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ABSTRACT 

To solve the problem that the moving trajectory and operating trajectory are relatively independent and time-

consuming when robots transfer agricultural products from harvesting fields to warehouses or transport 

vehicles, a type of agricultural materials handling robot was designed, the optimal trajectory planning method 

for the collaborative operating time of agricultural materials handling robots was proposed, and the time optimal 

trajectory under the collaborative operation of robot operating system and traveling system was acquired. 

Specifically, the kinematic model and dynamic model for the collaborative operation of robots were established 

to perform time optimal trajectory planning for materials handling robots, the Beta distribution was then applied 

to the Whale Optimization Algorithm (WOA) for population initialization, and a nonlinear convergence factor 

was introduced to prevent local optimum in the later stage of iterations. Finally, WOA was improved combining 

the variable neighborhood algorithm to enhance the diversity of the neighborhood structure, and this improved 

algorithm was applied to model solving. The results reveal that the proposed trajectory planning method can 

facilitate robots to obtain a smooth and time optical moving trajectory in collaborative operations of materials 

grabbing and discharging and obstacle avoidance. The displacement, speed, acceleration, and force/torque 

curves of each joint of the robots change gently, and the double-crawler traction can meet the requirements of 

the robots and rapidly stabilize and track the time optical trajectory. 

 

摘要 

为了解决机器人将农产品从收获场所转移到仓库或运输车辆存在的移动轨迹和作业轨迹相对独立且耗时长的问

题，本文设计一种农业物料移运机器人，并提出一种农业物料移运机器人协同作业时间最优轨迹规划方法，获

得机器人作业系统和行驶系统协同作业的时间最优轨迹。该方法建立机器人协同作业的运动学模型和动力学模

型，对物料移运机器人开展时间最优轨迹规划，并将 Beta 分布应用于鲸鱼优化算法(Whale Optimization 

Algorithm，WOA)进行种群初始化，再引入非线性收敛因子改善迭代后期陷入局部最优的情况，最后结合变邻

域算法改进了鲸鱼优化算法来增加邻域结构的多样性，并将此算法应用于该模型求解。结果表明，提出的轨迹

规划方法可使机器人在抓放料协同作业和避障协同作业中取得平滑且时间最优的运动轨迹，机器人各关节的位

移、速度、加速度、力/力矩曲线变化平缓，两履带牵引力满足机器人的要求且可快速稳定跟踪时间最优路

径。 

 

INTRODUCTION 

 As an important starting point to promote agricultural modernization, the development of agricultural 

robots is of great significance for improving agricultural production efficiency, popularizing new agricultural 

technologies, protecting farmland environment, and reducing dependence on human resources. Agricultural 

robots will contribute to agricultural automation, informatization and intelligence, thus changing the operation 

mode of traditional agriculture (Wang et al., 2022). Under the increasing pressure of environmental protection, 

agricultural robots, if applied, will also help protect the farmland environment and avoid the pollution of soil and 

groundwater caused by the excessive use of chemical fertilizers and pesticides (Huo et al., 2018). Nowadays 

agricultural robots can complete some heavy and trivial agricultural tasks, such as sowing, spraying, fertilizing, 

harvesting, and weeding so as to reduce the labor intensity of farmers and relieve their dependence on human 

resources. Meanwhile, handling robots, which have been widely used in such fields as industry, storage, 
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manufacturing, and service, are usually divided into fixed and mobile types (Long et al., 2017). Usually installed 

in production lines, machine tools, etc., agricultural handling robots can automatically perform assembly and 

handling tasks through programming, maintaining high working accuracy and efficiency (Yin et al., 2023). 

When facing the unknown environment, agricultural handling robots first collect environmental information 

through Lidar or depth cameras to build a map. Secondly, they can run autonomously in the workspace with 

obstacles through preset commands or real-time control of the upper computer; finally, the user can use the 

mouse, keyboard or program to complete the handling task (Zhang et al., 2020). Therefore, the collaborative 

system of multiple agricultural handling robots is an important development direction of robot application at 

present. Compared with the single agricultural robot system, the collaborative system of multiple agricultural 

robots can not only solve complex tasks and improve the robustness and reliability of the system but also has 

been successfully applied to logistics warehouse handling and agricultural handling. At present, however, most 

of these tasks are realized by manual teaching, lacking the ability of independent motion planning. As the 

requirement for intelligent production is put forward in China, the multi-agricultural-robot collaborative system 

should have the ability to plan the motion independently, making it very necessary to study the motion planning 

of the multi-agricultural-robot collaborative system. 

 

Literature review 

 At present, many algorithms have been used in robot path planning. Wang et al. (2019) proposed a 

wireless positioning system based on ZigBee, which can locate the handling robot in real time and give 

instructions for cargo handling. Chen et al. (2019) came up with a method based on greedy algorithm to meet 

the needs of temporary route adjustment of handling robots. Božek et al. (2016) raised a method to identify 

and judge the medical garbage bin based on machine vision, and the robot Lidar can navigate to the target 

garbage bin when receiving the start signal. Palleschi et al. (2020) implemented a map construction method 

based on laser SLAM, which exhibits higher mapping accuracy and serves as the suitable map construction 

method for handling robot path planning. Abu-Dakka et al. (2017) proposed an improved artificial potential field 

method for path planning of handling robots, which solved the failure of traditional algorithms to reach the 

target point. Daniel et al. (2019) put forward an improved ant colony algorithm to plan the path of handling 

robots, which can elevate the speed of the handling robots and reduce the loss. Among many algorithms, A* 

algorithm is considered a common and appropriate algorithm to solve the path planning problem of handling 

robots by virtue of its rapid response to the environment and direct path search. In some literature, A* algorithm 

has been used to solve the path planning problem of robots. Sathiya et al. (2019) proposed an improved A* 

algorithm, which introduced a "reward and punishment mechanism" on the basis of single handling robot and 

obstacle prediction, thus reducing the number of turns of the handling robot in the moving process. Amruta et 

al. (2020) proposed a robot path planning method combining A* algorithm with dynamic window method, and 

improved the smoothness of the path. Park et al. (2020) proposed an improved A* algorithm, which improved 

the actual operation efficiency of robots, reduced their energy consumption, and shortened the time of path 

search planning. Although A* algorithm has been used to plan the motion path of handling robots so that they 

can avoid all obstacles and safely deliver the goods to the destination, the efficiency of A* algorithm will 

significantly decline if handling robots work under large environments, and the planned path is usually not the 

optimal one. 

 The research on path planning of robots mainly includes path generation and path tracking. First of all, 

path generation refers to the path with the shortest generation time or the least energy consumption, which is 

mainly solved by particle swarm optimization algorithm, ant colony algorithm, firefly algorithm, and genetic 

algorithm. Seyedali et al. (2016) could generate motion paths in complex areas by setting constraints and 

collision models and discretizing variables at equal intervals. Elhosseini et al. (2019) proposed a path 

generation algorithm based on obstacle cost potential field to dynamically adjust the path, contributing to the 

smooth motion path of robots and keeping them at a safe distance from obstacles. Chen et al. (2019) put 

forward a double-optimized ant colony algorithm to adaptively adjust the probability transfer function and re-

optimize the path to solve the low convergence path quality in path planning. Ahmed et al. (2019) proposed 

an improved potential field ant colony algorithm, constructed a negative feedback channel through the 

convergence times of the algorithm, and dynamically adjusted the update speed of parameters to obtain the 

optimal path. Gu et al. (2021) used ant colony algorithm and geometric method to optimize the path, and 

combined pheromone diffusion with geometric local optimization to generate a global optimal path. Path 

tracking refers to controlling the robot to follow a specified path. For instance, Li et al. (2020) established the 

dynamic model of tracked vehicles based on the principle of spherical contact, and designed a tracking 
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controller by using deep reinforcement learning, which can accurately track the path. Tu et al. (2021) came up 

with a path tracking method based on heuristic dynamic programming, which integrated the tracking error and 

tracking stability of the path to design a return function to enhance the environmental adaptability of path 

tracking. Heidari et al. (2019) raised a fuzzy predictive control algorithm combining the dynamics 

characteristics of the robot to track the path, so as to solve the high time delay in high-speed trajectory tracking 

control. Li et al. (2021) could generate a better path in the target space by combining various algorithms, but 

the calculated quantity was large, which degraded the efficiency and real-time performance of path generation 

to some extent; the tracking control law stated by Hu et al. (2021) is complex, and it is difficult to determine the 

optimal control law parameters. In face of the requirements for the efficient operation of agricultural robots, 

studying the coordination between robot operating system and traveling system is an important development 

opportunity and challenge for agricultural robots (Hu et al., 2021). Some problems have been found in the 

existing research. For example, the research on path planning of robots needs to be determined in advance 

and the action completed by the collaborative operation of the traveling system and operating system is 

relatively simple, making it difficult to realize real-time trajectory planning under complex scenarios. 

 To sum up, the research on the handling path of robots mainly focuses on single-robot handling path 

planning, while the trajectory planning through the collaborative operation of multiple agricultural handling 

robots has been less investigated. Based on the abovementioned research results, a trajectory planning model 

for the collaborative operation of multiple agricultural handling robots was constructed in this study. Then, the 

population was initialized using Beta distribution based on the basic Whale Optimization Algorithm (WOA), a 

nonlinear convergence factor was added to prevent the algorithm from local optimum in the later stage of 

iterations, and the diversity of the neighborhood structure was enhanced by introducing the variable 

neighborhood algorithm. As revealed by the comparison results with basic WOA, the improved algorithm can 

effectively improve the model solving efficiency. 

 

MATERIALS AND METHODS 

Collaborative kinematics analysis of agricultural handling robots 

 When a rigid body is collaboratively handled by 2 agricultural handling robots, the base of each robot is 

fixed, and then the homogeneous transformation (BWT) from the base coordinate system {B} of each robot to 

the world coordinate system {W} is fixed. The two handling robots are set to jointly hold the workpiece and do 

linear motion with an unchanged pose, so the coordinate system {U} of the workpiece will change constantly. 

Taking the world coordinate system {W} as a reference, the initial pose and the target pose of the workpiece 

are expressed as Formulas (1) and (2) respectively: 
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 Hence, the straight path is start goal 2( )L P P= −  in length, which is equally divided into N portions, and 

then N+1 path points are generated. Therefore, the N+1 pose sequence of {U} about {W} is displayed in 

Formula (3): 
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 The motion at the ends of the two handling robots about the base coordinate system is respectively 

calculated as per Formulas (4) and (5): 
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 Given the fixed values of WBT and UET, it is only necessary to solve the pose ( ( ))W

UT k of {U} relative to 

{W}, and then the motion at the ends of the two handling robots about their base coordinate system is solved. 

Furthermore, the change 1{ q }(1 6)n n  in each joint of Robot 1 and that ( 2{ q }(1 6)n n  ) of Robot 2 can 

be solved through inverse solutions. 

 In this section, the changes in the joints of the 2 robots can be solved through the collaboration model 

of multiple agricultural handling robots established, thus laying a foundation for establishing the path 

optimization function subsequently. 

 

Modeling 

 The path selection function for agricultural handling robots is established with their operating length fr1, 

operating difficulty index fr2, and operating time fr3 as the objective functions. For the objective function fr1, the 

available motion path of agricultural handling robots is assumed to be R={ r1, r2,  …, rn}  and the number of nodes 

on the available motion path to be n. fr1 is calculated through the following formula: 

1

, 1;

,( )i j

i j i j

fr d r r
= 

= 
                                                                   

 (6)

 
 Where r1, rj represent the i-th and j-th nodes on the available path; d(r1, rj) denotes the distance between 

r1 and rj. 

 The total difficulty index fr2 of each node in the path passed by agricultural handling robots is calculated 

as follows: 

2

1

( )
n

i i

i

fr z g r
=

=
                                                                        

 (7) 

 Where g(ri) is the difficulty index when the handling robot passes ri; zi denotes the number of robots 

passing any node within a designated time window. 

 The objective function fr3 is calculated as below: 
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 Where A is the number of agricultural handling robots; 

ijarx  stands for the number of handling tasks; s

ijt  

is the time needed by the agricultural handling robot to pass the straight road section from node i to j; 
c

ijt  

represents the time needed to pass the turning road segment from node i to j; ijw  is the weight of the road 

segment from node i to j; 
wt  is the time window. 

 s

ijt  is calculated as follows: 

s v
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v v
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 Where 
sv  represents the uniform running speed of agricultural handling robots; ,( )L i j  is the distance 

between i and j; 
vL  is the length of agricultural handling robots. 

c tc
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v
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 Where 
cv  is the running speed of agricultural handling robots at the turning; 

tcR  represents the turning 

radius of robots. 

 In this study, three objective functions, operating length, operating difficulty index, and operating time, 

were designed when constructing the trajectory planning model of multiple agricultural handling robots, aiming 

to achieve the optimal trajectory for the collaborative operation of multiple agricultural handling robots. By 

assigning different weights to different optimization objectives, the objective functions were subjected to 

dimensionless processing uniformly through the following formula. 
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 The three objective functions of the unified dimension were weighted and summed according to the 

specified weights and transformed into a single-objective model for solving. The expression of the single-

objective function is: 
* * * *

1 1 2 2 3 3minfr fr fr fr  = + +

                                                       

(14) 

 Where i is the weight of the objective function and [0,1]i  , 
1 2 3 1  + + =

.
 

Constraints 

 The multiple constraints for the established motion path selection function of handling robots are 

expressed as follows: 
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 Formula (15) is the handling task constraint of handling robots, i.e., any handling robot can only execute 

one task in intelligent storage; Formula (16) is the time window constraint, namely, the time window tw  

constraint of Robot a on path rij. Formula (17) constrains the number of handling robots within the time window, 

namely, it is the constraint for the number of handling robots within a designated time window; Formula (18) 

constrains the number of handling robots on the path within the designated time window, i.e., the constraint 

for the number of handling robots on rij within 
ij

a

rt . 

 

ALGORITHM DESIGN 

 How to solve the path optimization problem accurately and efficiently has always been a major problem. 

In the existing studies, heuristic algorithms have often been used to solve similar problems. As a type of 

heuristic algorithm, WOA has enjoyed extensive development and application because of simple mechanism, 

few parameters, and strong optimization ability. Model solving can be achieved more rapidly and effectively by 

improving the standard WOA. 

 

WOA 

 WOA is a meta-heuristic optimization algorithm proposed in 2016, which is inspired by the hunting 

behavior of humpback whales. By simulating the hunting behavior of random or optimal individuals, 

researchers have found that there are two kinds of bubble net hunting methods for whales, i.e., "upward spiral 

strategy" and "double spiral strategy". In the "upward spiral strategy", the humpback whale will dive by about 

12 m first, then start making bubbles in the spiral, and swim to the surface. The "double spiral strategy" includes 

three different links: coral link, whale tail flapping on the water surface link, and capture link. The above 

predation process can be applied to solving WOA, that is, one solution can be expressed by one whale 

individual, and multiple solutions can be expressed by multiple whale individuals. The idea of solving WOA 

can be equivalent to the fact that many whales are constantly changing their positions until searching a 

satisfactory solution. 

 

(1) Prey encirclement 

 It is assumed that in a d-dimensional space, the position of the optimal whale individual *X  is 

* * *

1 2( , ,..., )dX X X , and the position of the whale individual jX  is j

1 2( , ,..., )j j

dX X X . The next position j+1X
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j+1 1

1

1

2( , ,..., )j j

dX X X+ + of the whale individual 
jX under the influence of the optimal whale individual is calculated 

as follows: 

 
1 *

1

j

k k kX X A D+ = −

                                                                    

(19)
 

*

1| |j

k k kD C X X= −

                                                                

      (20) 

1 22C r=                                                                                         (21) 

1 12A ar a= −                                                                                (22) 

max2 2 /a t t= −                                                                            (23) 

 Where j+1

kX  is the k-th component of the space coordinate j+1X ; the convergence factor a linearly 

declines from 2 to 0 with the increase in the number of iterations; t is the current number of iterations; both r1 

and r2 are random numbers within [0,1]. 

 

(2) Prey capturing 

 When the whale individuals approach the current best whale individual in a spiral way to catch their 

prey, half of them will choose to shrink the ring of encirclement, while the other half will choose to run to the 

prey in a spiral way. 
*| |j

k k kD X X= −

 

                                                                    

    

(24)
 

 When p < 0.5, 
1 *

1

j

k k kX X A D+ = −

  

                                                              

     

(25) 

 When p≥0.5, 
1 * exp( ) (2 )j

k k kX X D bl cos l+ = +

   

                                     

    

(26) 

 

 Where b is the logarithmic spiral shape constant and l   is a random number within [-1, 1]. 

 

(3) Prey search 

 In the mathematical model for prey capturing behavior, the value of 
1A  is restricted within [-1, 1]. If the 

value does not fall into this range, whale individuals will randomly select a whale individual to approach from 

the current whale individuals. It is assumed that the spatial position of a random whale individual sX  in the 

whale population is 
1 2( , ,..., )s s s

dX X X , and then the mathematical model for prey search behavior is displayed 

as below: 
1

1

j s

k k kX X A D+ = −

   

                                                         

      

(27)
 

1| |s j

k k kD C X X= −

   

                                                          

      

(28) 

 
Improved WOA 

 Generally, when the NPL problem is solved using swarm intelligence algorithms, the algorithm 

performance is mainly affected by premature convergence and convergence speed, and it is especially 

important to balance the exploration and development abilities of algorithms in search space (Zhang et al., 

2019). Particle Swarm Optimization (PSO) has fast convergence speed but weak global exploration ability. 

WOA displays good exploration ability, but its development ability is mainly restricted by the distance between 

the current position and the optimal position. In PSO, if the global optimal solution of the population falls into a 

local optimum, other particles will stop searching and follow the global optimal solution into the local optimum. 

To sum up, the PSO algorithm has strong optimization ability but weak space exploration ability, and WOA is 

characterized by strong space exploration ability, but its optimization ability is restricted by the convergence 

speed. Therefore, PSO can be applied to the development stage of WOA to improve the ability of the algorithm 

to get the global optimal solution. 

 Hybrid PSO-AWOA is a combination of PSO algorithm and WOA. By introducing nonlinear weight 

factors into PSO algorithm and WOA, the shortcoming of PSO algorithm, namely, the restriction of a constant 

inertia weight, which results in a small scope of search space, is overcome. Meanwhile, in WOA, a nonlinear 

inertia weight is introduced to shrink the ring of encirclement and update the spiral migration position, which 

accelerates the algorithm convergence and enhances its optimization ability (Li et al., 2020). Hybrid PSO-

AWOA absorbs the respective advantages of the two, thus showing more prominent optimization performance 
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(Ding et al., 2021). The inertia weight factor is the dominant factor balancing the global search ability and local 

development ability of the algorithm. In this study, the adaptive inertia weight strategy was adopted and the 

nonlinear weight w was introduced. As the number of iterations grew, the value of w changed dynamically. In 

the initial stage of iterations, a large weight could improve the global exploration ability of the algorithm. In the 

later stage, however, a small weight could facilitate the refined local optimization of the algorithm. 

 W is updated through the following formula: 

 
= −  
 
1 sin( )

2 Max _ iter

k

π t
w

                                                   

 (29)

 
 Where: k is the adjustment coefficient, and the weight w changes with the k value. In addition, the change 

rate of weight w varies with the k value. PSO-AWOS expects a relatively large weight value in the initial stage 

of iterations so that the algorithm can possess strong global search ability and a high convergence speed. With 

the increase in the number of iterations, the weight declines sharply in the middle stage of iterations and 

approaches 0 slowly in the later stage, which improves the convergence speed and solving accuracy of the 

algorithm. Through repeated experiments, k=1.8 was taken in this study (Huang et al., 2021). 

 After the nonlinear weight is introduced into the hybrid algorithm, the position update formula of WOA 

algorithm is as follows: 

( )*( 1)X t w X t A D+ =  −    

                                                            

 (30)
 

( ) ( )*( 1) e cos 2blX t D l w X t+ =   + 

                                         

(31)
 

rand( 1)= X t w X A D+  − 

                                                               

 (32) 

 
 The particle movement speed and position of the PSO algorithm are updated as per the following 

formula: 

*

1 1( 1) ( ) ( ) ( )[ ]id id idV t w V t c r X t X t+ =  +  −

                                         

(33)
 

( 1) ( ) ( )id idX t X t V t+ = +

                                                     

(34)
 

Steps of improved WOA 

The specific implementation steps of improved WOA are described as below: 
 Step 1: population and algorithm parameter initialization. The position of the whale population and 

particle swarm is randomly initialized as 
1 2( , , , )i i i idX X X X=  and the movement speed as 

1 2( , , , )i i i idV V V V= , where 1,2,3, ,i M= . Meanwhile, the population size M, the maximum number of 

iterations Max_pop, the dimension d of search space, and the initial number t of iterations should be initialized 

to calculate the fitness value of each individual in the population. Next, the position X_best of the optimal 

individual is found through comparisons: 

 Step 2: The values of coefficients A and C are updated as per Formulas (22) and (23), so are the values 

of b, l, 1c , and 1r , generating a random number p within [0,1]; 

 Step 3: Position updating based on the values of p and A . If 0.5p  and 1A  , the whale individual 

randX  is randomly selected from the population, followed by position updating as per Formulas (17) and (30); 

if 0.5p   and 1A  , position updating is then implemented according to Formulas (17) and (30); if 0.5p  , 

position updating is performed through Formula (31); 

 Step 4: The movement speed of individuals in the particle swarm is updated according to Formula (33), 

and the position X of the particle swarm is updated through Formula (34); 

 Step 5: Return to Step 2 for iterative updating and judge whether the maximum number of iterations is 

reached. If iterations of the algorithm are completed, the implementation of the algorithm is terminated; 

 Step 6: The algorithm iteration is completed. Return to the finally calculated optimal position X_best and 

solve the individual position of the population in case of the optimal value. Thereby, solving is completed. 

 

RESULTS 

 To further verify the practicability and feasibility of the hybrid PSO-AWOA proposed in this study, the 

working environment of robots was simulated using the traditional grid map. Obstacles exist in the black region 

and the black region is a feasible region, where the starting point and endpoint of robots are (1,1) and 

(100,100), respectively; the boundary of the map is the outermost area of the whole path planning, which is 

regarded as an obstacle. 
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Hardware environment and parameter settings 

 The hardware platform of the experiment is Windows, the processor is Intel Core i5-14600K, the 

memory is 8 GB, and the software platform is Matlab2014b. The relevant parameter settings of each compared 

algorithm are listed in Table 1. 

Table 1 
Parameter settings of each algorithm 

Algorithm Parameter 

WOA b=1 

PSO-AWOA 
 

= = = −  = 
 

k

π t
b c w k

Max iter
11, 2, 1 sin , 2.2

2 _

 

 
Path planning simulation experiment 

 The experimental environment was a 100 m×100 m grid map, the agricultural handling robot moved 

from the starting point to the target point, and obstacles existed in the black region. In the simulation 

experiment, the same parameters were adopted for the 2 algorithms, for example, the initial population size 

was 50, the maximum number of iterations was 200, and the scope of search space was [-100,100] for both. 

To ensure the optimality of the generated path, the generation direction of the path was further defined in the 

path generation stage, that is, the path would not be "turned back" or "looped back", and the barrier-free region 

of the generated path point was simply optimized by interpolation or direct connection, thus ensuring the 

optimality of the path. Finally, the performance of the algorithm was assessed by statistically analyzing the 

length of the planned path, time consumption, and the number of inflection points generated by the algorithm. 

The planned path obtained through the simulation experiment is exhibited in Fig. 1. The length of the optimal 

path found by the PSO-AWOA algorithm under the 100 m ×100 m complex environment was 140.67 m, the 

algorithm converged at 1.77 s, and the optimal path was achieved after 114 iterations. 

 
Fig. 1 - PSO-AWOA path planning 

 

 To verify the effectiveness of hybrid PSO-AWOA in solving the path planning problem of robots, 

standard WOS and hybrid PSO-AWOA established in this study were subjected to the comparative simulation 

experiment under a complex multi-obstacle simulation experimental environment. The handling path of 

agricultural robots obtained by standard WOA is displayed in Fig. 2. The length of the optimal path found by 

WOA under the 100 m×100 m complex environment was 179.94 m, the algorithm converged at 2.38 s, and 

the optimal path was harvested after 168 iterations. 

 
Fig. 2 - WOA path planning 
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 Finally, the performance of the algorithm was evaluated by statistically analyzing the length of the 

planned path, time consumption, and the number of inflection points generated by the algorithm. The 

comparative data on the time consumption, number of iterations leading to convergence, the path length, and 

the number of inflection points on the path planned by PSO-AWOA and WOA are listed in Table 3. 

Table 3 
Experimental results of complex scene simulation 

Algorithm Time-consuming / s 
Convergence 

algebras (algebras) 
Path length / m 

Number of 
inflection points 

(number) 

PSO-AWOA 1.77s 114 140.67m 27 

WOA 2.38s 168 179.94m 39 

 
 By comparing the time consumption, the number of iterations leading to convergence, the path length, 

and the number of inflection points on the path obtained by the two algorithms, it could be known that PSO-

AWOA averagely spent 1.77 s, which was 0.61 s shorter than that of WOA, and the efficiency was improved 

by 34.46%. In the complex environment with many obstacles, PSO-AWOA algorithm acquired the optimal path 

after 114 iterations, and the length was 140.67 m; WOA achieved the optimal path after 168 iterations, and the 

length was 179.94 m; the number of inflection points on the path obtained by PSO-AWOA was 27 while that 

by WOA was 39, indicating that the robot path solved by PSO-AWOA was smoother. The above data and 

analysis manifest that PSO-AWOA can be successfully applied to the path planning problem of robots, and its 

convergence accuracy and convergence speed are both improved no matter under simple scenarios or 

complex scenarios. 

 

CONCLUSIONS 

 In this study, the time optimal trajectory planning method for the collaborative operation of multiple 

agricultural handling robots was proposed to solve the relatively independent moving trajectory and great time 

consumption in the collaborative operation of multiple agricultural handling robots and the collaborative 

operation of obstacle avoidance. Then, three objective functions, operating length, operating difficulty, and 

operating time, were established and the multi-objective function was transformed into a single-objective 

function through the weighting method, aiming to achieve the optimal trajectory of multiple agricultural handling 

robots in collaborative operation. Moreover, an improved WOA based on PSO and adaptive inertia weight was 

proposed. Next, PSO with relatively strong optimization ability was introduced into the development stage of 

WOA to balance the exploration and development abilities of the algorithm. Meanwhile, adaptive weight factors 

were introduced so that the improved algorithm could possess a relatively large weight in the initial stage of 

iterations and fully explore the unknown space. In the later stage of iterations, the algorithm weight presented 

a nonlinear reduction, and the algorithm could realize refined search within a local scope. Finally, the improved 

algorithm was used to solve the path planning problem of robots in a grid map environment, verifying that the 

algorithm can solve the optimal collision-free motion path of multiple agricultural handling robots faster. In the 

follow-up study, the improvement room for the algorithm performance will be further explored in real 

environments and dynamic obstacle-containing environments. 
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