

Evaluation of efficacy of *Haritakyadi Gutika* and *Vasadi Kwatha* in the Management of *Shwasa Roga* w.s.r. to Chronic Obstructive Pulmonary Disease (COPD)

Author: Priyanka Bhatt¹

Co Authors: Sunil Thakur², Vijay Chaudhary³ and Manik Soni⁴

¹⁻⁴Department of Kayachikitsa, R.G.G.P.G. Ayurvedic College & Hospital Paprola, H.P. India

ABSTRACT

Shwasa Roga is one of the common and deadliest diseases according to Ayurvedic literature and similarly according to modern medical science, Chronic Obstructive Pulmonary Disease (COPD) is a common respiratory disease having high morbidity and mortality, whose symptomatology resembles to Shwasa Roga. It affects all socioeconomic groups equally all over the world and its prevalence is increasing day by day. Morbidity and mortality of the disease is also rising with the passing years. It not only affects respiratory system but other systemic components also get involved with its progression. There is no absolute cure for this disease but to reduce its morbidity, mortality and fatal complications patient requires long term therapy. So, a controlled clinical study was planned to develop a safe and cost-effective therapy to manage this chronic disease. Haritakyadi Gutika(Chakradatta Kasachikitsa 11/30)and Vasadi Kwatha (Yogratnakara Shwasa Nidana 5) were the interventional drugs used in this study whose ingredients were mainly Tridoshashamaka and work on Pranavaha Srotasa. Study was done on thirty subjects diagnosed with COPD, aged between 45-75 years. Studysubjects were screened from OPD and IPD of Kayachikitsa department of Rajiv Gandhi Govt. Post Graduate Ayurvedic College and Hospital Paprola and were diagnosed on the basis of spirometric results. Spirometry was the main tool for inclusion of subjects in this study. Registered subjects were treated for thirty days with above mentioned drugs in group I and tablet Doxofylline in group II. Statistically significant improvement was observed after the completion of therapy in some of the symptoms. Haritakyadi Gutika in the dose of 2 gram per day and Vasadi Kwatha in the dose of 100 ml per day found to be more effective in cough and expectoration as compared to tablet Doxofylline in the dose of 400 mg per day. On overall assessment therapeutic effect of Haritakyadi Gutika and Vasadi Kwatha was found to be comparable to the standard drug i.e., tablet Doxofylline. As per the safety concern no untoward effect of drugs seen during the entire trial period.

Key Words Shwasa Roga, COPD, HaritakyadiGutika, Vasadi Kwatha, Spirometry

Received 04 th September 21 Accepted 23 rd September 21 Published 10 th November 2021								
INTRODUCTION - Shwasa Roga is one of the	Ayurveda ¹ and Modern medical sciences if not							
commonest and fatal diseases according to both	managed timely and properly. The disease is							

prevalent in 4th decade of life² with male predominance³. Generally, the word Shwasa is used to describe both normal respiration in physiological condition as well as difficult breathing or Shwasakrichrata in pathological condition⁴. ShwasaRoga is a common disease of Pranavaha Srotasa⁵ or trachea-bronchial tree whose cardinal feature is abnormal, rapid⁶ or difficult breathing. Kapha increases bronchopulmonary secretions which get thickened by the antagonizing properties of Vata and leads to Srotosanga. The parallel disease in modern medicine is Chronic Obstructive Pulmonary Disease which has similar cardinal feature and characterized by airflow limitation that is usually progressive⁷. Other than the pulmonary involvement primarily disease is also having systemic component which is characterized by impaired nutrition, weight loss, skeletal muscle etc.⁸. dysfunction, anaemia/polycythaemia exposure of Cumulative tobacco smoke. occupational dust vapors, indoor and outdoor pollution is responsible for the disease⁹. The males of 45 - 80 years age group are mainly affected. It is one of the most distressing disease common in all socioeconomic groups and is 3rd leading cause of death currently^{10,11}.Management of this disease is difficult due to number of associated clinical manifestations and its fatal complications. It also imposes financial burden on individual as the long-term therapy is required. So, in order to reduce morbidity, mortality present study was planned to develop a safe and cost-effective therapy to manage this

chronic disease. *Haritakyadi Gutika* and *Vasadi Kwatha* were selected for the present clinical study. Primary objective of this research work was to evaluate the efficacy and assess the safety of *Haritakyadi Gutika* and *Vasadi Kwatha* in the management of *Shwasa Roga* w.s.r. to COPD.Intervention with these drugs for 30 days showed statistically significant improvement in symptoms without any adverse effect.

MATERIALS AND METHODS

A controlled clinical study with two study groups was designed. Subjects were screened from OPD/IPD Dept. of Kayachikitsa R.G.G.P.G. Ayu. College & Hospital Paprola, irrespective of gender, cast and religion; among them 30 were registered for the research work who were diagnosed with COPD and fulfilling the inclusion criteria. Diagnosis was made on the basis of signs, symptoms, radiological findings in chest and spirometric result i.e. post bronchodialation FEV1/FVC < 70% or < $0.7^{12,13}$. Spirometry was performed after fifteen minutes of bronchodialation with 2 puff of Salbutamol, 100mcg/puff.

All the registered patients were randomly divided into two groups, each group had fifteen patients.In group I patients *Haritakyadi Gutika* (1g twice a day) and *Vasadi Kwatha* (50 ml twice a day) were used for the management whereas in group II tablet Doxofylline (400 mg once a day) was used. Ingredients of *Haritakyadi Gutika* are – *Haritaki, Shunthi, Mustaka, Guda* and that of

Quantity 1 part 1 part

1 part

1 part

www.ijapc.com

ORIGINAL RESEARCH ARTICLE

Vasadi Kwatha are – *Vasa, Haridra, Dhanyaka, Bharangi, Guduchi, Shunthi, Kantkari, Pippali and Maricha.* Part used and quantity of each raw drug has been mentioned in table no. 1 and 2, respectively. Both the formulations were prepared as per standards of GMP in the Charaka PharmacyRajiv Gandhi Govt. Post Graduate Ayurvedic College and Hospital Paprola, Distt. Kangra (H.P.). Therapy was given for thirty days and patients were advised to come for follow up after fifteen days of initiation of therapy and at the end of trial.

Table 1Ingredients of Haritakyadi Gutika									
Sr. No.	Ingredients	Botanical Name	Family	Part used					
1.	Haritaki	Terminalia chebula Retz.	Combretaceae	Pericarp	_				
2.	Shunthi	Zingiber officinalis Rose.	Zingiberaceae	Rhizome					
3.	Mustaka	Cyperus rotundus Linn.	Cyperaceae	Rhizome					

Table 2 Ingredients of Vasadi Kwatha

Guda

4.

	ingredients of vas	иш Кмити			
Sr. No.	Ingredients	Botanical Name	Family	Part used	Quantity
1.	Vasa	Adhatoda vasica	Acanthaceae	Leaves	1 part
		Nees.			
2.	Haridra	Curcuma longa Linn.	Berberidaceae	Rhizome	1 part
3.	Dhanyaka	Coriandrum sativum	Umbelliferae	Seed	1 part
		Linn.			
4.	Bharangi	Clerodendron	Verbenaceae	Root	1 part
		serratum Linn.			
5.	Guduchi	Tinospora cordifolia	Rutaceae	Stem	1 part
		Willd. Miers			
6.	Shunthi	Zingiber officinalis	Zingiberaceae	Rhizome	1 part
		Rose.			
7.	Kantkari	Solanum indicum	Solanaceae	Whole part	1 part
		Linn.			
8.	Pippali	Piper longum Linn.	Piperaceae	Fruit	1 part
			-		-
9.	Maricha	Piper nigrum Linn.	Piperaceae	Fruit	3g/100g

Investigations done before and after completion of therapy are- Chest X-ray PA view, spirometry, pulse oximetry; Hematological investigations -Hb%, TLC, DLC, ESR; Biochemical investigations – FBS; TSB, DSB, SGOT, SGPT; B.Urea, S. Creatinine.

Patients suffering from malignancy, pulmonary tuberculosis, renal failure, diabetes mellitus, congestive heart failure, ischemic heart disease, severe anemia, myocardial infarction, poorly controlled hypertension, having advanced type II respiratory failure, lung collapse and pneumothorax were excluded. Subjects having more than 12% increment in FEV₁/FVC in fifteen minutes of bronchodialation with 200 mcg Salbutamol were also excluded.

All the patients were evaluated on the basis of subjective and objective criteria. Subjective parameters for the assessment were – **dyspnoea**, **cough, expectoration, heaviness in chest, wheezing, cyanosis, and requirement of inhaler** as given in table no. 3.Objective parameters were – **FEV**₁/**FVC%**, **SPO**₂ **at room air and pulse rate.**

Table 3 Subjective Criteria

www.ijapc.com

ORIGINAL RESEARCH ARTICLE

Sr. no.	Sign and Symptoms	Degree of severity	Grade
1.	Dyspnoea	No dyspnoea	0
		Dyspnoea on prolong and heavy exertion	1
		Dyspnoea on moderate exertion	2
		Dyspnoea on mild exertion	3
		Dyspnoea even at rest	4
2.	Cough	No cough	0
		Twice in a day; without much exhaustion	1
		Three to four times in a day; without much exhaustion	2
		Most of the time in a day; with exhaustion	3
		Throughout the day; with marked exhaustion	4
3.	Expectoration	Less than 5 ml	0
	-	5 to 10 ml; thin	1
		10 to 20 ml; thin	2
		25 to 30 ml; thin	3
		50 to 100 ml; tenacious	4
4.	Heaviness in chest	No heaviness	0
		Mild; with occasional wheezing	1
		Mild; relieved by expectoration	2
		Moderate; relieved by expectoration	3
		Severe; with wheezing throughout the day	4
5.	Wheezes	Not present	0
		Twice in 24 hours	1
		Three to four times in 24 hours	2
		Five to six times in 24 hours	3
		Throughout the day	4
6.	Cyanosis	Not present	0
	-	Mild peripheral	1
		Mild peripheral and central	2
		Moderate peripheral and central	3
		Gross peripheral and central	4
7.	Requirement of inhaler	Not required	0
	-	Required occasionally	1
		Required once daily	2
		Required twice daily	3
		Required more than twice a day	4

RESULTS AND DISCUSSION

In the present study out of thirty registered patients eighteen were male and twelve were female, twenty one patients were in the age group of 65-75 years.Twenty two patients were of low socioeconomic status. Eighteen patients were leading sedentary life. Sixteen patients were active smoker and ten were ex-smoker. Many previous studies have also revealed that the disease is male predominant, uncommon in younger age with high prevalence in smokers and low socioeconomic groups and makes the patients unable to lead an active life with passage of time. Other than difficult breathing cough and sputum production are commonly associated which are usually first symptoms¹⁴. The airflow limitation is not fully reversible¹⁵ which occur due to irreversible damage of the airways and increases with age and continuous exposure to aetiological factors. That's why with time severity of disease increases.

The interventional drugs used in this study i.e., *Haritakyadi Gutika* and *Vasadi Kwatha* showed statistically highly significant improvement in

www.ijapc.com

ORIGINAL RESEARCH ARTICLE

cough and expectoration whereas statistically significant reduction in dyspnoea, wheezing, heaviness in chest and requirement of inhaler **Table 4** Effect of therapy on subjective parameters

therapy; as shown in table no. 4. They also showed statistically significant improvement in oxygen saturation; given in table no. 5.

Table 4 Effect of therapy on subjective parameters										
Subjective	C	Mean Score		%	Mean	CD.	0.1			
Parameters	Group	BT	AT	Change	Diff.	5.D.±	5.E. ±	t-value	p-value	
Durana a a a	Gr-I	1.533	1.067	30.40	0.466	0.516	0.133	3.500	0.004*	
Dysphoea	Gr-II	1.733	0.733	57.70	1	0.378	0.098	10.247	< 0.001**	
Canak	Gr-I	1.533	0.600	60.86	0.933	0.258	0.067	14	< 0.001**	
Cougn	Gr-II	1.533	1.333	13.05	0.200	0.676	0.145	1.146	0.271	
	Gr-I	1.600	0.800	50.00	0.800	0.676	0.175	4.583	< 0.001**	
Expectoration	Gr-II	1.600	1.133	29.19	0.467	0.516	0.133	3.500	0.004*	
Heaviness in	Gr-I	0.533	0.267	49.90	0.266	0.458	0.118	2.256	0.041*	
chest	Gr-II	1	0.467	53.30	0.533	0.516	0.133	4	0.001*	
Wheenstere	Gr-I	1.067	0.667	37.48	0.400	0.632	0.163	2.449	0.028	
wneezing	Gr-II	1.267	0.400	68.43	0.867	0.352	0.091	9.539	< 0.001**	
Cuanadia	Gr-I	0.333	0.267	19.82	0.066	0.258	0.067	1.00	0.334	
Cyanosis	Gr-II	0.333	0.200	39.94	0.133	0.352	0.091	1.468	0.164	
Requirement of	Gr-I	1.6	1.2	25	0.400	0.507	0.131	3.055	0.009*	
inhaler	Gr-II	1.667	0.867	47.99	0.8	0.561	0.145	5.527	<0.001**	

Table 5 Effect of therapy on objective parameters

Objective	Group	Mean Sco	re	%	Mean	S.D.±	S.E.±	t-value	p-value
parameters		BT	AT	Change	Diff.				
SPO ₂ (at	Gr-I	89.800	90.333	0.59	0.533	0.743	0.192	2.779	0.015*
room air)	Gr-II	89.267	90.733	1.64	1.467	0.834	0.215	6.813	<0.001**
FEV ₁ /FVC	Gr-I	0.641	0.644	0.47	0.003	0.007	0.002	1.468	0.164
	Gr-II	0.649	0.653	0.62	0.004	0.007	0.002	2.103	0.054
Pulse rate	Gr-I	86.733	86.267	0.54	0.467	0.516	0.336	1.388	0.187
	Gr-II	85.200	84.867	0.39	0.333	2.059	0.532	0.627	0.541

On intergroup comparison statistically highly significant difference was observed between both the groups in respect to cough whereas statistically significant difference was found in respect to dyspnoea, wheezing, requirement of inhaler and oxygen saturation; given in table no. 6 and 7. Overall effect of therapy has been shown in table no. 8.

Table 6 Intergroup comparison of effect of therapy on subjective parameters

Subjective parameters	Mean D	iff.	%Change	6 Change		S.D.±		
	Gr-I	Gr-II	Gr-I	Gr-II	Gr-I	Gr-II		p-value
Dyspnoea	0.467	1	30.40	57.70	0.516	0.378	3.227	0.003*
Cough	0.933	0.200	60.86	13.05	0.258	0.676	3.924	< 0.001**
Expectoration	0.800	0.467	50	29.19	0.676	0.516	1.517	0.141
Heaviness in chest	0.267	0.533	49	53.30	0.458	0.516	1.493	0.147
Wheezing	0.400	0.867	37.48	68.43	0.632	0.352	2.500	0.019*
Cyanosis	0.066	0.133	19.82	39.94	0.258	0.352	0.588	0.561
Requirement of inhaler	0.400	0.800	25	47.99	0.507	0.561	2.049	0.050*

Table 7 Intergroup comparison of effect of therapy on objective parameters

Objective parameter	Mean Diff.		%Chan	%Change		S.D.±		p-Value
	Gr-I	Gr-II	Gr-I	Gr-II	Gr-I	Gr-II		
SPO ₂ (at room air)	0.005	0.014	0.59	1.64	0.007	0.008	3.28	0.003
FEV ₁ /FVC	0.003	0.004	0.47	0.62	0.007	0.007	0.494	0.625

November 10th 2021 Volume 15, Issue 3 Page 113

www.ijapc.com

ORIGINAL RESEARCH ARTICLE

Pulse rate	0.467	0.333	0.54	0.39	1.302	2.059	0.213	0.833	
	11								
Table 8 Over	all assessment of the	rapy (on the ba	asis of im	provement	in subjective	e parameters)	Π.4.	1	
Group	Unimproved	Mild		NIOD	erate	Marked	Tota	l	
	(<25%)	(25-50)	%)	(51%-75%)		(76-99%)	IL		
Ι	3	5	· ·	4		3	15		
II	0	12		1		2	15		
+									
Table 9 Phar	macological propertie	es of drugs							
Drug	Rasa	Guna		Virya	Vipaka	Karma			
Haritaki	Pancharasa Yukt	a Laghu, Ru	ksha	Ushna	Madhura	Tridoshahara,	Rasayana,	Deepana,	
	(Lavan Rahita)					Pachana , Kasahara	Vatanulomaka	i, Shwasa-	
Shunthi	Katu	Laghu		Ushna	Madhura	Kanha-Vatagh	na Deepan	a Shwasa-	
Snann	110000	Snigdha		e shina		Kasahara	nu, Deepun	a, shinasa	
Mustaka	Tikta, Katu	, Laghu, Ru	ksha	Sheeta	Katu	Kapha-Pittaha	ra, Deepana,	Pachana,	
	Kashaya	, 0, ,				1			
Vasa	Tikta, Kashaya	Laghu, Ru	Laghu, Ruksha		Katu	Kapha-Pittaghna, Shwasa-Kasahara			
Haridra	Katu, Tikta	Laghu, Ru	ksha	Ushna	Katu	Kapha-Vatash	amaka,	Lekhana,	
						Bhedana			
Dhanyaka	Tikta, Katu	ı, Laghu, Sni	igdha	Ushna	Madhura	Tridoshahara,	Deepana,	Paachana,	
	Kashaya, Madhura					Vatanulomana, Shwasa-Kasahara			
Bharangi	Tikta, Katu	i, Laghu, Ru	ksha	Ushna	Katu	Kapha-Vata	Shamaka,	Deepana,	
	Kashaya					Pachana, Vatanulomana	Shwasa	a-Kasahara,	
Guduahi	Tikta Katu	Guru Snia	dha	Ushna	Madhura	 Tridoshasham	aka R asayan	a Deenana	
Guuuchi	Kashaya	i, Ouru-Snig	ини	Osnnu	maanura	1 nuosnusnum	ики, Кизиуип	u, Deepunu	
Kantakari	Tikta, Katu	Laghu, Ru	ksha	Ushna	Katu	Kapha-Vatash	amaka.	Deepana.	
	1 /////	248.111, 111		0 5.1.10		Paachana,	Shwas	a-kasahara,	
						Vatanulomana			
Pippali	Katu	Laghu, S	nigdha,	Ushna	Madhura	Kapha-Vatash	amaka,	Deepana,	
		Tikshna				Paachana,	Shwasa	ı-Kasahara,	
						Rasayana			
Maricha	Katu	Laghu, Tik	shna	Ushna	Katu	Kapha-Vatagh	na, Chedana	, Pramathi,	
						Deepana, Paa	chana, Shwas	-Kasahara	

As there is involvement of vitiated Vata, Kapha and pathology in Pitta Sthana in the pathogenesis $Roga^{16}$. of Shwasa the drugs with Vatakaphaghana, Vatanulomaka and Pittashamaka properties were used in this study so that Samprapti Vighatan can be done in order to prevent the development and progression of the disease. In these selected formulations there is a balance of Tridoshashamaka Rasa, Sheeta-Ushana Virya and Madhura-Katu Vipaka; as shown in table no. 9. Due to these properties the interventional drugs showed good therapeutic effect. For example-Haritaki is *Tridoshashamaka and* due to its *Deepana*, *Paachana* properties it helps in *Agnivardhan*, *Aampachana*. In addition to this due to *Bhedana* property it removes *Srotosanga* thus *leads* to *Vatanulomana.Guda* helps in translocation of ingested dust particles from the lungs to the tracheobronchial lymph nodes¹⁷.

CONCLUSION

This study showed that *Haritakyadi Gutika* and *Vasadi Kwatha* have promising results in

November 10th 2021 Volume 15, Issue 3 Page 114

symptomatic management of Shwasa Roga without any untoward effect. Mainly they are beneficial in relieving cough and expectoration. They also showed reduction in inhalers dependence of registered patients. Therapeutic effect of these drugs is comparable to the standard drug used in management of COPD i.e., tablet Doxofylline. As this disease is not fully curable and requires long term therapy along with frequent hospitalization due to acute exacerbations which imposes financial burden on individual and society. In addition to this long term use of steroids, β_2 sympathomimetics which are frequently used in advanced disease causes some ill effects¹⁸. So, the study was done to establish such a cost effective treatment module which reduces the requirement of such drugs. This thirty days trial showed that Haritakyadi Gutika and Vasadi Kwatha are safe and good therapeutic agents for COPD.

Due to COVID-19 Pandemic the study was done on a small sample and only for one month. It can be done on a large sample for a longer duration to evaluate the long term effects of these drugs.

Ethics Approval: vide certificate no. Ayu/IEC/2018/1178

 CTRI
 Registration:vide
 CTRI
 no.

 CTRI/2021/01/030640 dated 20/01/2021.
 01/2021.
 01/2021.

Acknowledgement

The study was supported by Rajiv Gandhi Government Post-Graduate Ayurvedic College and Hospital, Paprola, District Kangra, Himachal Pradesh, India.

Conflict of interest: None

REFERENCES

 Pt. Kasinatha Sastri, Dr. Gorakhanatha Chaturvedi. (2013). *Vidyotini* (Hindi Commentary on *Charaka Samhita*). Part II. Chaukhamba Bharti Academy.

 Brain R. Walker, Nicki R. Colledge, Stuart
 H. Ralston, Ian D. Penman. (Eds.). (2014).
 Davidson's Principles and Practice of Medicine(22nd ed.). Churchgill Livingstone Elsevir.

 Yash Pal Munjal, S. K. Sharma, A. K. Agarwal, P. Gupta, S. A. Kamath, M. Y. Nadkar, R. K. Singal, S. Sundar, S. Varma, G. S. Pangtey, A. Prakash, S. N. Shah. (Eds.). (2015).
 APITextbook of Medicine(10th ed., Vol. 2). Dr. Yash Pal Munjal.

 Pt. Kasinatha Sastri, Dr. Gorakhanatha Chaturvedi. (2013). Vidyotini (Hindi Commentary on Charaka Samhita). Part II. Chaukhamba Bharti Academy.

5. Prof. Ramharsh Singh. (2010).
 Kayachikitsa. Part II. Chaukhamba Sanskrit
 Pratishthan.

6. Kaviraja Ambikadutta Shastri. (2017). *Ayurveda Tattva Sandipika* (Hindi Commentary on *Susruta Samhita*). Part II (*Uttaratantra*). Chaukhamba Sanskrit Sanshthan.

7. Brain R. Walker, Nicki R. Colledge, Stuart
H. Ralston, Ian D. Penman. (Eds.). (2014).
Davidson's Principles and Practice of Medicine(22nd ed.). Churchgill Livingstone Elsevir.

8. Brain R. Walker, Nicki R. Colledge, StuartH. Ralston, Ian D. Penman. (Eds.). (2014).

Davidson's Principles and Practice of Medicine(22nd ed.). Churchgill Livingstone Elsevir.

9. Dennis RJ, Maldonado D, Norman S, Baena E, Martinez G. (1996). Woodsmoke exposure and risk for obstructive airways disease among women. Chest;109 (1).115-9

 Anne Lindberg. (2004). The Obstructive Lung Disease in Northern Sweden Studies Thesis VI (No. 927 ISSN 0346-6612 ISBN 91-7305-756-8.) [Master's Dissertation, UMEA University].

11. Mathers C.D., Loncar D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS medicine, 3(11), Article e442.

Brain R. Walker, Nicki R. Colledge, Stuart
H. Ralston, Ian D. Penman. (Eds.). (2014).
Davidson's Principles and Practice of
Medicine(22nd ed.). Churchgill Livingstone
Elsevir.

13. Yash Pal Munjal, S. K. Sharma, A. K. Agarwal, P. Gupta, S. A. Kamath, M. Y. Nadkar, R. K. Singal, S. Sundar, S. Varma, G. S. Pangtey, A. Prakash, S. N. Shah. (Eds.). (2015). API Textbook of Medicine(10th ed., Vol. 2.). Dr. Yash Pal Munjal.

Brain R. Walker, Nicki R. Colledge, Stuart
H. Ralston, Ian D. Penman. (Eds.). (2014).
Davidson's Principles and Practice of Medicine(22nd ed.). Churchgill Livingstone Elsevir.

15. Yash Pal Munjal, S. K. Sharma, A. K. Agarwal, P. Gupta, S. A. Kamath, M. Y. Nadkar,

November 10th 2021 Volume 15, Issue 3 **Page 116**

R. K. Singal, S. Sundar, S. Varma, G. S. Pangtey,
A. Prakash, S. N. Shah. (Eds.). (2015). API
Textbook of Medicine(10th ed., Vol. 2). Dr. Yash
Pal Munjal.

16. Pt. Kasinatha Sastri, Dr. Gorakhanatha
Chaturvedi. (2013). *Vidyotini* (Hindi
Commentary on *Charaka Samhita*). Part II.
Chaukhamba Bharti Academy.

17. A.P.Sahu, A.K.Saxena. (1994).Environmental Health Perspective 102(Suppl 6):211-214.

K.D. Tripathi. (2010). Essentials of Medical Pharmacology. (6th ed.). Jaypee