

 when 𝑦𝑘
(𝑖)

= 1 and 𝑦𝑘
(𝑖)

= 0 

respectively. 𝜎(∙) denotes the sigmoid function 

 

By analyzing plots of Fig. 2 (a) and Fig. 2 (b), we 

observe that, for a prediction �̂�𝑘
(𝑖)

= 0 far from the 

true label 𝑦𝑘
(𝑖)

= 1 , 
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖)  is equal to −1 , −2 , 

−12 and −2 for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , 

and 𝐿2  respectively, and to −0.5  and  −0.25  for 

𝑙𝑜𝑔 ∘ 𝜎  and 𝐿2 ∘ 𝜎  respectively. This suggests that 

probability estimate loss functions (e.g., 𝑙𝑜𝑔 ∘ 𝜎 and 

𝐿2 ∘ 𝜎) produce absolute values of partial derivatives 

smaller than those of other loss functions. 

Meanwhile, after applying the cost sensitive 

strategy on these loss functions, for the same 

prediction �̂�𝑘
(𝑖)

= 0 , the value of  

(
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�
𝑘
(𝑖) )

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

 is −1.9, −3.8, −22.8 and 

−3.8 for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , and 𝐿2 

respectively, compared to −0.95  and  −0.475  for 

𝑙𝑜𝑔 ∘ 𝜎  and 𝐿2 ∘ 𝜎  respectively. Therefore,  

 

 
(a) 

 
(b) 

Figure. 2 Plots in (a) and (b) represent respectively 

standard and cost-sensitive partial derivatives of different 

losses at instance 𝑖 with respect to �̂�𝑘
(𝑖)

. Instance 𝑖 is 

chosen to have a high relevance  ∅(𝑚𝑖) = 0.9, and 𝜏 is 

set to 1 

 

𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , and 𝐿2  loss 

functions yield relatively high 

|(
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖) )

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

|, compared to probability 

estimate loss functions which have relatively low 

|(
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖) )

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

|.  

In general, as the prediction gets further from the 

true label (such that �̂�𝑘
(𝑖)

≪ 𝑦𝑘
(𝑖)

 at 𝑦𝑘
(𝑖)

= 1 ), 

|
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖) |  of probability estimate loss functions 

increases at a slow rate, as opposed to |
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�
𝑘
(𝑖) | of 

𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , and 𝐿2  loss functions. As a 

result, multiplying partial derivatives by 𝜆(𝑚𝑖) still 
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produces a small |(
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�𝑘
(𝑖) )

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

|  for 

probability estimate loss functions and a relatively 

high |(
𝜕𝑙(𝑦𝑘

(𝑖)
,�̂�𝑘

(𝑖)
)

𝜕�̂�
𝑘
(𝑖) )

𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

|  for other loss 

functions as shown in Fig. 2 (b). Hence, the impact of 

the cost-sensitive approach will be very sparse for the 

probability estimate loss functions and relatively high 

for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3, and 𝐿2. 

3.3 Faster convergence / Boosting network 

learning 

One of the factors responsible for the fast NN 

convergence is the use of an adaptable learning rate 

𝛼 e.g., an 𝛼 not too high for the network to diverge 

and not too low for it to converge too slowly. Below 

we show that our cost-sensitive approach is able to 

improve the network convergence via a dynamic 

learning rate per instance 𝛼(𝑖) which depends on the 

rarity or relevance of that instance. 

Using the cost-sensitive gradient Eq. (8), the 

Stochastic Gradient Descent learning rule is obtained 

as, 

 

𝜃𝑝,𝑘 ≔ 𝜃𝑝,𝑘 −
1

𝑛
 ∑ 𝛼(𝑖)  

𝜕𝑙(𝐲(𝑖),�̂�(𝑖))

𝜕�̂�
𝑘
(𝑖)  𝑥𝑝

(𝑖)𝑁
𝑖=1     (10) 

 

where 𝛼(𝑖) = 𝛼  𝜆(𝑖) and  𝛼 ≤ 𝛼(𝑖) ≤ (1 + 𝜏)𝛼. 

So, we can consider 𝛼𝑖 as a dynamic learning rate 

which changes with respect to the rarity or relevance 

of the instance, by increasing up to (1 + 𝜏)𝛼  for the 

rarest instances and decreasing to the original 

learning rate 𝛼 for the most frequent instances. 

As such, our cost-sensitive gradient 

(∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

 has the property of boosting 

learning as it helps the network converge faster. 

Indeed, our gradient has the property/particularity of 

increasing small weight updates, which is one of the 

2 objectives of the Adam optimizer [30] (whole goal 

is to make relatively small weight update bigger and 

relatively high weights updates smaller). 

In order to show this property, let’s consider 

training a two-class neuron network (NN) under 

imbalanced domains using (stochastic gradient 

descent with) a batch of size 10. By applying the 

standard cost function Eq. (3), this NN tends to 

classify negative or frequent instances as negative 

and positives or rare instances as negatives. For 

example, given a run composed of 8 negative 

instances and 2 positives ones, the NN is more likely 

to correctly classify the 8 negatives as negatives and 

to wrongly classify the 2 positives as negatives, 

resulting in a relatively small average gradient 

(∇𝐸(𝜃𝑝,𝑘))
𝑐𝑜𝑠𝑡−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒

 and thus a small learning.  

So, more backpropagation runs are needed in order to 

learn from positive instances. However, employing 

the cost-sensitive approach produces a higher 

average error (since the loss of every positive 

instance is increased), and a higher average gradient, 

which makes learning from positive instances greater 

and faster. So, the cost-sensitive loss boosts learning 

by making small gradients bigger. 

4. Experimental study 

4.1 Datasets 

1D datasets. Experiments were carried out on eight 

real one-dimensional datasets (e.g., whose input data 

is a vector) extracted from the UCI Database 

Repository (http:www.ics.uci.edu/∼mlearn). “PID” 

and “WPBC are used as abbreviations of “Pima 

Indians Diabetes” and “WP Breast Cancer” 

respectively. The datasets and some of their 

characteristics are summarized in Table 2. All these 

datasets have passed through the following pre-

processing steps: categorical attributes were 

expanded into the corresponding binary vectors, and 

then each attribute (metric or binary) was normalized 

to the interval [0, 1]. Furthermore, the “yeast_8l” 

dataset is simply the “yeast” dataset with class 9 and 

10 removed (since these latter contain very few 

instances, which makes the NN hard to train). 

2D dataset: MNIST. MNIST is considered a simple 

dataset generally used for digits' images classification 

tasks. It consists of grayscale images of size 28 × 28 

with ten classes corresponding to digits from 0 to 9. 

The number of instances per class in the original 

training dataset ranges from 5421 in class 5 (e.g., 

number “5”) to 6742 in class 1 (e.g., number “1”). In 

our study, we subsample uniformly at random each 

class to obtain no more than 600 examples par class. 

This dataset is referred to as “Mnist”. 

Afterwards, in order to show the performance of 

our cost-sensitive algorithm, the “Mnist” dataset 

needs to be imbalanced. To do so, we defined the 

ratio between the number of examples in majority 

classes and the number of examples in minority 

classes as follows, 𝑟 =
𝑚𝑎𝑥

𝑘
{𝑛𝑘}

𝑚𝑖𝑛
𝑘

{𝑛𝑘}
. As such, for r equal 

to 10, 30, 40 or 50, classes 1 and 3 both have 60, 30, 

15 or 12 instances respectively. These datasets are 

denoted as “Mnist10”, “Mnist30”, “Mnist40” and 

“Mnist50” respectively. 
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Table 2. Characteristics of the 1D datasets. 

Dataset No. of 

Attrib 

utes 

No.  

classes 

No. of 

instan- 

ces 

Class 

distribution 

Ionosphere 34 2 181 126/55 

PID 8 2 768 268/500 

WPBC 30 2 198 47/151 

SPECTFH

eart 

43 2 267 55/212 

Yeast_8l 8 8 1645 464/430/424/163 

/51/47/35/31 

Car 6 4 1728 1210/384/69/65 

Satimage 36 6 6435 1533/703/1358/ 

626/707/1508 

Thyroid 21 3 7200 166/368/6666 

Mnist 28x28 10 6000 600 for all classes 

Mnist10 28x28 10 4920 60 for class 1,3 

600 for others  

Mnist30 28x28 10 4860 20 for class 1,3 

600 for others  

Mnist40 28x28 10 4850 15 for class 1,3 

600 for others 

Mnist50 28x28 10 4824 12 for class 1,3 

600 for others 

4.2 Training and experimental setup 

In our study, a multi-layer perceptron with three 

hidden is used to train the 1D datasets, whereas the 

2D datasets are trained using a convolutional neural 

network (CNN) with two convolutional layers and 

two fully connected layers. The optimization 

algorithm used for experiments within Section 5.1 

and 5.2 is stochastic gradient descent (SGD) with 

momentum value of 0.9 and a weight decay of 0.0005. 

As for experiments of section 5.3, SGD with the same 

momentum and weight decay is used for training 

CNNs, whereas the Adam optimizer [30] is used for 

training MLPs with the exponential decay rate for 1st 

and 2nd moment estimates 𝛽1and 𝛽2  set to 0.9 and 

0.999 respectively, the offset 𝜀  set to 10−8 , and a 

starting learning rate of 0.0001. Hyper-parameters 

such as the learning rate, batch size and network 

architecture vary from one dataset to another and are 

set according to Table 3. Note that learning rates 

displayed in Table 3 (a) are used when the optimizer 

is SGD with momentum. On the other hand, when 

dealing with the Adam optimizer, the learning rate is 

set to 0.001 for all datasets within Table 3 (a). The 

dropout rate for CNN is set to 0.5. Training is 

performed for 15 to 100 epochs, depending on the 

dataset used and the experimental method employed. 

We report results with 3-fold cross validation.  

As for parameters of the cost-sensitive approach, 

𝜏 is set to 2 and 50 for the MLP and CNN models 

respectively. Indeed, as the proposed CNN  

 

Table 3. Training hyper-parameters for the 1D datasets 

in: (a) and the 2D datasets in (b). For these datasets, the 

MLP used has 𝑛1, 𝑛2 and 𝑛3 neurons in the first, second 

and third layer respectively and (b) the architecture of the 

CNN used for the 2D datasets is defined 

(a) 

Dataset Learning 

rate 

Batch 

size 

[𝒏𝟏, 𝒏𝟐, 𝒏𝟑] 

Ionosphere 0.010 5 500, 50, 2 

PID 0.010 5 200, 20, 2 

WPBC 0.005 5 500, 50, 2 

Yeast_8l  0.001 10 200, 100, 8 

Car 0.010 10 150, 75, 4 

Satimage 0.010 50 600, 100, 6 

Thyroid 0.010 50 350, 70, 3 

(b) 
Layer Depth Kernel size Stride 

Convolution 20 5x5 1 

ReLU 20 - - 

Max-pooling 20 2x2 2 

Convolution 50 5x5 1 

ReLU 50 - - 

Max-pooling 50 2x2 2 

Fully connected 500 4x4 1 

ReLU 500 - - 

Dropout 500 - - 

Fully connected 10 1x1 1 

 

 

architecture has more hidden layers than the proposed 

MLP architectures, the magnitude of the gradients 

with each subsequent layer of the CNN gets 

exponentially smaller in the backpropagation process, 

which results in very slow learning of weights in the 

CNN lower layers. So, in order for CNN lower layers’ 

weights to be affected by the cost-sensitive technique, 

the weighting parameter 𝜆 needs to be relatively high 

compared to 𝜆 of a MLP. 

As for the performance metric, the most widely 

one for evaluating performance in the context of 

multiclass classification within neural networks 

(MLPs or CNNs) is overall accuracy which is the 

proportion of test examples that were correctly 

classified. However, this metric has some significant 

and long acknowledged limitations, particularly in 

the context of imbalanced datasets. Specifically, 

when the test set is imbalanced, accuracy will favor 

classes that are overrepresented in some cases leading 

to highly misleading assessment. In order to make 

classification performance of each class equally 

represented in the evaluation measure, [31] suggested 

the G-mean as the geometric means of recall values 

for the bi-class scenario. Expanding this measure to 

the multiple class scenario was introduced by [32] 

whereby the G-mean is the geometric means of recall 

values of every classes as follows, 
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𝐺 −  𝑚𝑒𝑎𝑛 = (∏ 𝑖
𝑚
𝑖=1 )1/𝑚  (11) 

 

Where 𝑖 is the recall value of class 𝑖 and  𝑚 is the 

number of classes. 

As each recall value representing the 

classification performance of a specific class is 

equally accounted, G-mean is the proper metric for 

our study as it is able to measure the balanced 

performance among imbalanced classes.  

5. Experiments and results 

Training MLPs on the 1D datasets and CNNs on 

the 2D datasets is performed using the standard 

version of loss functions mentioned in Table 1 

(Section 3) as well as the cost-sensitive version of 

these loss functions. These latter include 𝐿2 , 

𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 ,  𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , 𝑙𝑜𝑔 °𝜎  (where 

𝜎(∙) corresponds to the softmax function), and 𝐿2°𝜎 

(𝜎(∙) being the sigmoid function). However, 𝐿1 loss 

function was dismissed from this experiment since it 

does not learn at all due to “jumps" in the NN model 

caused by its partial derivatives with respect to the 

predicted network output being either -1 or 1 (as seen 

in Fig. 2 (a). Each experiment is repeated three times 

and its mean performance across all three runs is 

depicted in Table 4. Convergence rates are visualized 

through learning curves of each experiment (of 1 run 

only) which are displayed in Fig. 3.  

5.1 Effect of cost-sensitive learning on 

classification performance  

From results in Table 4, we observe that applying 

the cost-sensitive approach on 𝐿2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 

𝑀𝑠ℎ𝑖𝑛𝑔𝑒2  and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3  loss functions improves 

the G-mean performance in overall.  Indeed G-mean 

results for the cost-sensitive version of these loss 

functions are higher than results for the standard 

version for all 1D and 2D datasets (except “WB 

breast cancer” dataset for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3). For instance, 

the cost-sensitive approach boosts performance from 

0% to 60.69% for the “thyroid” dataset when applied 

on 𝑀𝑠ℎ𝑖𝑛𝑔𝑒, from 0% to 60.66% for the “Yeast_8l” 

dataset when applied on 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2, and from 0% to 

98.41% for the “Mnist50” dataset when applied on 𝐿2. 

However, we can see that applying the same cost-

sensitive approach on log °𝜎 loss function seems to 

decrease performance for several datasets (such as 

“Ionosphere”, “Yeast_8l”, “Mnist30”, “Mnist40” and 

“Mnist50”) and to increase performance for the rest 

of the datasets. The same behavior is observed for 

𝐿2°𝜎  loss function with a decrease in performance 

for datasets “Ionosphere”, “PID”, “WB breast 

cancer”, and “Satimage”, versus an increase in 

performance for the other datasets. 

Given these observations, the following 

reflections can be made: 

 

(i) When dealing with 𝐿2, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 

and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 loss functions, our cost-sensitive 

approach is able to capture more relevant features 

e.g., features that are shared between positive and 

negative instances. Indeed, at each instance 𝑖 , 

multiplying such loss functions by λ contributes 

in balancing weights θ between positives and 

negatives, thus generating better weights. 

Furthermore, the positive impact of this approach 

with such loss functions is drawn for both the 

shallow NN models (MLPs) and deep learning 

ones (CNNs). Thus, our cost-sensitive approach 

can be regarded as a reliable technique when 

applied on loss functions 𝐿2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 

𝑀𝑠ℎ𝑖𝑛𝑔𝑒2, and 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3.  

(ii) However, results convey that our cost-sensitive 

approach is not suitable for probability estimate 

loss functions ( log °𝜎  and 𝐿2°𝜎 ), which 

confirms the graphical interpretation of section 

3.2. Indeed, as 𝜎(∙) turns predicted outputs into 

probabilities, partial derivatives of the loss 

function with respect to this output tend to be 

small (within the range [0,1]), making partial 

derivatives of the cost-sensitive loss function 

small with little impact on NN learning. 

(iii) Also, let’s note that the non-linearity present 

within partial derivatives of loss functions log °𝜎 

and 𝐿2°𝜎 is not the property responsible for the 

inefficiency of the cost-sensitive approach. 

Indeed, even with the non-linearity of 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 

partial derivative, 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3  along with the 

cost-sensitive method improves classification 

performance. 

5.2 Effect of cost-sensitive learning on 

convergence speed  

From plots in Fig. 3 (a), (b), (c), (d), (e) and (f) 

corresponding to learning curves of NNs for 

𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3 , 𝐿2 , 𝐿2 ∘ 𝜎  and 

𝑙𝑜𝑔 ∘ 𝜎  loss functions respectively in the standard 

and cost-sensitive form, we observe that the cost-

sensitive strategy increases the convergence speed 

for 𝑀𝑠ℎ𝑖𝑛𝑔𝑒 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒2 , 𝑀𝑠ℎ𝑖𝑛𝑔𝑒3  and 𝐿2  loss 

functions. As explained in the methodology (Section 

3.3), this improvement over the NN convergence 

speed is due to the coefficient 𝜆(𝑚(𝑖))  within the 

gradient which acts like a learning rate magnifier for 

any positive instance 𝑖  and boosts the learning  
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(a)                                                                                             (b) 

    
(c)                                                                                            (d) 

    
(e)                                                                                             (f) 

Figure. 3 Learning curves of NNs for different loss functions with and without the cost-sensitive approach applied. Each 

of the plots is a result of NN training on a specific dataset which is mentioned in parentheses: (a) 𝑚𝑠ℎ𝑖𝑛𝑔𝑒 

(“Ionosphere”), (b) 𝑚𝑠ℎ𝑖𝑛𝑔𝑒2 (“Ionosphere”), (c) 𝑚𝑠ℎ𝑖𝑛𝑔𝑒3 (“Ionosphere”), (d) 𝐿2 (“PID”), (e) 𝐿2 ∘ 𝜎 (“WPBC”) and 

(f) 𝑙𝑜𝑔 ∘ 𝜎 (“Satimage”) 

 

process for 𝑖 . Nonetheless, we notice a different 

behavior for 𝑙𝑜𝑔 ∘ 𝜎  and 𝐿2 ∘ 𝜎  where the cost-

sensitive approach either does not affect convergence 

speed as it is the case for 𝑙𝑜𝑔 ∘ 𝜎 Fig. 3 (f) or reduces 

convergence speed as observed for 𝐿2 ∘ 𝜎 Fig. 3 (e). 

This confirms our earliest assumption (section 3.2) 

that the impact of the cost-sensitive technique on loss 

functions with probability estimates such as 𝑙𝑜𝑔 ∘ 𝜎 

and 𝐿2 ∘ 𝜎  has a sparse impact on the network 

learning compared to the large impact given loss 

functions with no probability estimates. 
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5.3 Comparative results 

An empirical study was conducted to evaluate the 

effectiveness of the cost-sensitive algorithm in 

improving the performance of both shallow and deep 

neural networks (MLPs and CNNs). Our approach 

was compared with seven benchmark methods: 

SMOTE [1], Borderline-SMOTE [2], ADASYN [5], 

simple over-sampling, simple undersampling. the 

cost-sensitive method ST1 [14], and the generative 

adversarial network based framework GAMO [28]. 

The oversampling methods (SMOTE, Borderline-

SMOTE and ADASYN) were implemented using the 

The imbalanced-learn library [33]. As for the 

configuration of GAMO, the official GAMO library 

at GitHub was used. A pure neural network, e.g., 

without any strategy to deal with imbalanced data, 

was also tested within exactly the same conditions of 

the other algorithms. ADAM was used as the 

optimization algorithm for training MLPs (with 1D 

datasets) while SGD momentum was used for 

training CNNs (with 2D datasets) since, as stated in 

[7], ADAM shows large performance improvement 

over SGD with momentum for MLPs versus marginal 

improvement for CNNs. 

In these experiments, the chosen loss function to 

conduct all these methods is 𝐿2 . Morevoer, each 

experiment is conducted three times and its mean G-

mean classification result is reported in Table 4. From 

obtained results, our approach competes with state-

of-the-art approaches. Furthermore, several 

observations can be drawn: 

 

(i) Our cost-sensitive method surpasses by far the 

baseline and undersampling techniques. Indeed, 

as we undersample, we are able to balance the 

data for proper neural network training, but we 

remove training instances which could hold  

valuable characteristics, thus losing relevant 

information. 

(ii) Although our approach performs less than 

oversampling methods (simple oversampling, 

SMOTE, Borderline-SMOTE and ADASYN) for 

low-dimensional datasets (e.g., 1D datasets), it 

performs slightly better these methods for high-

dimensional datasets (e.g., 2D datasets). For 

almost all datasets (except “PID” and “Thyroid”), 

the performance of our approach is higher than 

the oversampling technique. This is because 

oversampling generates redundant instances 

which might cause overfitting of the NN 

especially if dealing with a complex NN such 

as CNN. 

(iii) Our approach is observed to perform better than 

the ST1 technique. This can be explained by the 

fact that ST1 upweights minority class (positive) 

instances with an unbounded weight which could 

get very high as 𝑛𝑚 ≪ 𝑚𝑎𝑥(𝑛𝑘)  ( 𝑛𝑚  and 

𝑚𝑎𝑥(𝑛𝑘) being respectively the number of 

minority class instances and the number of the 

most frequent class instances), thus making the 

resulting network too biased toward majority 

classes. On the other hand, our method upweights 

these instances with a bounded weight that varies 

from 0 to 𝜏 +1.  

(iv) In general, our approach competes with the 

GAMO framework. Interestingly, our approach 

performs better than GAMO given very rare 

instances. Indeed, for Mnist10 and Mnist30, 

GAMO’s performance surpasses the 

performance of our approach. But, as the number 

of minority class instances decreases, our 

approach is observed to perform slightly better 

than GAMO. This may be due to the fact that a 

higher weight-updating is given to minority 

classes as these latter are more infrequent, which 

contributes to a better learning of these classes 

and thus to a higher performance. 

6. Conclusion 

Our approach addresses the class imbalance 

problem which is commonly encountered when 

dealing with real-world datasets, by introducing a 

cost-sensitive strategy applied on neural networks at 

the training phase. Based on a cost-sensitive error 

function, its objective is to correctly classify minority 

classes and favour them as much as the frequent ones 

by assigning a weighted misclassification cost based 

on the distribution of classes. By properly weighting 

the loss function, weight-updating is intensified for 

the minority class based on the probability of their 

occurrence. Throughout this paper, results on several 

popular datasets showed that: (i) our approach has a 

better convergence than the baseline algorithm and 

competes with state-of-the-art techniques including 

oversampling methods and the deep learning method 

based on generative adversarial networks GAMO, (ii) 

it also offers a faster convergence by boosting the 

optimizer when positive instances are present, (iii) it 

can be applied on shallow and deep neural networks 

(MLPs and CNNs), which allows classification of 

imbalanced datasets with 1-,2-, and 3-dimentional 

inputs. We also show that the cost-sensitive approach 

is efficient only for loss functions with no probability 

estimates. Therefore, the cross entropy loss, which is 

the most commonly used loss function in the majority  

 

https://github.com/SankhaSubhra/GAMO
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Table 4. Mean classification results of neural networks over 3 runs using different loss functions in terms of average 

values of g-mean (in %). Best rates per loss function and per dataset are in bold. The abbreviation “Stand.” stands for 

“Standard” 

  𝒍𝒐𝒈 °𝝈 𝑴𝒔𝒉𝒊𝒏𝒈𝒆 𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟐 𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟑 𝑳𝟐°𝝈 𝑳𝟐 

  Stand. Ours Stand. Ours Stand. Ours Stand. Ours Stand. Ours Stand. Ours 

Ionosphere 90.60 88.29 86.25 89.17 86.25 87.72 89.17 90.93 85.29 82.02 70.26 81.58 

PID 75.52 76.38 75.22 75.27 75.50 76.54 74.65 75.77 76.08 32.12 75.77 75.97 

WBBC 92.83 93.36 92.40 93.19 92.17 92.62 94.13 93.98 93.27 89.38 82.30 89.88 

SPECTF_Heart 79.66 81.18 83.68 83.68 80.52 82.12 81.32 83.68 73.49 82.02 80.05 82.90 

Yeast_8l 58.72 58.02 56.36 59.84 0.00 60.66 53.11 59.43 0.00 0.00 57.32 63.15 

Car 98.01 100.00 98.75 99.63 98.50 99.94 98.67 99.82 87.57 96.52 96.56 99.57 

Satimage 87.83 87.94 86.86 88.73 87.60 88.94 87.58 88.58 88.34 82.74 85.55 88.12 

Thyroid 51.03 54.93 0.00 60.69 57.97 72.26 50.51 72.65 0.00 41.08 46.75 73.14 

Mnist10 94.88 95.15 94.78 96.55 94.96 95.18 95.18 95.92 90.74 96.21 91.76 96.27 

Mnist30 92.00 90.94 91.95 93.45 91.89 92.50 90.31 90.75 90.43 92.36 90.43 92.64 

Mnist40 97.77 98.50 95.81 98.41 87.81 97.13 96.80 98.52 0.00 97.81 0.00 98.41 

Mnist50 98.70 98.11 97.89 98.70 98.66 98.29 98.61 98.67 0.00 97.05 0.00 98.43 

 
Table 4. Comparative results between different methods in terms of the G-mean performance metric (in %). 

Dataset 𝑳𝟐 SMOTE 

[1] 
Borderline-

SMOTE [2] 

ADASYN 

[5] 

Over-

sampling 

Under-

sampling 

Ours ST1 

[14] 
GAMO 

[28] 

PID 0.760 0.789 0.762 0.737 0.786 0.754 0.772 0.762 0.760 

WBBC 0.928 0.931 0.943 0.939 0.926 0.926 0.943 0.931 0.948 

yeast_8l 0.590 0.640 0.640 0.571 0.620 0.559 0.630 0.625 0.641 

thyroid 0.824 0.932 0.942 0.938 0.937 0.776 0.864 0.931 0.941 

car 0.987 0.980 0.976 0.984 0.996 0.940 0.996 0.993 0.985 

satimage 0.893 0.946 0.940 0.930 0.924 0.913 0.935 0.898 0.941 

mnist10 0.974 0.988 0.990 0.981 0.980 0.939 0.988 0.963 0.989 

mnist30 0.960 0.989 0.986 0.847 0.906 0.888 0.990 0.962 0.991 

mnist40 0.941 0.988 0.990 0.976 0.959 0.837 0.996 0.976 0.992 

mnist50 0 0.991 0.990 0.993 0.985 0.772 0.994 0.941 0.991 

 

 

of studies, is not a good choice as it comes to 

classifying imbalanced datasets with our cost-

sensitive approach. 
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Appendix 

Table 1. List of notations used in this paper 

Symbol Description 

NN Neural Network 

MLP Multi-Layer Perceptrons 

CNN Convolutional Neural Networks 

𝜽 Parameters of the neural network 

𝑬(∙) Objective function 

𝒊 Instance of a batch taken from a 

given dataset 

𝒚(𝒊)  the true label (as one-hot 

encoding) of instance 𝑖 
�̂�(𝒊) predicted output vector of the 

neural network of instance 𝑖 
𝑵 

  

number of instances per batch 

𝒍(∙) Loss function 

𝝀(𝒎) weighting parameter 

corresponding to the class 𝑚 

∅(𝒎) Relevance of the class m 

𝒙𝒑
(𝒊)

 Value of the input node 𝑝  at 

instance i 

𝑳𝟐 Squared loss function  

𝑴𝒔𝒉𝒊𝒏𝒈𝒆 Multiclass structured hinge loss 

(Crammer-Singer loss) 

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟐 Squared Multiclass structured 

hinge loss 

𝑴𝒔𝒉𝒊𝒏𝒈𝒆𝟑 Cubed Multiclass structured hinge 

loss 

𝝈(∙) A propability estimate function 

(such as the softmax and sigmoid 

function) 

𝒍𝒐𝒈 ∘ 𝝈 Cross entropy loss 

ReLU Rectified Linear Unit 

G-Mean Geometric Mean 

SGD Stochastic Gradient Descent 

 


