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ABSTRACT

Cancer is considered a leading cause of death worldwide due to 
its high morbidity and mortality rate. Conventional treatments for 
cancer therapy, such as chemotherapy, and radiotherapy, have been 
hampered by their side effects. Natural product-derived plants have 
been used for decades to treat diseases. Compared to conventional 
therapy, natural product has the potential to be effective against 
cancer with fewer side effects. This current review discussed the 
potential of scopoletin, a coumarin present in many edible plants, 
which elicits anticancer properties through multiple mechanisms, 
including modulating cell cycle arrest, inducing apoptosis, and 
regulating multiple signaling pathways. Understanding these 
mechanisms highlights the potential of scopoletin as a candidate for 
chemoprevention and chemotherapy.
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1. Introduction

  Cancer is a severe global public health concern with increasing 
morbidity and mortality rates. According to the International Agency 
for Research on Cancer, the estimated number of new cancer cases 
worldwide was 19.29 million in 2020, with 9.96 million deaths. In 
2040, it is estimated that the number of new cancer cases will be 
increased by 21%[1], making cancer will soon surpass heart disease 
as the leading cause of death. Some common treatment strategies 
for cancer patients, including targeted therapy, chemotherapy, 
radiotherapy, and surgery[2], have been used to fight against cancer. 
However, these strategies are limited due to their side effects, lack 

of specificity, and drug resistance. In addition, they result in poor 
prognosis and high recurrence rates[3]. 
  To overcome this problem, natural products are continuously 
developed and used to uncover novel bioactive compounds for 
anticancer candidates. Natural products have been employed 
for years to perform disease therapy, including cancer. Natural 
compounds-derived plants comprise different chemical structures, 
thus demonstrating a wide range of effects that can be beneficial 
for complementary or alternative medicine. To date, plant-derived 
anticancer drugs such as paclitaxel and camptothecin are widely 
known used for cancer treatment[4]. Natural products are of 
significant medicinal value in developing anticancer agents, and 
many available compounds in plants are potentially explored. 
  Scopoletin is a natural product belonging to the coumarin family 
that is considered an active ingredient in some plants. It has gained 
attention for its antitumor properties and great potential as an 
anticancer by inducing apoptosis and blocking cell proliferation[5-7]. 
This review summarized the potent anticancer of scopoletin and its 
underlying mechanisms based on experimental evidence to facilitate 
potential therapeutic targets of scopoletin in cancer prevention and 
therapy. 
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2. Overview of scopoletin

  Scopoletin (6-methoxy-7-hydroxycoumarin) is a fluorescent 
coumarin with a molecular formula of C10H8O4 and a molecular 
weight of 192.16 g/mol. Scopoletin is widely distributed in many 
medicinal plants within various genera and was reported to have 
many beneficial effects on human health. Scopoletin has two 
aromatics rings, one of which is substituted with a hydroxyl group, 
a methoxy group, and an oxo group (Figure 1). In Arabidopsis, 
scopoletin is synthesized primarily from the phenylpropanoid 
pathway via ortho-hydroxylation of cinnamate, p-coumarate, 
caffeate, and ferulate[8,9]. Reported sources of scopoletin are 
tabulated in Table 1. 
  Scopoletin has been extracted from various plants using several 
extraction methods with different organic solvents. Several 
extraction methods such as maceration, supercritical fluid 
extraction, microwave-assisted extraction, reflux, and ultrasonic-
assisted extraction have been developed to achieve a high yield of 
scopoletin[10,11]. Novel extraction processes were found to be more 
efficient for scopoletin extraction, with the advantages of simple, 
less organic solvent and high yield[12]. Multiple pharmacological 
actions of scopoletin have been elucidated, including antioxidant[13], 
antidiabetes[14], antiinflammation[15], and anticancer[5]. Therefore, 
scopoletin and its derivatives gained the attention of many 
researchers. This review will describe the underlying mechanisms of 
scopoletin as an anticancer agent in the following part.
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Figure 1. Structure of scopoletin.

Table 1. Sources of scopoletin.

Plants Part of plants Ref
Arabidopsis thaliana Root, shoot, callus [16-18]

Artemisia annua Leaf, aerial part [19,20]

Artemisia iwayomogi Leaf [21]

Convolvulus pluricaulis Whole plant [22,23]

Erycibe obtusifolia Benth Stem [24]

Evolvulus alsinoides Aerial part [22]

Helichrysum italicum Flower [25]

Helianthus annuus L. Leaf, hull, kernel [26]

Ipomoea batatas Leaf, stem, tuber tissue [27]

Morinda citrifolia Fruit [12,28]

Morinda tinctoria Leaf [29]

Paederia foetida Twig [30]

Scopolia carniolica Leaf, underground parts [29,31]

Senecio nutans Aerial parts [32]

Solanum xanthocarpum Callus [33]

Weigela sp. Leaf [34]

3. Anticancer mechanisms

3.1. Cell cycle arrest

  The cell cycle in eukaryotes consists of four discrete phases, termed 
G0/G1, S, G2, and M phases. G1 and G2, the so-called gap phases, 
are essential in cell proliferation control. G1 corresponds to the 
interval between mitosis and initiation of DNA replication and is 
followed by S phase for DNA replication. This process is followed 
by cell growth and protein synthesis in the G2 phase, which is further 
utilized to prepare the M phase for cell mitosis[35]. Protein kinases 
cyclin dependent-kinases (CDKs) are responsible for modulating the 
cell cycle of eukaryotes[36]. These protein kinases are activated by 
cyclins responsible for regulating DNA transcription and replication, 
mitotic progression, epigenetic regulation, and metabolism[37]. 
Some cyclin-CDK complexes take place in the cell cycle process, 
including cyclin C-CDK3 in cell-cycle progression from G0 to G1 
phase and other cyclins (cyclin D-CDK4/6 and B-CDK1) in G1/S 
and G2/M transitions[38-40]. Consequently, the abnormal activation 
between these proteins results in cell-cycle dysregulation that leads 
to malignancies[41].
  Scopoletin exposure upregulates cell cycle arrest in cancer cells, 
including prostate[42], cervical[5], cholangiocarcinoma[7,43], and 
breast cancer[44]. Scopoletin treatment increased cell cycle arrest 
in human cervical cancer HeLa and SiHa cells by a different 
mechanism. Scopoletin resulted in cell accumulation in G2[5] and 
G0/G1 phases in HeLa and SiHa cells, respectively[45]. Similarly, 
another study by Li et al. also revealed that scopoletin treatment 
reduced androgen stimulation and caused an accumulation of human 
prostate cell cancer (LNCaP) and HeLa cells at G2/M checkpoint 
by decreasing the cyclin D1 expression level[5,42]. In human breast 
cancer cells, treatment with scopoletin increased cell accumulation 
in G2/M phase, while in G1 and S phases, the percentage of cells 
markedly decreased[44]. In addition to downregulation of cell 
cycle regulatory proteins, scopoletin derivative could increase 
the expression of p21, the downstream effector of p53, and CDK 
inhibitor. Many reports regarding the potential activity of scopoletin 
in interfering cell cycle arrest are related to its capability to modulate 
the expression of cyclin regulatory protein D1, but not B1[42].

3.2. Modulation of PI3K/AKT/mTOR pathway

  The phosphatidylinositol-3-kinase (P13K) signaling pathway, 
which regulates cell growth and differentiation, metabolism, and 
apoptosis, is the most commonly activated in human cancer[46]. 
P13K activates serine/threonine-specific protein kinases AKT, its 
downstream target site, to regulate cell cycle progression. AKT 
modulates the cell cycle process by activating CDK2 and CDK4 and, 
at the same time, regulating CDK inhibitor cycle-dependent protein 
inhibitor P27. P27 protein is highly expressed in normal epithelial 
tissues such as the lung, breast, ovary, and prostate[47]. Conversely, a 
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loss of P27 protein and dysregulation of the P13K/AKT pathway has 
been commonly shown in human tumors such as breast, lung, and 
prostate cancer[48-50].
  Moreover, AKT also promotes cell survival by inhibiting apoptosis 
through various mechanisms, including inactivating death-
inducing proteins, repairing cellular DNA damage by activation 
of transcription factor NF-κB, and inhibiting cytochrome C and 
apoptotic factors released from the mitochondria[51,52]. AKT 
activation prompts mTOR, a downstream target site, which then 
promotes the transcription of ribosomal protein p70 and translation 
inhibition molecule 4E-BP1. As a primary survival pathway 
in cancer cells increased, P13K/AKT/mTOR pathway activity 
correlated with resistance to cancer therapies and tumor progression. 
Targeting this pathway in cancer is one of therapeutic approaches 
since many studies reported that inhibiting P13K/AKT/mTOR-
related genes and proteins leads to inhibition of human tumors 
and has been evaluated in many clinical trials at various levels. 
Therefore, many parties are actively developing inhibitors that target 
P13K and other critical components in this pathway for cancer 
treatment[52]. 
  Several studies reported that scopoletin disturbed P13K/AKT/
mTOR pathway in cervical[5] and prostate cancer[42]. Scopoletin 
suppressed the proliferation and migration of HeLa cells. Tian et 
al.[5] found that scopoletin downregulated the P13K/AKT/mTOR 
pathway by abrogating the P13K and AKT phosphorylation in 
HeLa cells. Blocking these pathways induces cell apoptosis and 
inhibits essential cellular processes in cancer, such as proliferation, 
migration, and metastasis. Scopoletin treatment also enhanced the 
expression of apoptotic executioner caspases, such as caspase-3, -8, 
and -9. A novel scopoletin derivative, SC-Ⅲ3, showed antitumor 
properties by decreasing mTOR phosphorylation and its downstream 
effector p70 in human hepatoma HepG2 cells. SC-Ⅲ3 also induced 
mitochondrial dysfunction leading to autophagy activation, 
which shows its promising potential as a prospective agent for 
hepatocellular carcinoma treatment[53]. 

3.3. Regulation of MAPK pathway

  Another pathway responsible for signal transduction regulation 
is the mitogen-activated protein kinases (MAPKs) pathway that 
regulates intracellular responses, including cell growth, proliferation, 
migration, survival, inflammation, and apoptosis. Mammalian 
MAPKs are classified into p3 kinase, extracellular signal-regulated 
kinase (ERK), and c-Jun N-terminal kinase (JNK). Phosphorylation 
of MAPKs was stimulated by intracellular reactive oxygen species 
(ROS), which is also helpful for the growth and survival of tumor 
cells. MAPKs are also related to angiogenesis, which is the growth 
of new blood vessels from the existing ones. This mechanism is 
vital for many physiological and pathological processes, including 
embryonic development, bone repair, wound healing, and 
reproduction[54]. Under physiological conditions, angiogenesis is 

regulated by a balance between angiogenic modulators. However, 
uncontrolled angiogenesis results in the formation of diseases 
including tumor growth and cancer progression[55]. Based on 
computer modeling, several angiogenic factors, namely ERK1, 
vascular endothelial growth factor A, and fibroblast growth factor 2, 
showed high binding energies and ligand affinity to scopoletin[10]. 
Angiogenesis involves complex signal regulation. However, the anti-
angiogenic capacities of scopoletin are mainly related to migration 
inhibition and endothelial cell tube formation, which are correlated 
with ERK1/2 activation[56].
  Scopoletin-mediated reduction in MAPKs phosphorylation has 
been detected in different kinds of cancer cells, such as the urinary 
bladder (ECV304 cells)[56], lung (A549 cells)[57], and liver cancer 
(CCA KKU-100 and HepG2 cells)[58]. Therefore, since MAPKs 
regulate cellular processes, inactivating them represents a promising 
strategy, particularly against cancer[59]. Pan et al.[56] reported that 
scopoletin exposure resulted in ERK1/2 phosphorylation in ECV304 
cells, but not p38 and JNK, suggesting that the anti-angiogenic 
action of scopoletin is likely related to the inhibition of ERK1/2 
activation. Scopoletin isolated from Morinda citrifolia (noni) also 
broadly interfered with the phosphorylation of ERK1/2, JNK, and 
the α subunit of the eukaryotic translation initiation factor-2 (eIF-
2α) in human lung carcinoma A549 cells and cancer-induced 
mice[60,61]. Kim et al.[62] also revealed that scopoletin downregulated 
the expressions of matrix metalloproteinase-1 and pro-inflammatory 
cytokines by inhibiting p38 phosphorylation in human fibroblasts. 
These findings suggest that scopoletin may protect skin from 
ultraviolet rays and treat photo-aging, the predominant risk factor 
causing diseases like cancer[63].

3.4. Apoptosis induction

  Apoptosis, called programmed cell death, usually occurs in 
physiological conditions and is a part of a regulated process. It 
is well-known to have a significant role in the pathogenesis of 
diseases since this process leaves clues on how diseases should 
be treated. Defects in the apoptotic pathways with insufficient 
apoptosis or downregulation of pro-apoptotic proteins may promote 
carcinogenesis. Under cancer conditions, cancerous cells lose 
their apoptotic control and can evade pro-apoptotic mechanisms, 
thus allowing them to survive longer and metastasize[64]. Cancer-
associated defects in apoptosis are responsible for treatment 
resistance to current traditional cancer therapies, namely 
chemotherapy, and radiotherapy, requiring a higher dose to eradicate 
the cancer cells. 
  Several pathways exist in the programmed cell death mechanism, 
for instance, the caspase pathway. Caspases are aspartate-specific 
cysteine proteases responsible for initiating and executing 
apoptosis[65]. Many studies reported that scopoletin restrained cell 
growth and increased apoptosis rate dose-dependently in human 
cervical and promyelocytic leukemia cancer cells[5,6]. Scopoletin 
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exposure significantly increased caspase-3 activity, marked by the 
upregulation of the active form caspase-3, while procaspase-3 was 
decreased. Caspase-3 activation further led to the cleavage of poly 
(ADP-ribose) polymerase (PARP), which was also enhanced in 
the presence of scopoletin[6]. The induction of PARP cleavage by 
scopoletin implied the critical function of caspase-3 activation in 
scopoletin-induced apoptosis. 
  Shi et al. described that scopoletin and its derivatives initiated 
apoptosis via a mitochondrial-dependent pathway[66]. The exposure 
to novel scopoletin derivatives induced depolarization and caused 
a significant loss of mitochondrial membrane potential in human 
breast cancer MDA-MB-231 cells[66]. In addition, mitochondrial 
disruption is also can be affected by oxidative stress. Oxidative 
stress causes cellular damage by increasing ROS production, 
opening mitochondrial permeability transition pores to release pro-
apoptotic proteins, cytochrome c, and other caspase-activating 
proteins[67,68]. The release of activating proteins into the cytosol 
induces an apoptosis mechanism within the cells. Some proteins 
are related to the regulation of apoptosis, including Bax and Bcl-
2. Scopoletin treatment was reported to result in an increase in Bax 
and a decline in Bcl-2 expression in many cancer cells, including 
cervical[5], liver[53], and bile duct cancer cells[43]. Figure 2 depicts 
the mechanisms of anticancer action of scopoletin.

3.5. Inhibition of multiple drug resistance (MDR)

  MDR refers to the resistance or insensitivity to the administrated 
medicine. In cancer therapy, this condition is a dominant cause of 
failure in chemotherapy and tumor recurrence. MDR results from 
defensive mechanisms in cancer, including the genetic mutation of 
oncogenes that results in drug resistance and the expression of ATP-

binding cassette transporters that extrude chemotherapeutic drugs 
outside the cancer cells[69,70]. Several MDR reversal agents failed to 
be developed because they suffered resistance in a short time due to 
severe adverse effects. As a result, there has been significant interest 
in cancer treatment due to the search for ways in which anticancer 
drug combinations can act additively or synergistically to increase 
antitumor activity at lower doses than monotherapy[71,72].
  A few works have been conducted to examine the potential use of 
scopoletin in combination with other chemotherapeutic drugs, for 
example, cisplatin, to confer synergistic benefits as an anti-cancer. 
Scopoletin was found to increase the effectiveness of cisplatin-
induced apoptosis in cholangiocarcinoma[43]. Cisplatin is a well-
known therapeutic drug that treats numerous cancers, including head 
and neck, ovarian, and testicular cancer. Cisplatin inhibits DNA 
replication, interferes with DNA repair mechanism, and causes DNA 
damage, thus leading to DNA apoptosis[73,74]. The cell cycle arrest 
induced by cisplatin was improved when combined with scopoletin, 
resulting in a 2-fold increase of apoptosis in cholangiocarcinoma 
cells[43]. This combination of scopoletin and cisplatin could be 
beneficial in treating cholangiocarcinoma.

4. Preclinical studies of scopoletin

  Although scopoletin exhibits marked antitumor and anticancer 
activity in in vitro studies, few preclinical and clinical studies are 
reported. Scopoletin has been shown to exhibit an anticancer effect 
on a number of cancer cells. Table 2 tabulates the preclinical studies 
on the dosage, efficacy, and potential molecular mechanisms of 
scopoletin in the treatment of different cancer cells.
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Figure 2. Schematic summary of anticancer mechanisms of scopoletin.
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5. Pharmacokinetics, bioavailability, and potential drug 
delivery of scopoletin

  Oral administration is the most acceptable and convenient way 
of drug administration. However, given the pharmacokinetic and 
biopharmaceutical studies conducted in humans, scopoletin is 
lipophilic, poorly water-soluble, poorly absorbed, and rapidly 
metabolized[79]. As a result, to improve its bioavailability, it may 
be necessary to boost its concentration by using a co-solvent or a 
carrier system, modifying the structure, or adding new functional 
groups. Several efforts have yielded results in the development 
of efficient drug carriers to deliver scopoletin to the target site, 
including the polylactic-co-glycolic acid-nanoparticle, loaded with 
scopoletin[80], gold nanoparticle loaded with scopoletin[81] and 
polymeric micelles containing scopoletin[82]. These drug delivery 
methods have successfully improved the solubility and absorption 
of scopoletin. Scopoletin was encapsulated with polylactic-co-
glycolic acid and a small-sized nano-scopoletin was yielded with 
more than 85% entrapment efficiency. This nano-scopoletin resulted 
in enhanced cellular entry and greater bioavailability of scopoletin 
and demonstrated a faster cellular uptake than its un-encapsulated 
counterpart[80]. Oral administration of scopoletin encapsulated in 
polymer-based micelles also effectively increased the bioavailability 
of scopoletin in the liver. Polymeric micelles have been applicable 
to ameliorate the water solubility and oral bioavailability of poorly 
soluble drugs[83,84] and are promising for improving the oral 
bioavailability of inadequately soluble compounds, for instance, 

scopoletin, to achieve better therapeutic effects.

6. Toxicity and adverse effects

  Despite the wide range of pharmacological benefits of coumarin, 
there are few reports about adverse effects from exposure to high 
doses of the coumarin group, for instance, scopoletin. The toxicity of 
coumarins was assessed in preclinical studies using animal models. 
There are no signs of toxicity observed in chronic and subchronic 
studies on B6C3F1 and CD-1 mice which were treated with 19-
300 mg/kg BW and 300-3 000 ppm coumarins, respectively[85,86]. 
However, signs of liver toxicity were discovered both in chronic 
and subchronic studies. Oral administration of 50-500 mg/kg BW 
coumarins for 13 weeks caused liver toxicity in Sprague-Dawley 
rats[85]. In addition, the same type of rats showed signs of anemia 
after being administrated with 444-5 000 ppm coumarins for 2 
years[87].

7. Conclusion and future perspective

  Natural products have received much attention in recent decades 
as potential sources of new anticancer drugs because they possess 
different responses in tumor cells and show more practical effects 
than available chemotherapy drugs. The antitumor action of 
scopoletin is primarily due to the induction of multiple signal 

Table 2. Antitumor effects of scopoletin in preclinical studies.
Models Dose and route of 

administration
Results Inhibition rate Ref

DMBA-induced skin cancer 
mice

50 and 100 mg/kg, daily, i.g. 
for 24 weeks

Reduction of tumor growth, inhibition of MAPKs and p38 
expressions, upregulation of antioxidant enzymes (SOD, 
CAT, GPx, and GST), increment of apoptosis marker 
caspase-3, suppression of tumorigenesis

Inhibition rate of tumor 
growth: ~8% (50 mg/kg), 
10% (100 mg/kg)

[75]

WEHI-3B cells induced 
leukemic mice

100 and 200 mg/kg, daily, 
i.g. for 4 weeks

Reduction in the number of leukemic cells, induction of 
cancer cell apoptosis, upregulation of anti-cancer genes 
(CSF3, IL-10), downregulation of pro-cancer genes (AKR1, 
BCL2, Survivin)

Inhibition rate of tumor 
growth: ~50% (100 mg/kg)

[76]

Human hepatocellular 
carcinoma HepG2 xenograft

2.5, 5, and 10 mg/kg, daily, 
i.p. for 14 d

Reduction of tumor growth, increase ROS accumulation, 
induction of cancer cell apoptosis, upregulation of DNA 
damage genes [p-H2AX (Ser-139) and p-Chk1 (Ser-280)]

Inhibition rate of tumor 
growth: ~31.2% (2.5 mg/kg), 
~38.6% (5 mg/kg), ~52.4% 
(10 mg/kg) 

[53]

Human cholangiocarcinoma 
xenograft

125 and 250 mg/kg, daily, 
i.p. for 14 d

Reduction of tumor weight and growth, induction of 
apoptosis

Inhibition rate of tumor 
weight and growth: ~35.96 
(125 mg/kg), ~39.15 (250 
mg/kg)

[7]

Lewis lung cancer xenograft 2.5, 5 and 10 mg/kg, daily, 
i.p. for 14 d

Reduction of tumor growth Inhibition rate of tumor 
growth: ~18.1% (2.5 mg/kg), 
~33.6% (5 mg/kg), ~49.5% 
(10 mg/kg)

[77]

RIN5f xenograft 1 mg/kg, daily, i.p. for 45 d Inhibition of ATF6 and PERK in β-cells, reduction of 
eukaryotic initiation factor 2α

Inhibition rate of tumor cell 
growth: ~50%

[78]

DMBA: 7,12-dimethylbenz(a)anthracene, SOD: superoxide dismutase, CAT: catalase, GPx: glutathione peroxidase, GST: glutathione S-transferase, CSF3: 
colony-stimulating factor 3, IL-10: interleukin-10, AKR1: aldo-keto reductase family 1, BCL2: B-cell leukemia/lymphoma 2, HepG2: hepatoma G2, p-H2AX: 
phosphorylated H2A histone family X, p-Chk1: phosphorylated checkpoint kinase 1, RIN5f: rat insulinoma 5f, ATF6: activating transcription factor 6, i.p.: 
intraperitoneal administration, i.g.: intragastric administration.
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transduction pathways, including cell proliferation inhibition, cell 
cycle arrest, and apoptosis induction. Since humans widely consume 
scopoletin-containing foods, further studies with multiple doses of 
scopoletin in the animal model are required to fully understand its 
potential and mechanism as an anticancer agent in humans.
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