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Teaching Industrial Robotics in Higher Education
with the Visual-based Android Application Hammer

Enseñanza de robótica industrial en educación
superior mediante la aplicación visual para Android
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Alberto Brunete1,2, Miguel Hernando1,2, Ernesto Gambao1,3, Carlos Mateo2 and Daniel Manzaneque2

Abstract—Robotics is a demanding subject in higher education.
Learning methodologies need to be updated to make use of the new
technologies. This paper presents a new methodology for teaching
industrial robotics programming using a visual interface running
on Android devices, called Hammer. This tool allows the control
and programming of robots via a visual environment based on the
Scratch concept. Thanks to it, students can see the practical part
of theoretical concepts learned in class and, at the same time, test
and generate tasks and paths for industrial robots while learning
the basics of robot programming. Students don’t need to have
any knowledge about the target robot programming language,
but a basic knowledge of Robotics. This tool has been tested in
this paper through four different guided practical exercises. All
exercises have been validated through surveys and the results are
presented and discussed in the paper.

Keywords - Industrial Robots; Visual programming; HRI;
STEM; Android programming.

Resumen—La robótica es una asignatura exigente en la
enseñanza superior. Es necesario actualizar las metodologı́as
de aprendizaje para hacer uso de las nuevas tecnologı́as. Este
trabajo presenta una nueva metodologı́a para la enseñanza de la
programación de robótica industrial utilizando una interfaz visual
que se ejecuta en dispositivos Android, denominada Hammer.
Esta herramienta permite controlar y programar robots a través
de un entorno visual basado en el concepto Scratch. Gracias a
ella, los alumnos pueden ver la parte práctica de los conceptos
teóricos aprendidos en clase y, al mismo tiempo, probar y generar
tareas y trayectorias para robots industriales mientras aprenden
los fundamentos de la programación de robots. Los alumnos no
necesitan conocimientos sobre el lenguaje de programación del
robot de destino, pero sı́ conocimientos básicos de Robótica. Esta
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herramienta se ha probado en este artı́culo a través de cuatro
diferentes ejercicios prácticos guiados. Todos los ejercicios se
han validado mediante encuestas y los resultados se presentan y
discuten en el artı́culo.

Palabras Clave - Robots industriales; programación visual;
HRI; STEM; programación Android.

I. INTRODUCTION

NOWADAYS, robots are increasingly present in society,
providing the user with a great multitude of applications

and utilities, either in professional industry or in daily life. Over
the last few years, this has resulted in education emphasizing
the teaching of different fields derived from it, such as
engineering, mathematics or computing, originating a new
teaching methodology named STEM (Science, Technology,
Engineering, Mathematics). STEM is based on integrated
learning of all scientific disciplines, mainly through problems
and open and unstructured situation solving, using the contents
and procedures of these disciplines in conjunction.

In addition, the goal of this STEM methodology is that the
students work in the classroom in a similar way that an engineer
does when facing a problem, promoting the implementation
of their knowledge. Furthermore, the reverse process is also
achieved, as facing real situations complements theoretical
concepts, improves their motivation and broadens the contents
of various scientific subjects. This provides the students with a
longer learning retention, the ability to transfer among situations
and, ultimately, basic learning skills.

Robotics can be effective in teaching STEM [1] [2] because
it enables real-world applications of the concepts of engineer-
ing and technology. The study by Benitti [3] suggests that
educational robotics usually acts as an element that enhances
learning (although this is not always the case). Jara et al.
demonstrated that robotics subjects are always greatly improved
when classroom teaching is supported by adequate laboratory
courses and experiments following the ”learning by doing”
paradigm [4]. Robotics is increasingly being taught in schools,
even at earlier stages as suggested by [5], but teachers face a
lack of tools to teach it.
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Besides, mobile technology (especially combined with tablets
and smartphones) provides a new way of using all the utilities
that the Internet and computers have in a more versatile way,
thanks to all the available sensors and tactile interfaces on
them. This way, students can use them and enjoy a much more
interactive and effective learning.

In this article, we present a new way of learning the robot
basics by mixing the concepts of STEM methodology and
mobile applications. The result is an interactive way of learning
where the student can manipulate an industrial robot from a
tablet and see how the different configurable parameters (speed,
type of movement, orientation interpolation, etc.) affect the
trajectory created. Therefore, they can program robot tasks with
no knowledge about the specific robot programming language,
but by applying general robot concepts. Students also have
the possibility to see the transcription in the specific robot
language once a program has been created.

This is achieved by an application called Hammer, developed
at the Universidad Politécnica de Madrid, installable on any
tablet running the Android operating system. Hammer allows
new users to experience a first contact with industrial robots,
which are usually controlled by complex devices that are
difficult to use by non-professionals in the sector, this program
being the only one available in Android devices that promotes
learning of this kind of robot.

The Hammer application is composed of two main com-
ponents: a teach pendant interface and a visual-programming
interface. The first one allows the user to move the robot in
different coordinate systems, run simulations of the real robot,
create trajectories in a 3D environment and set robot properties
such as speed, type of orientation and type of movement. The
second component is bound to create a task by using visual
programming (drag and drop of blocks in a Scratch way [6]).
The user can also run a simulation of the program created to
test it before executing it in the target robot. When executing
the program in the real robot, the communication between the
Android device and the robot is achieved through a gateway,
which decodes the instruction into the robot language and
executes the task.

Several exercises have been designed to use Hammer as a
teaching tool and the first experiences are presented in this
paper. In general, we have experienced that students get a better
understanding of complex theoretical and abstract concepts with
this methodology in an easy and enjoyable way. At the same
time, students can achieve simple robot tasks in a very small
period of time because the use of Hammer does not require
learning the target robot programming language.

The rest of the paper is as follows: section II presents the state
of art related to mobile apps for teaching Robotics. Section
III describes an overview of the main features of Hammer
from the point of view of education. The practical sessions
are shown in section IV, and the results and discussion can
be found in section V and VI. Finally some conclusions are
drawn in section VII.

II. STATE OF THE ART

Robotics has a lot of potential in education. The world has an
increasing population of robots (e.g. healthcare or agriculture)

that need people able to control and program them. End-users
could benefit from being able to give robots new tasks [7]. But
this is not an easy task. And it is not an easy task to learn.

Mobile applications and visual programming can help with
that. Visual-programming software has gained momentum in
the last few years because it is an easy and intuitive way to
program robots. Although there are not many developments at
the moment, we could cite a few. Ruru [8] is a visual language
and environment for novice robot programming. Ruru provides
a live and concrete environment in which to learn robotic
programming. It is live, i.e. its visualisations are animated in
real time and can be edited in real time while the robot is
operating. It uses visual representations of robot sensors and
actuators that the user can interconnect to create behaviours.
Visual-programming has also been used with the Sphero robot
[9], concluding that “visual programming language (VPL) can
also be suitable for robot programming. Furthermore, the main
advantages derived from the use of a VPL in such context, when
compared to a textual programming language, include a more
intuitive and enjoyable programming process, a greater ease of
use of the development environment and a better understanding
of the tasks to be performed by the robot when viewing the
block diagram that specifies a program”.

Arts&Bots [10] uses craft materials, a flexible hardware kit,
an interactive software environment and adaptable curriculum
to empower students to create sculptures with robotic actuation
and sensing. The software environment is called “CREATE
Lab Visual Programmer”, and it is used to perform the
storyboarding-step by defining robot behaviours by joining
expressions and other program elements into combinations of
robot actions that occur over time.

Pichler et al. use augmented reality to facilitate communica-
tion and interaction between the operator and robot [7], i.e. by
illustrating in a transferred camera image which objects the
robot has already detected by itself. The simulator visualises
what the robot plans to do, and in this way, the user is also
aware of the plans of the robot.

Besides, most smartphone applications related to robotics
are primarily focused on mobile robot control. These are
applications that remotely control the position of the robot
and send the position to the phone [11]. There are applications
that report the environmental conditions where the robot is
moving, for example, vibrating the smartphone when the robot
is close to an obstacle [12]. However, in some cases, the
smartphone, due to the large number of sensors it has, is used
as a sensing and monitoring unit [13]. It is clear that the main
use given to the robotics smartphones applications is for control
and monitoring, which allows students to acquire a very basic
and simple knowledge about robotics devices.

In the last few years, robot manufacturers have begun to
include tactile devices to control their robots, like Universal
Robot with its tactile pallette1, or Comau with its PickAPP
application2, an intuitive interface for robot programming for
Android tablets. Educational companies like BQ have developed
a browser-based programming environment (Bitbloq3) for its

1https://www.universal-robots.com/products/ur-robot-benefits/
2http://www.comau.com/EN/our-competences/robotics/software/pickapp
3http://bitbloq.bq.com
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(a) (b)

Fig. 1. Set up for the practical work. (a) System overview. (b) Students during the practical work.

robot Zowi. Modular Robotics has the Cubelets application4

to control their robots.
The application presented in this paper differs from the

aforementioned in that it is used to program real industrial
robots, not robots designed for education. It makes use of
the potential of tablet devices to control manipulator robots,
allowing to create paths, monitor the status of the robot and
even create programs and run them both in a simulator and
the robot in real time, wirelessly, which is unusual as most of
these robots have wired connections.

The idea of programming robots without first having to
know about the syntactic and semantic details of the underlying
formalism has been previously seen in applications like ReAct!
[14], which enables students to describe robots’ actions and
change in dynamic domains. This concept is developed in the
Hammer tool.

III. HAMMER APPLICATION AS A LEARNING TOOL

Hammer is an Android application designed to control and
program industrial manipulator robots [15]. It is able to create
and simulate trajectories, manipulate real robots wirelessly
and even create generic programs for (theoretically) any kind
of robot manipulator, using visual blocks, avoiding the need
for specific robot language knowledge. Consequently, users
without a specific knowledge in robotics are able to program
an industrial robot.

Hammer was originally conceived for industrial applications,
but it has turned out to be a great educational robotic tool
to show students the operation of industrial robots and basic
notions of programming.

4https://www.modrobotics.com/cubelets/apps/

The Hammer environment is composed by the industrial
robot to control (in these experiments a Comau Smart-Six),
the robot controller and a tablet (in our case a Nexus 10 with
the Hammer app running). This scenario is shown in Fig. 1
(a). We sometimes use a PC to load programs in the robot,
but it is not necessary because the teach pendant can be used
instead. The robot must be running a program that acts as a
gateway between the robot and tablet. It receives commands
from the tablet and translates them into robot-specific language
(in this case PDL). Thus, it is possible to use other robots and
reuse the application. The only thing that has to be changed is
the gateway (to translate commands to the new robot-specific
language).

The communication between the tablet and the gateway is
done by standard TCP/IP sockets. Thus, WiFi and Ethernet
networks can be used.

The application is explained in detail in the paper by Mateo
et al. [15]. For educational purposes we use the teach pendant,
the programming IDE and the simulator.

The teach pendant interface (shown in Fig. 2) offers a
control palette similar to the real device usually found in
robotics control units but with an improved, neat and modern
interface. Hammer improves the user experience of common
teach pendants as it operates wirelessly, allowing the user
to walk around the robot and have a clearer view of its
position. Furthermore, it has other features such as virtual
3D environment with a model of the real robot synchronized
in position and a swipe panel with information about saved
points and paths.

This interface allows the user to create points and paths and
define the motion properties of them. This is very useful to
show students how the robot changes its behaviour depending
on the type of point, trajectory and approach. Finally, when
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Fig. 2. Teach Pendant screen

Fig. 3. Programming IDE

the path is generated and configured, the user can simulate it
or execute in the real robot.

The programming IDE (shown in Fig. 3) allows the user
to make programs that use the saved points and paths to
create more complex tasks or routines. To do so, the visual-
programming interface provides the user with programming
blocks as well as variables, loops and conditionals. The creation
of a program is done by sequentially linking one block to
another.

Hammer is also able to simulate and execute those programs
in the real robot. During the simulation, the user can see
the evolution of the program and the variables involved in
it, which can be used as debugging tool. When executed in
the real robot, the user can see the generated native code by
pressing the “PDL” button.

IV. TEACHING TRIALS

To validate the usability and improvement on the user
experience, we carried out four practical exercises with students.
The purpose of these practical exercises was to validate how
easy and fast robot programming is done with Hammer.

We selected three groups with between 10 and 15 students
from the Escuela Técnica Superior de Ingenierı́a y Diseño
Industrial (ETSIDI) at the Universidad Politécnica de Madrid
(UPM) who were following the robotics module of the third
year of the Electronics and Industrial Automation grade. Those
students had no previous knowledge of the Comau’s PDL robot

TABLE I
SQUARE POINTS IN THE FORMAT (X, Y, Z, ROLL, PITCH, YAW)

Point Type Coordinates

1 Joint 50 20 -70 0 93 0

2 Cartesian (Base) -0.67 -0.77 1.075 -94 91 0

3 Joint 135 13 -102 1 65 86

4 Cartesian (Tool) 0.64 -0.85 0.76 -94 91 0

programming language nor Hammer, although they had some
basics in robotics and C programming.

One robot Comau Smart-Six was used for the practical
exercises. The students worked in groups, each with an Android
tablet. As they finished a task, they connected the tablet to the
robot to test their exercise in the robot. Turns were assigned by
the instructor. Because it takes more time to write a program
than to execute it, this method allows having several students
working with the same robot.

Students were given a 20 min tutorial about Hammer. The
idea was to check if, with such a short tutorial, they are able
to use Hammer. A picture of the class is shown in Fig. 1 (b).

A. Exercise 1: Movement in different coordinate systems and
trajectories

The purpose of the first exercise is to teach students the types
of movement and how a change in the coordinate reference
system affects them.

1) Coordinate systems: The exercise goal is to follow a
square trajectory with four points predefined and move the
TCP (Tool Center point) from an initial position to the given
points: two of them in Joint coordinates, and the other two
in Cartesian coordinates (one with respect to robot base, and
the other one with respect to the tool). The exercise ends after
simulating the trajectory. The coordinates of the four robot
locations are shown in Table I.

Students had to place the robot at the targeted positions
using the incremental buttons of the teach pendant interface,
alternating between the Joint and Cartesian modes, and select-
ing if the movement has to be done with respect to the robot
base or to the tool. When a targeted point was reached, it had
to be saved. Finally, with all the points students had to create a
path (exercise1). Once the path was created, the student had to
simulate it to validate and visualize the path. If the simulation
was successful, the path was ready to be executed in the real
robot.

The purpose of this part of the exercise is to teach students
the types of movement that a manipulator robot can do. In this
way, students could learn how the robot can be moved and
understand better the difference between movement in Joint
and Cartesian coordinates.

2) Movement types: When a path is created, the robot arm
can reach each of its points by different ways depending on
how the movement between points is done. Three interpolation
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methods have been considered: linear (a straight line in the
Cartesian space), circular (the path between two points is an
arc) and joint (default joint movement). The idea is that students
learn the difference amongst these three movement types.

The goal was to change the trajectory’s properties and set
the movement type to each of the options available (linear,
joint or circular). Then, simulate the movement and finally
execute it on the real robot.

B. Exercise 2: Orientation interpolation

The purpose of this exercise is to teach students the
importance of tool orientation when designing a robot path, and
the difference between three types of interpolation. Students can
see how the theoretical interpolation affects the final orientation
of the tool, something that could be very practical and clarifying
for them.

To reach a target position with a specific orientation,
the robot can interpolate the tool’s orientation by different
ways: world, Euler or wrist joint interpolations (respectively
RS WORLD, EUL WORLD and WRIST JNT in Hammer).
In world interpolation (two-angles related to the world frame),
orientation interpolation is done by linearly interpolating the
values of two rotation angles: tool rotation and tool spin.
The tool rotation angle is the one created by the common
normal between the beginning tool approach vector and the
destination approach vector. The tool spin angle is the one
created by the approach vector from the beginning position to
the destination position. The evolution is related to the World
frame independently from the trajectory. In Euler interpolation
(Three-angle), orientation interpolation is done by linearly
interpolating the values of the three Euler angles of rotation,
E1, E2 and E3. Finally, in wrist joint interpolation (Wrist-joint),
orientation interpolation is done using a combination of joint
and linear interpolation. This allows the tool to move along
a straight line while the wrist joints are interpolated in joint
coordinates.

The starting and ending orientations will be used as taught,
but because of the joint interpolation, the orientation during
the movement is not predictable, although it is repeatable.
For example, using either EUL WORLD or RS WORLD, if
the beginning and ending orientations are the same, then the
orientation of the tool will remain fixed during the motion.
However, with WRIS JNT orientation interpolation, this is
not guaranteed. However, WRIST JNT orientation control
produces a smoother motion near wrist singularities.

Therefore, in this exercise, students could experience the
difference between the three interpolations described above. To
do so, the tool offset must be set to default and the reference
system must be set to the base. Then, students had to execute
the path Exercise2 (already created) in the real robot and watch
its execution.

The Exercise2 path was created with a singularity depending
on the kind of orientation of the tool. During the execution of
the path, students notice that the path execution stops at the
middle due to the singularity as during the interpolation TCP
tries to reach an orientation whose joints angles are outside
the limits of the robot. It happened because the RS WORLD

(World interpolation) property was defined in orientation type.
Then, students could try EUL WORLD (Euler interpolation)
and WRIST JNT (Wrist joint interpolation) and check the
difference.

The final result was that in the previous cases (World and
Euler interpolation) the interpolation was done using linear spin
and rotation angles, which can cause a singularity, whereas
the last case, the interpolation (Wrist joint) was done by joint
coordinates, which avoid singularities.

C. Exercise 3: Robot speed

The goal of this exercise is to show students how speed can
affect the trajectory that the robot should follow.

The process of determining which component governs
Cartesian speed is called preplanning. This happens just before
the motion actually occurs. It is possible to force the preplanner
to pick a particular component of motion selecting one of the
options. In the application the user has the following ones
available:

• Joint Speed (SPD JNT): The TCP moves along the
requested Cartesian trajectory with maximum speed at (at
least) one of its joints. The TCP will not move at constant
speed.

• Linear Speed (SPD LIN): The TCP moves at the specified
linear speed value (m/s), forcing all joints to move at the
same time.

• Rotational Speed (SPD ROT): It rotates the TCP at
the specified angular speed (rad/s), forcing all other
components to move at the same time. For this to be
applied, different orientation between consecutive points
is necessary.

In this exercise, students should execute a path called
exercise3 with different speeds. First, at the path properties
window, the SPD LIN (Linear speed) option had to be selected
and set its value to 0.7 m/s. Students could notice how the
robot’s TCP moved at the requested speed.

After that, the speed option had to be changed to SPD ROT
(Rotational speed) and set its value to 1.4 rad/s. After that, the
path had to be executed to see the difference.

Finally, students had to select the SPD JNT option. In this
case, the speed value is not necessary because the robot moves
at least one joint at maximum speed, which means the TCP
will not move at constant speed.

D. Exercise 4: Learning visual programming

The purpose of this exercise was to teach students how to
make basic programs using the Hammer interface and compare
them with the original robot programming language. The
exercise was divided into two parts: using motion commands
and creating variables and loops.

1) Using motion commands: The purpose of this part was
to show students the main usage of movement blocks. Students
had to create a program with four trajectories, each of them
of a different type: linear movement with respect to the base,
linear movement with respect to the current TCP position, joint
movement with respect to the zero angle position and joint
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(a) (b)
Fig. 4. Program blocks for the practical exercises. (a) Exercise 4.1.
(b) Exercise 4.2.

movement with respect to the current joint angle position of
the robot. The resulting program had to be the same as the
one at Fig. 4 (a).

After that, students can see the equivalent PDL code by
pressing the button “To PDL” (Code listing 1). In this way,
they could compare the code needed to develop the same
program in the robot native language.

Code 1. Equivalent PDL code for Exercise 4
1 h p p r o p e r t i e s : H a m m e r P a t h P r o p e r t i e s GLOBAL
2 auxPathNode : hammerNode
3 S1 , S2 , S3 , S4 : POSITION
4 BEGIN
5 S1 := POS ( 0 . 6 7 , − 0 . 7 7 , 1 . 0 7 5 , − 9 4 . 0 , 9 1 . 0 , 0 . 0 )
6 S2 := POS ( 0 . 1 , 0 . 1 , 0 . 1 , 5 0 . 0 , 1 5 . 0 , 1 2 . 0 )
7 S3 := POS ( 1 3 5 . 0 , 1 3 . 0 , − 1 0 2 . 0 , 1 . 0 , 6 5 . 0 , 8 6 . 0 )
8 S4 := POS ( − 4 5 . 0 , − 3 0 . 0 , 4 0 . 0 , 2 0 . 0 , 3 0 . 0 , 4 0 . 0 )
9 MOVE LINEAR TO S1

10 MOVE LINEAR RELATIVE VEC ( 0 . 1 , 0 . 1 , 0 . 1 ) TO S2
11 MOVE TO S3
12 MOVE BY S4
13 END HammerProgram PDL

2) Creating variables and loops: In the second part of the
exercise, students had to create a more complex program where
three paths were combined within conditional and repetition
loops (Fig.4 (b)). The aim of this program was to move the
robot to an initial position, and then create a loop to execute
one path or another depending on the iteration number. This
exercise requires the use of different kinds of variables to store
values, loops to perform repetition and conditional blocks to
switch among paths.

When completed, students should simulate it and execute
it in the real robot. Showing the PDL code again made them
realize this exercise was harder to develop in the robot native
language.

Fig. 5. Scores obtained in the tests.

V. RESULTS

After the practical exercises, students had to answer some
questions to evaluate if they think that Hammer has helped
them to understand robotics concepts better, such as inverse
kinematics, tool orientation, trajectory types and reference
systems. All subjects answered to all questions. There was
no outlier removal. Questions are presented in the following
paragraphs. The scores obtained are summarized in Fig. 5.

1) Did the practical exercises help to understand the
different reference systems applicable to a robot and
its usefulness when creating trajectories? (1: Not very,
5: Very much)
The answers are shown in Fig. 6a. More than 94% of the
students showed that the exercise helped to understand
the different reference systems.

2) Did the practical exercises help to improve the under-
standing of the theoretical concepts about the inverse
kinematics of robots? (1: Not very, 5: Very much).
More than 66% of students showed a better understanding
of inverse kinematics, as shown in Fig. 6b.

3) Did the practical exercises help to understand the
different types of orientation applicable to the trajectories
of a robot and its usefulness? (1: Not very, 5: Very much)
The answers are shown in Fig. 6c. More than 83% of the
students showed that the exercise helped to understand
how orientation affects robot trajectories.

4) Assess the learning curve of the Hammer tool for the
creation and programming of trajectories (1: Easy, 5:
Difficult).
The answers, shown in Fig. 6d, indicate that the learning
curve was somewhat difficult for 50% of the students.

5) Assess the level of interactivity between the student and
the industrial robot through Hammer, that is, how well the
robot responded to the user requests (1: Low, 5: High).
The answers, shown in Fig. 7a, indicate that more than
94% of the students consider that the interactivity with
the robot is increased using Hammer.

6) Has your interest in programming or robotics increased
after the practical exercises?.
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Fig. 6. Survey results for questions one and four. (a) Did the practical exercises help to understand the different reference systems applicable to a robot and its
usefulness when creating trajectories?. (b) Did the practical exercises help to improve the understanding of the theoretical concepts about the inverse kinematics
of robots?. (c) Did the practical exercises help to understand the different types of orientation applicable to the trajectories of a robot and its usefulness?. (d)
Assess the learning curve of the Hammer tool for the creation and programming of trajectories.

The answers, shown in Fig. 7b, reveal that more than 66%
of the students consider that their interest in robotics
or programming would increase by using a tool like
Hammer.

7) Would you recommend the practical exercises for its
realization in future courses?.
The answers are shown in Fig. 7c. More than 94% would
recommend these exercises to prospective students.

Students also had the chance freely to show their opinions
about their experience using Hammer. Their comments are
summarized in tables II (advantages) and III (disadvantages).

VI. DISCUSSION

As it is shown in the results section, all exercises received
a very positive evaluation, obtaining a grade higher that 50%

in all cases (considering marks of 4 and 5 points a positive
evaluation, 3 points neutral, and 1 and 2 negative). The only
question that did not get such a good result was the one about
the learning curve. This might be due to the short explanation
of the tool (less than half an hour). However, even with such
a short tutorial, more than 32% of the students considered the
learning curve appropriate. So, the 20 min tutorial seems to
be a little short, and we consider too that it would be best to
extend it to at least 30 min.

From the student opinions in each group, it can be inferred
that most of them have enjoyed the practical exercises and
it has helped them to consolidate their knowledge on the
subject. According to some students, they assimilated some
theoretical concepts that were not understood very well
in the theory class. They especially liked the simulation
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Fig. 7. Survey results for questions five to seven. (a) Assess the level of interactivity between the student and the industrial robot through Hammer, that is,
how well the robot responded to the user requests. (b) Has your interest in programming or robotics increased after the practical exercises?. (c) Would you
recommend the practical exercises for its realization in future courses?

environment because it allows visualization of the trajectories
and corrects them if necessary before the robot executes them.
It was also very positive about the translator to native robot
code, which could ease the learning curve of the robot native
programming language.

Most of the drawbacks were due to lack of tablets and
incompatibilities with other operating systems. Hammer is
only developed for Android, so students who did not have an
Android tablet had to meet with students that did have. This
problem could be solved either by increasing the number of
tablets or developing Hammer in the future for other operating
systems, such as Windows or iOS.

Another point that students missed was the dead man device.
Because the control program runs in Hammer over a conventional
tablet, it lacked the necessary hardware for its implementation.
However, it is not a major drawback as motion range of the robot

TABLE II
COMMENTS FROM STUDENTS: ADVANTAGES

Very intuitive: it was possible to use it without following any tutorial about
how it works.

Block interface very useful when the user has no knowledge about robot
programming.

Motivation: Allows to see a real and practical application of theoretical
concepts learned in class.

A better understanding of robotics concepts like singularities, limits,
orientations. . . As it allows to see the real cases.

The app allows simulating trajectories before executing them, reducing
any risk that may be caused in a real environment.

To see the native code of robot programming language within the blocks
is amazing, it is a faster way of learning the robot language.

It helps to understand the differences between direct and inverse kinematics
as well as coordinate systems types.
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TABLE III
COMMENTS FROM STUDENTS: DISADVANTAGES

There were not enough tablets for the practical exercises and we had to
work in groups of three students per tablet.

The practical exercises were a bit long. As a result, there was little time
left to develop our own programs and execute them in the robot.

The application ran slowly in some tablets.

It would be a good approach to develop the application in other languages
such as C++ or support more operating systems such as iOS.

It was difficult to understand the purpose of each exercise because they
were too scripted.

Use another type of robot to provide each student with a robot for each
student to do the practical exercises individually.

is limited by software to prevent the robot from reaching danger-
ous positions (such as the ground). For security reasons, Hammer
implements a watchdog. If the robot does not communicate with
the tablet for the specified time, the robot stops automatically. All
in all, students reported a good responsiveness and interaction of
Hammer, as shown in Fig. 7.

In general, the criticisms are purely technical and with
an easy solution. The general opinion was quite satisfactory
and most of the students understood the theoretical aspects
covered by the practical exercises, making Hammer a very
useful application to teach robotics.

As a summary, we could say that the test was a success.
Many students gave a positive review and consolidated their
theoretical knowledge in an entertaining and innovative way.
We consider that Hammer is a very useful tool to teach robotics
to undergraduate students.

VII. CONCLUSION

This paper describes a new teaching method for robotics
by which students can use an industrial robot through an
Android tablet thanks to the Hammer application developed at
Universidad Politécnica de Madrid.

Three groups of 10 to 15 students tested the usability of the
application. Each group took part in four different exercises
where students could create paths and simulate and execute
them on the robot.

The practical exercises were focused on the practical
application of the knowledge acquired in theory classes, such
as differences between direct and inverse kinematics, types of
orientation, singularities and how all these parameters affect
the trajectory.

The practical exercises provide students with an introduction
to basic concepts of robot programming in an easy and
interactive way, as they could create robot tasks using a
visual interface and see its subsequent execution in the robot.
Furthermore, they could see the equivalent robot code that
would have been necessary without Hammer.
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