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 In this study, influence of multi-walled carbon nanotubes (MWCNTs) on tensile 
and flexural behaviour of 15% short glass fiber (SGF) reinforced Polyamide 66 
(PA 66/15SGF) and 30% short glass fiber reinforced Polyamide 66 (PA 
66/30SGF) is investigated. Test specimens composed of neat PA 66, PA 
66/15SGF, PA 66/30SGF and PA 66/30SGF/MWCNTs are produced using plastic 
injection moulding machine; and their tensile and flexural properties are 
characterized. The effects of MWCNTs contents on the micro-structure and 
morphology of the composites were investigated by using a scanning electron 
microscope (SEM), fourier transform infrared spectroscopy analysis (FTIR) and 
optical microscopy (OM). Mechanical analyses reveal that neat PA 66 exhibits the 
lowest elastic modulus, 2.11 GPa, and tensile strength, 60.61 MPa, while the 
highest tensile modulus, 4.69 GPa, and strength, 87.05 MPa, are exhibited by PA 
66/30SGF/MWCNT and PA 66/30SGF, respectively. In other words, with the 
addition of MWCNT, tensile strength of PA 66/30SGF decreases by 13.4 % 
whereas the elastic modulus increases by nearly 4.7 %. In addition, flexural test 
results shows that the integration of MWCNTs improves the flexural strength 
and flexural modulus of PA 66/30SGF by 1% and 12%, respectively. 
 

© 2022 MIM Research Group. All rights reserved. 
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1. Introduction 

Thermoplastics are commonly used in both commodity and industrial applications 
covering many industrial fields such as automobile, aeronautic and aviation, defence, 
sports industry and so forth [1, 2]. Some thermoplastics are considered to be suitable 
substitutes for metallic materials in industrial applications [3]. However, in spite of their 
advantages, thermoplastic materials may become deformed during the use or production 
[4]. In order to avoid these deformations and to increase their mechanical performance, 
thermoplastics can be filled with microscale or nanoscale reinforcing materials such as 
carbon fibers (CF), glass fibers (GF), carbon nanotubes (CNTs), nanoclays and so on [5, 6].  

Being a thermoplastic, Polyamide 66 (PA 66) is one of the most outstanding materials used 
as engineering resin owing to its good mechanical, chemical and thermal performance [7, 
8]. Apart from neat PA 66, there are various types of polyamides reinforced with materials 
such as glass fibers. The addition of glass fibers is known to increases the mechanical 
properties of polyamide-matrix composites [9-17]. The main factors determining the 
tensile properties of PA 66/GF composites are fiber fracture, diameter, length, orientation 
and interfacial strength [18-21]. In addition, production parameters such as mold 
temperature, injection pressure and speed may affect the mechanical properties of the 
polymer matrix composite materials [22, 23]. Recently, nanomaterials too have been used 
as reinforcement; and one of the most prominent of them are carbon nanotubes [24-26]. 
In terms of their forms, CNTs are categorized as single-walled carbon nanotubes (SWCNTs) 
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[27] and multi-walled carbon nanotubes (MWCNTs) [28]. The use of MWCNTs as 
nanofillers is due to their superior mechanical properties such as very high tensile strength 
varying between 11-63 GPa [29] and Young’s modulus, which is approximately 1 TPa [29, 
30]. However, polymer matrices have drawn more attention in industrial applications 
owing to their light weight, easy machinability and production costs [31-34].  

A number of theoretical and experimental studies have been carried out to date regarding 
CNTs/polymer composites [35-48]. Majority of these studies indicate that CNTs are able 
to improve the mechanical properties of polymer matrix composite systems.  Coleman et 
al. [25], Miyagawa et al. [49] and F.S.A. Khan et al. [48] provided comprehensive reviews 
on the mechanical reinforcement of polymers by the use CNTs. It is suggested that well-
dispersion of nano materials is an important parameter controlling the efficiency of load 
transfer and hence determining some of the mechanical properties [50]. Therefore, CNT-
polymer matrix interaction and crack behaviour of CNTs/polymer composites have been 
the subjects of several studies [51-56]. Ajayan et al. [57] examined morphology of fractured 
epoxy/SWNTs composites by SEM and observed SWCNTs stretching across a crack 
opening in the epoxy resin. Liu et al. [58] investigated the morphology and mechanical 
properties of MWCNTs-reinforced Polyamide 6(PA 6) composites. The authors reported a 
26% reduction in tensile strength, which was explained by the brittleness of polymer 
matrix after the addition MWCNTs. Ferreira et al. [59] explored that addition of CNTs 
significantly improves the tensile strength and elastic modulus of PA 6/CNTs composites. 
Chopra et al. [60] studied PA 6/MWCNTs nanocomposites and reported that the presence 
of MWCNTs increases the tensile strength of Polyamide 6 by nearly 12%. Similarly, Kartel 
et al. [61] studied the tensile properties of PA 6/CNTs composites and reported that the 
tensile strength of the composite exhibits non-linear dependence behaviour by the 
addition of CNTs up to 0.5 wt.%. The mechanical tests performed by them showed that the 
PA 6 matrix composites incorporating 0.25 wt. % CNTs exhibit the highest tensile strength.  

Although a great number of studies on CNTs/polymer composites are available in 
literature, there are not sufficient amount of studies focusing on the composites reinforced 
with the combination of short fibers and nanofillers [62, 63]. Therefore, the full potential 
of nanofillers and the properties of their combinations with other reinforcement materials, 
such as glass fibers, have not fully become known yet.  This paper aims to introduce the 
tensile and flexural properties of MWCNTs-integrated Polyamide 66/short glass fiber 
nanocomposites so that the results obtained from this study can be used in designing new 
thermoplastic composites with MWCNTs. 

2. Experimental  

2.1. Composite Constituents 

Neat PA 66, 15 wt. % short fiber glass reinforced PA 66 (PA 66/15SGF) and 30 wt. % short 
fiber reinforced PA 66 (PA 66/30SGF) granules (Mat Polymer, Istanbul/Turkey) were used 
as polymer materials in composite. MWCNTs, which were obtained from the manufacturer, 
(Ege Nanotek Kimya Sanayi, Izmir/Turkey) were used as nano reinforcements in 
composites (Table 1). 

2.2. Fabrication Method 

Figure 1 (a) to (h) shows the preparation process of the PA 66/30SGF/MWCNTs 
composite. The plastic injection machine was used  to produce the test specimens. The 
granules were fed to the machine via a hopper and then pushed towards the nozzle by a 
rotating screw in the hot resistances. The temperature in the resistances which was nearly 
2850C and the rotary motion of the screw facilitated PA 66/SGF granules to melt and 
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adequately mix with MWCNTs. Once this melted mixture reached the nozzle, it was injected 
into the moulds being hold between two clamps and took its final shape. 

Table 1. Properties of MWCNTs 

Parameter Value 

Purity (%)  

>95 % (CNT) 

>97 % (C) 

Outer diameter (nm) 10-20 

Interior diameter (nm) 5-10 

Length (µm) 10-30 

Surface area (m2/g) >200 

Colour Black 

Ash Mass < % 1.5 

Electrical conductivity (S/cm) >100 

Density (tap) (g/cm3) 0.22 

Density (true) (g/cm3) 2.1 

 

Fig. 1 Preparation process of PA 66/30SGF/MWCNT composite specimens 
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2.3. Characterization 

Four types of specimens in accordance with ISO 527-2 type-1A and ISO 178 standards were 
produced by plastic injection moulding machine. A JSM-7001 F machine was used to 
characterize scanning electron microscope (SEM) (Japan) properties. Tensile and flexural 
properties of the specimens were examined using Instron 5982 100 KN (USA) test machine 
at room temperature with a crosshead speed of 5mm/min. Mechanical tests and specimens 
are shown in Figure 2 (a) to (d). 

 

Fig. 2 Mechanical tests and specimens: (a) tensile test; (b) tensile test specimens in 
accordance with ISO 527-2 type-1A standard; (c) 3-point flexural test; (d) flexural test 

specimens in accordance with ISO 178 standard 

3. Results and Discussion 

3.1. Chemical Analysis 

The aim of analyzing the molecular configuration of PA 66 by means of Fourier transform 
infrared (FTIR) spectroscopy is to correlate the structures to the performance properties 
of the final product. With sufficient knowledge about the chemical structure, 
polymerization reaction can be controlled and hence good performance properties can be 
achieved. Upon this purpose, FTIR spectra of neat PA66, PA 66/15SGF, PA 66/30SGF and 
PA 66/30SGF/MWCNT composites were measured and are shown in Figure 3. Due to very 
small weight fraction of MWCNTs in the composite and the affinity in chemical 
compositions of PA 66 and MWCNTs, the signature region did not exhibit a notable 
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difference. In neat PA 66, the absorption band at 3267 cm−1 is attributed to the stretching 
vibrations of N-H group. The absorption bands at 2912 cm−1, 2843 cm−1 and 1192 cm−1 
result from the symmetric and asymmetric C–H stretch vibrations and C–H twisting. The 
data obtained from FTIR analysis confirmed the chemical structure of PA 66 and PA 66/GF. 
Similar results were obtained by several researchers [64-66].  

In this study, FTIR spectra of the composite specimens showed no significant change with 
regard to chemical composition of the constituent, which means that there are only 
physical interactions between the constituents. However, owing to the high-temperature 
(nearly 285oC) and the rotary motion of the screw in the hot resistances of plastic injection 
machine, chemical interactions between the constituents might occur as well [67].  

 

Fig. 3 FTIR spectra of the composite specimens 

3.2 Tensile Test Results 

Figure 4 (a) to (c) represent the load-displacement curves, stres-strain curves during 
tensile tests and the tensile test results of the composites, respectively. PA 66/30SGF 
exhibits the highest tensile strength (87.05 MPa) whereas PA 66/30SGF/MWCNT exhibits 
the highest elastic modulus (4.69 GPa). It can be inferred from the graph that the addition 
of glass fibers improves the tensile strength and elastic modulus of PA 66. This 
improvement could be explained by the good mechanical performance of glass fibers [10, 
13, 68].  

In the present study, we note that the addition of 0.4 wt. % MWCNTs leads to a decline by 
14% in tensile strength. This negative effect can be attributed to the poor dispersion and 
random orientation of the MWCNTs as well as their tendency to form agglomerates in the 
matrix. Moreover, it is obvious that the presence of MWCNTs increases the elastic modulus 
of PA 66/30SGF by 4.7 %. Therefore, it could be suggested that MWCNTs contributes to 
the mechanical performance of PA 66/GF by sharing the external stress as well as bridging 
along the cracks. Moreover, they strengthen the composite system by improving the 
surface of glass fibers. As a result of even load distribution along the matrix, mechanical 
properties of the specimens increases. The obtained data also show that MWCNTs are 
compatible with glass fibers, which is very promising for the development of hybrid-filler 
composite systems.  

Similar to this study, Jin et al. [69] noted a slight increase in the elastic modulus of PA 66/GF 
composite with the incorporation of CNTs and MWCNTs, which was attributed to the 
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interconnecting effect between the glass fibers and the PA 66 as a result of MWCNT coating. 
Qiu et al. [65] reported that the addition of 1.0 wt.% MWCNTs improves the elastic 
modulus of PA 66 by 3.14%. Furthermore, the authors observed that the SCF reinforced 
Polyamide 6/MWCNT composites incorporating low MWCNT content behave like polymer 
composites containing two different types of fillers whereas those incorporating high 
MWCNT content behave like short fiber reinforced nanocomposites. 

 

(a) 

 

(b) 

 

(c) 

Fig.4 (a) Load-displacement curves of the specimens after the tensile tests; (b) Stress-
strain curves of the specimens; (c) Tensile properties of the specimens 
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3.3 Flexural Test Results 

Fig 5 (a) to (c) demonstrate the load-displacement curves and stress-strain curves of the 
specimens during 3-point flexural tests and the flexural test results of the specimens, 
respectively PA 66/30SGF/MWCNTs composite exhibits the highest flexural strength 
(145.11 MPa) and flexural modulus (3.69 GPa) while neat PA 66 exhibits the lowest 
strength (65.33 MPa) and elastic modulus (1.07 GPa). Flexural strength and flexural 
modulus of the specimens significantly increase with increasing SGF content, which can be 
explained by the good mechanical properties of glass fibers as well as their well dispersion 
and homogeneous distribution in the matrix. Besides, an increase in flexural strength (by 
1%) and flexural modulus (by 12%) after MWCNTs integration was observed, which can 
be attributed to the good surface interaction between the nanotubes and the PA 66 matrix 
as well as the surface improvement of glass fibers as a result of the MWCNTs coating. These 
results are compatible with a number of studies in literature. Autay et al. [9] studied the 
flexural properties of SGF reinforced PA 66 and reported that reinforcement resulted in an 
enhancement in the maximum flexural stress by nearly 36.3% for PA 66/10GF and 47.2% 
for PA 66/30GF in comparison to neat PA 66.  Koilraj et al. [70] investigated the flexural 
properties of injection moulded PA 66/MWCNT and reported that the incorporation of 0.5 
wt.% CNT content increases the flexural modulus by 5.8%.  
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(c) 

Fig. 5  (a) Load-displacement curves of the specimens after three-point flexural tests; 
(b) Stress-strain curves of the specimens;  (c) Flexural properties of the specimens 

Figure 6 (a) and (b) represents the optical micrographs of the tensile fractured specimens 
after 3-point flexural tests. Failure modes of the composite specimens are dominantly 
matrix cracks along the direction of loading. Compared to the composite specimens with 
MWCNTs, longer cracks are observed in fractured PA 66/SGF.  

 

Fig. 6 Optical micrographs of fractured (a) PA 66/30SGF and (b) 0.4 wt.% MWCNT 
integrated PA 66/30SGF specimens monitored after 3-point flexural tests 
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SEM images of fracture surface morphologies of PA 66/30SGF/MWCNT composite are 
shown in Figure 7 (a) to (c). Figure 7 (a) indicates the SEM image of an individual glass 
fiber coated with MWCNTs. Higher magnification SEM images of the individual MWCNT 
coated glass fiber are shown in Figure 7 (b) and (c).  

Uniform distribution of the fillers and their facial interaction with the matrix are key 
parameters for an effective reinforcement mechanism. To obtain good mechanical 
properties, fillers should evenly share the external stress applied to the matrix material. 
Regarding the CNT-polymer composites, CNTs are expected to bridge across the cracks 
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opening and propagation and hence improves the mechanical performance of the 
composite. Furthermore, if incorporated together with fibers, CNTs can function as 
effective interface modifiers improving the surface area of fibers and facilitate the adhesion 
between fiber and matrix.  

The monitored SEM images in Figure 7 (a) to (c) demonstrate that some individual 
MWCNTs function as bridges between the surface of glass fiber and the PA 66 matrix. This 
bridging phenomenon contributes to toughness improvement by allowing the release of 
stress and absorbing the fracture energy. Similar observations were made in a number of 
studies. Qian et al. [71] observed nanotubes bridging across the cracks in polystyrene 
matrix by means of a TEM and noted that the elastic modulus of the composite increases 
by nearly 25% with the inclusion of 1 wt.% CNT. Punch et al. [72] examined the fractured 
surface morphology of PA 6/SCF/MWCNT composites by SEM and obtained clear images 
of nanotubes interconnecting lumps of the PA 6-matrix. Jin et al. [69] too obtained clear 
SEM images of CNTs and MWCNTs bridging across the cracks formed inside the PA 66/GF 
composites. The authors also revealed that MWCNTs coating glass fibers can significantly 
improve the interaction between the glass fiber and the matrix.   

 

Fig. 7 SEM images of fractured MWCNTs-integrated PA 66/30SGF specimen 

Figure 8 (a) and (b) show MWCNT pull-out, which probably occurred due to the fracture 
and poor interfacial interaction. While a crack is opening, nanotube is stretched absorbing 
the fracture energy transferred from the matrix. When the fracture ends, the crack 
somewhat closes and nanotube loosens getting a curved form as shown in Figure 8 (a) and 
(b). 

Figure 9 (a) and (b) show the MWCNTs embedded within polymer matrix, which indicates 
good interfacial interaction. However, entangled MWCNT agglomerates were also 
observed as shown in Figure 9 (c), which restricts the dispersion and adversely affects the 
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mechanical properties. MWCNTs are prone to agglomerate. Earlier, agglomeration 
tendency of CNTs was attributed to the Van der Waals forces alone; however, the long 
length  and high polarizability of the CNTs could also be determining factors that enhance 
the energy required to disperse a nanotube within the matrix [73]. 

 

Fig. 8 SEM images of an individual MWCNT pull-out in a fractured PA 66/30SGF matrix 

 

Fig. 9 SEM images of (a) MWCNTs embedded in PA 66/30SGF; (b) (higher-
magnification) MWCNT embedded in PA 66/30SGF; (c) agglomerated MWCNTs 

4.  Conclusions 

In this study mechanical properties of neat PA 66, PA 66/15SGF, PA 66/30SGF and 0.4 
wt.% MWCNT integrated PA 66/30SGF were investigated. Furthermore, the effects of 
MWCNTs contents on the micro-structure and morphology of the composites were 
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investigated by using a scanning electron microscope (SEM), fourier transform infrared 
spectroscopy analysis (FTIR) and optical microscopy (OM). The conclusions based on the 
findings are summarized as follow: 

• FTIR spectra revealed no chemical interaction between PA 66, SGF and MWCNTs, 
which means that there are only physical interactions between the constituents. 

• The mechanical tests shows that PA 66/15GF and PA 66/30GF composites exhibit 
improved tensile and flexural properties compared with neat PA 66, which is due 
to the good mechanical properties of the glass fibers and the sufficient 
distribution of the external stress throughout the matrix.  

• Regarding PA 66/30SGF/MWCNT composites, the presence of MWCNTs results 
in improvement in elastic modulus by 4.7%, flexural strength by 1% and flexural 
modulus by 12%. 

• The improvement in the mechanical properties with the addition of MWCNTs is 
explained by i) high mechanical properties of MWCNTs, ii) the bridging  
phenomenon of MWCNTs, which prevents crack opening and propagation during 
the fracture of the composite 

• Despite the improvement in elastic modulus and flexural properties, a decrease in 
the tensile strength was observed. This failure is due to the presence of MWCNT 
agglomerates acting as defects or stress concentration sites in PA 66/30SGF 
composite system. 

• From the SEM images of MWCNT coated glass fibers, we can deduce that MWCNTs 
modify the surface area of fibers and some individual MWCNTs function as 
bridges between the surface of glass fiber and the PA 66 matrix. 

• Considering the improvement in elastic modulus, flexural modulus and flexural 
strength, it can be concluded that even a small mass fraction of MWCNT is capable 
of enhancing the mechanical performance of glass fiber filled PA 66. This 
achievement proves that MWCNTs are quite promising for designing new 
thermoplastic composites. 

Our future study will be investigating the tensile, bending and Charpy impact properties of 
hemp fiber reinforced thermoplastic composite materials. 
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