
Vol. 72, No. 1 / 2024  INMATEH - Agricultural Engineering 

 480  

FIELD TRAVERSAL PATH PLANNING FOR AGRICULTURAL ROBOTS IN HILLY 
AREAS BASED ON DISCRETE ARTIFICIAL BEE COLONY ALGORITHM 

/ 
基于离散人工蜂群算法的农业机器人丘陵地区农田遍历路径规划 

 
Xiaodong LOU 1), Zheng LI *2)    

1) College of Digital Commerce, Zhejiang Business Technology Institute, Ningbo, Zhejiang/ China 
2) School of Teacher Education, Shaoxing University, Shaoxing, Zhejiang/ China 

Tel: +8615968035670; E-mail: lizheng@nbu.edu.cn 

Corresponding author: Zheng Li 

DOI: https://doi.org/10.35633/inmateh-72-42 

 
 

Keywords: Hilly area; agricultural robots; traversal path planning; 2-opt; discrete artificial bee colony algorithm 
 
 
ABSTRACT 

In this study, the discrete artificial bee colony (DABC) algorithm was proposed to plan the path of agricultural 

robots traversing multiple fields in hilly areas. Based on the basic ABC algorithm as the framework, the path 

coding method was adopted, and the discrete crossover operator, reverse operator, immune operator, and 

single/multi-step 2-opt operator were comprehensively used to help hired bees, observing bees, and scout 

bees to generate new food sources. Finally, the optimized field traversal order and the entrance and exit 

distribution of each field were obtained. The simulation results showed that compared with the traditional ABC 

algorithm, the average shortest path of the DABC algorithm proposed in this study was shortened by 1.59%, 

accompanied by the less iterations contributing to algorithm convergence and good ability to jump out of the 

local optimal solution. The simulation experiment was carried out using real field data and field operation 

parameters. The field traversal order and the entrance and exit distribution obtained by the proposed method 

can effectively reduce the length of the transfer path and its repeatability. This study exhibits superiority and 

feasibility in the field traversal path planning of agricultural robots in hilly areas, and the trajectory coordinates 

output by the algorithm can provide a path reference for large-area operations of agricultural machinery drivers 

or unmanned agricultural machineries. 

 

摘要 

本研究针对丘陵地区的农田环境下农业机器人遍历多个田块的遍历路径问题，提出了离散人工蜂群算法对农业

机器人丘陵地区农田遍历路径进行规划。以基本人工蜂群算法为框架，采用路径编码的方式，综合运用离散交

叉算子，逆转算子，免疫算子和单/多步 2-opt 算子以帮助雇佣蜂，观察蜂和侦察蜂产生新食物源，最终得到优

化后的田块遍历顺序以及每个田块的进出口分布。仿真结果表明，与传统人工蜂群算法相比，本研究提出的离

散人工蜂群算法平均最短路径缩短 1.59%，算法收敛迭代次数更少，并表现出较好的跳出局部最优解的能力。

利用真实的农田数据和田间作业参数进行仿真试验，通过本研究方法得到的田块遍历顺序和进出口的排布能够

有效地减少转移路径的长度和路径的重复率。本研究在农业机器人丘陵地区农田遍历路径规划上的优越性和可

行性，算法输出的轨迹坐标能为农机驾驶员或无人农机在大面积作业时提供路径参考。 

 

INTRODUCTION 

 Intelligent agricultural robots are an emerging technology in the field of agriculture, which is gradually 

being promoted and applied globally. The development of this technology began with the high automation and 

intelligence requirements of agricultural production. Agricultural technology enterprises from various countries 

have invested in research and development, and have achieved a series of research results. Intelligent 

agricultural robots have been widely used in fields such as traversing farmland, monitoring pests and diseases, 

and fertilizing herbs. It is based on high-precision sensors and advanced image recognition technology, which 

can autonomously inspect, identify pests and diseases, monitor meteorological data, and achieve big data 

analysis and decision support through cloud computing. In the field of farmland traversal, intelligent agricultural 

robots adopt advanced autonomous navigation and path planning algorithms, which can independently 

complete farmland traversal tasks and accurately cover the entire farmland. Compared to traditional manual 

traversal methods, robots have a faster traversal speed and can greatly improve the efficiency of agricultural 

production. 
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In China, the cultivated area in hilly and mountainous counties accounts for about 34.62% of national 

cultivated area, and the sown area accounts for 34.20% of the total sown area across China. The agricultural 

development in such areas is of crucial importance to the supply of agricultural products and facilitating farmers 

to get rid of poverty and become better off (Xu et al., 2021). However, the field structure in hilly areas is 

obviously different from that in flat areas. Hilly areas are characterized by small irregularly and densely 

distributed fields with obstruction by ridges, which brings about a series of challenges to the operation of 

agricultural machineries and seriously impedes the mechanized and intelligent agricultural development (Lan 

et al., 2021). Therefore, the development of intelligent agricultural machinery and equipment suitable for hilly 

areas is an important way to improve working capacity and quality, reduce costs, ensure national food security, 

and alleviate the shortage of rural labor (Liu et al., 2020). In recent years, with the rapid development of mobile 

robot technology, intelligent equipment has been widely used in various fields of society, bringing great 

convenience to people's production and life. As a kind of agricultural robot, mowing robots are not only used 

for lawn mowing in municipal green spaces, airports, and golf courses but also for weeding in cultivated land 

and woodland, so they have drawn extensive concerns, and traversal path planning plays a vital role in the 

application of mowing robots (Chen et al., 2022). Full-coverage traversal path planning is a special type of 

path planning in two-dimensional environment, which refers to finding a continuous path from the starting point 

to the end point and passing through all reachable points in a set area on the premise of satisfying some 

optimal performance indicators (Zhang et al., 2017). Up to now, a lot of research results have emerged 

regarding this technology. Intelligent agricultural robots have enormous development potential and broad 

application prospects in field traversal. Through efficient traversal ability, precise recognition function, 

diversified data collection, and intelligent operation interface, intelligent agricultural robots provide 

comprehensive technical support for agricultural production. With the continuous progress and promotion of 

technology, it is believed that intelligent agricultural robots will play an increasingly important role in the field 

of agricultural traversal, further promoting the modernization and intelligence of agricultural production 

(Jeddisaravi et al., 2016). In this study, therefore, a discrete artificial bee colony (DABC) traversal algorithm 

was proposed, which determined the traversal order of sub-areas after the target area was divided, and carried 

out cross-area transfer path planning to realize the field traversal path planning of agricultural robots in hilly 

areas. 

Literature review 

 After the 1970s, industrial robots flourished and began to back-feed agriculture, and the most 

advanced technology in industrial robots was applied to the agricultural field, which resulted in a variety of 

agricultural robots with varied functions. Advanced technology was put into agricultural production, which 

significantly improved the efficiency of agricultural production (Guruji et al., 2016). 

 Rokbani et al., (2018), designed a double-heuristic ant colony optimization algorithm to solve the 

traveling salesman problem, which provided a theoretical basis for robot field traversal path optimization. To 

finish pesticide spraying and insect repellent tasks more accurately and efficiently, Sun et al. (2017), proposed 

an improved algorithm to solve the path optimization problem of mobile robots. Zhao et al. (2018), put forward 

the application of smooth AR (Augmented Reality) algorithm in intelligent vehicle path planning. Zhao et al. 

(2018) developed an autonomous robot that combined a novel obstacle separation algorithm and could 

continuously pick strawberries in multiple tunnels, making it possible for robots to pick strawberries located in 

the cluster. The obstacle separation algorithm pushes off the surrounding leaves, strawberries, and other 

obstacles through the gripper (Zhao et al., 2018). Zeng et al. (2016) developed a green agricultural robot based 

on machine vision technology. When conducting experiments on a field farm planed with pineapples, bananas, 

and apples, the robot collects the surrounding environmental information through cameras, sensors, and other 

equipment, feeds back the information to the monitoring personnel in real time, and walks freely among crops 

by using machine vision navigation technology. Ding et al. (2021) put forward an algorithm combining fuzzy 

logic with artificial potential field. When the robot falls into the local minimum, the fuzzy controller will generate 

an angle to change the current driving direction so that the robot can escape from local minimum and avoid 

obstacles safely (Ding et al., 2021). Gu et al. (2021) developed a new hybrid algorithm, that is, combining PSO 

with artificial potential field, which is applicable to complex scenarios with multiple obstacles. This algorithm 

can find the drivable path quickly, with short calculation time and high planning efficiency (Gu et al., 2021).  

Wang et al. (2019) proposed an improved APF (Artificial Potential Field Method Path Planning Algorithm) 

method based on the dynamic window method to solve the tendency of robots to fall into the local minimum 

before reaching the destination. The points around the robot were evaluated in the local minimum through an 

evaluation function, and the best point was selected as the next path point (Wang et al., 2019). 
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 Path planning, a key component of intelligent agricultural systems, can optimize the driving route of 

agricultural machinery and minimize repetitive work and time waste (Li et al., 2020). Through reasonable path 

planning, agricultural machineries can cover fields efficiently, ensure that crops are fully cultivated and 

managed, and improve the crop yield and quality (Wang et al., 2018). In agricultural production, the path 

covering field and generated by coverage path planning is used for agricultural machinery to perform specific 

operations, including harvesting, sowing, and fertilizing. The coverage path planning for a single field is mainly 

divided into two parts. First, a set of parallel straight-line trajectories are generated according to field data and 

agricultural machinery parameters. Secondly, parallel trajectories are connected to form an optimal trajectory 

sequence connected by arcs (Tu et al., 2018). Heidari et al. (2019) expressed the field coverage trajectory as 

the main operation area trajectory, the edge passage and the turning trajectory to construct a virtual road 

network map, and finally planned the coverage path based on the map. It is experimentally proved that this 

method is universal for all types of fields (Heidari et al., 2019). Li et al. (2021) adopted the simulated annealing 

algorithm to obtain the optimal path set, and solved the full-coverage traversal order through unit disassembly 

and synthesis. Compared with the traditional rule traversal method, Li et al. (2021), effectively dealt with 

different boundary constraints and greatly reduced the consumption of operations. Considering many 

warehouses for agricultural machinery replenishment around the field, Song et al. (2019) designed the 

connection paths for connecting warehouses, edge passages, and coverage paths, and used the simulated 

annealing algorithm to solve the traversal order between coverage paths. The existing research on multiple 

fields focuses on decomposing large-scale fields with complex shapes into several sub-fields with simple 

shapes according to certain laws, and then using intelligent algorithms to realize the optimal traversal sorting 

of sub-fields based on related traversal indexes. Hu et al. (2021) proposed a traversal algorithm combining 

memory simulated annealing with A* algorithm, which is a heuristic search algorithm widely used for path 

finding and graph traversal. First, the walking order of the optimal target point of the task was searched by 

memory simulated annealing algorithm, and then the cross-area connection path planning was carried out by 

A* algorithm. Considering the slope of fields in hilly areas, Zhang et al. (2019). obtained the optimal driving 

angle based on the energy consumption model of agricultural machinery, and then used genetic algorithm to 

obtain the optimal traversal order of multiple fields. The results show that this method can minimize the energy 

consumption of agricultural machinery to the greatest extent. To sum up, most of the existing studies are aimed 

at the coverage path planning of a single large field, while in a few studies on the traversal path planning of 

multiple fields, the linear distance is generally taken as the distance cost. Since the fields in hilly areas are 

small and densely distributed with obstruction by ridges, there lacks definite connected relations between 

fields, leading to the failure to form a continuous driving route between them and making it necessary to 

repeatedly seek for the appropriate position for transfer, which increases the operating time and costs. Given 

the aforesaid problems, this study aims to discuss the traversal route planning method of agricultural robots 

applicable to hilly areas. Through field investigation and data collection, the fields in hilly areas were surveyed 

in detail, and a method establishing the connecting related relations between fields was designed. Meanwhile, 

the DABC (Improved artificial bee colony algorithm based on differential mutation operator) traversal algorithm 

was put forward. Based on the road network diagram between fields, this distance was regarded as the 

distance cost required for inter-field transfer, and the optimal traversal order of multiple fields was obtained by 

DABC algorithm, thus realizing the multi-field traversal path planning of agricultural robots. This study aims to 

provide theoretical guidance and technical support for agricultural robots to realize continuous large-scale 

operations in hilly areas, so as to improve operation efficiency and agricultural production level. 

 

MATERIAL AND METHODS 

Search node positioning of intelligent agricultural network equipment 

 In this study, environment modeling of fields in hilly areas was performed using structural space 

method. The principle of structural space method is to express the working environment of robot through space 

modeling. At the same time, the structure space is integrated with the obstacle information and the pose information 

of the robot during operation. Then, the path search algorithm is used to solve a better safe path.  

Voronoi diagram is a typical representative of structural space method. When constructing the model, 

Voronoi diagram regards the obstacle vertices in the environment as a set composed of multiple points. The 

trajectory formed by the points with close distance in the set is the edge of the map, and the vertex of the map 

is formed by the intersection of these trajectories. At the same time, these points are not allowed to penetrate 

the obstacle directly. This modeling method maximizes the distance between the obstacle and the robot. 

Therefore, it is difficult to find a better safe path when using this method to build an environment model. 
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The geometric characteristics of the agricultural robot traversing the environment were mapped into the 

geometric space for description through points, lines, and planes. In the actual traversal, it is necessary to 

reserve turning space and edge area according to the parameters of agricultural robots and traversal 

parameters. Hence, the field was divided into two functional areas: edge area and main traversal area. The 

edge area was used to meet the needs of agricultural robots to turn around and change lines. The main 

traversal area consisted of a series of parallel straight-line trajectories, in which agricultural robots carried out 

farming, sowing and other operations.  

The calculation method of the edge area width Wh is shown in Formula (1). 


= + +  | |

2
hW r r cos

                                               
(1) 

where r represents the minimum turning radius of the agricultural robot; ω represents the traversal width; φ 

indicates the included angle between the traversal direction and the field boundary. According to this 

calculation method, the edge area and main traversal area of fields were constructed. The edge of the field, 

which is close to the field boundary, is specially used for agricultural robots to turn. When turning in the field, 

the agricultural robot will not make a specific traversal. This means that the agricultural robot can move in the 

edge area after completing the coverage traversal of the field in the main traversal area so that it can smoothly 

transfer to the next field. Such an arrangement can ensure that the agricultural robot can move between fields 

more efficiently and smoothly. 

Fitness function 

The following constraints need to be met in the process of agricultural robot’s traversal path planning: the 

traversal path of the agricultural robot must be limited in the map space and cannot exceed the map boundary; 

the traversal path length of the robot is the shortest to ensure that the acquired path is the optimal one; the 

traversal path of the agricultural robot cannot cross the obstacle area of fields to avoid collision; because 

agricultural robots traverse terraces in hilly areas with a height difference in the traversal path, it is necessary 

to consider the influence of height change on the fitness function; according to the above constraints, the 

traversal path planning problem of agricultural robots can be abstracted as a single-objective optimization 

problem with the minimum fitness, and the fitness function of the problem can be derived as follows: 

path obstacle

1

min ( ) ( )
n

i

i

f L i G p
=

= +                                                   (2) 

 Among them: i is the number of algorithm iterations; 
path( )L i  represents the length of the path planned 

for the robot upon the i-th iteration, which is specifically defined as below: 

 Where ( ), ,i i ix y z  stands for the position coordinates of the robot upon the i-th iteration; 
1 1 1( ), ,i i ix y z
− − −

 

denotes the position coordinates of the robot upon the i-1-th iteration; the solved path( )L i  is the Euclidean 

distance between two points. 

( ) ( ) ( )
2 2 2
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− − −

= − + −+−
                               

(3) 

 
obstacle( )iG p  is used to judge whether the path point pi transcends the boundary or its ligature with the 

previous path point crosses the obstacle upon the i-th iteration. When the path point is feasible, the return 

value is 0, or otherwise, a relatively large constant N N  will be returned, which is specifically defined as 

follows: 
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
= 
                                            

(4) 

Algorithm design 

 The DABC algorithm proposed in this study to solve the field traversal problem of agricultural robots 

in hilly areas included 5 main components, namely, control parameter initialization, bee colony (food source) 

initialization, hired bee stage, observing bee stage, and scout bee stage. 

Control parameter initialization 

The DABC algorithm has 3 control parameters, namely colony_Size, abandonment condition limit  and 

termination condition max_Evaluations. In the DABC algorithm, the whole bee colony contains an equal 

number of hired bees and observing bees, and each hired bee corresponds to a food source (that is, a solution 

in the solution space). Therefore, the number of food sources food_Number is half the size of the bee colony, 
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that is, food_Number=colony_Size/2. For each food source 
iS , the variable 

itrial records the number of times 

for which the food source has continuously not been improved during the search. If the corresponding trial

value of a food source exceeds the predetermined limit , the food source will be abandoned by the 

corresponding hired bees and replaced by a new food source randomly searched by the scout bees. The 

algorithm continuously repeats the hired bee stage, observing bee stage, and scout bee stage until the number 

of evaluations of the objective function (1) exceeds the allowed maximum value max_Evaluations, and then 

the algorithm terminates. Before the start of the DABC algorithm, the values of the above three control 

parameters need to be determined manually, and the algorithm performance is affected by different values of 

the control parameters (Li et al., 2020). 
 

Bee colony initialization 

 As for bee colony initialization, the DABC algorithm encodes the food source in the order of field 

traversal. For n fields, each food source is encoded as a complete array from 0 to n-1. This encoding method 

has the following advantages: The legal constraints for field traversal of agricultural robots in hilly areas are 

hidden in bee colony initialization, crossover operation, and other operations, i.e., field number will not appear 

repeatedly. In the initialization stage, the algorithm, randomly generates food_Number food sources (solutions) 

according to the search space of the problem. Next, the objective function of random solutions is calculated 

so as to find the optimal (minimum objective function) food source gbest_Solution in the current bee colony is 

found. In this case, the number of evaluations is food_Number, and the trial of each food source is initialized as 0. 
 

Hired bee stage 

 In the hired bee stage, for food source Si, its neighbor is determined first. Here, "Neighbor" is defined 

as another food source randomly selected by the bee colony (Han et al., 2019). Then, one offspring individual 

of Si and neighbor is generated using a crossover operator and evaluated after being applied with a reverse 

operator, an immune operator, and a single-step 2-opt operator. If Off_spring is better than Si, Si  is replaced 

by Off_spring and 
itrial is set to 0, or otherwise, the value of 

itrial will increase by 1. If Off_spring is also better 

than gbest, gbest will then be updated. 

 Crossover operator: In this study, a partial matching crossover operator (PMX) was adopted. 

Specifically, one segment is randomly chosen from the two parent strings. A series of exchanges are defined 

using the elements of the two parent strings in the selected segment, which can execute respectively in each 

parent string to generate offspring chromosomes. For parent strings p1=［6 5 1 ,7 4 0 2,3 8 9］and p2=［5 0 

6, 3 8 1 7,2 9 4］, the sub-strings generated by the exchanges, which are defined by the elements in the 

selected segment, are q1=［5 2 6,7 4 0 1,3 8 9］and q2=［5 0 6,3 8 4 7,2 9 1］, respectively. 

 Reverse operator: the traversal points between two different random positions in the path string are 

numbered in reverse order. This operator is beneficial to the small-scale migration of the algorithm. 

 Immune operator: Immune operator is a common technical means of solving the field traversal problem 

of agricultural robots in hilly areas. Specifically, a position pos is randomly chosen from the path string, and 

the nearest field is found around the traversal points corresponding to this position and inserted after pos. For 

example, p=［6 5 1 ,7 4 0 2,3 8 9］, if the field number corresponding to the randomly selected position is 6 

and the field number closest to field 6 is 2, then the new individual p'=［6 5 2 ,7 4 0 1,3 8 9］ is obtained after 

the immune operator is executed. 

 Single-step 2-opt operator: Similar to the reverse operator, this operator numbers the traversal points 

between two different random positions in the path string in reverse order. Differently, before reverse ordering, 

it is necessary to judge whether the objective function is improved after reverse ordering. If yes, the reverse 

ordering will be implemented; if not, the original path string will keep unchanged (Ding et al., 2021). The 2-opt 

operator is a very effective local search technology for solving the TSP problem, which has been widely used 

in all kinds of evolutionary algorithms. The pseudo-code for the hiring phase looks like this: 

 For i=1 to foodNumber 

 1. For each solution Si, determine its "neighbor"; // Use the crossover operator to generate offspring 

of  Si and its neighbors 

 2.Offspring =crossoverOperator(S,neighbor)// Perform the reversal operator on the Offspring 

 3.Offspring =inverseOperator(Offspring)// Immunizes the Offspring 

 4.Offspring =immuneOperator(Offspring)// Run the one-step 2-opt operator on the Offspring 
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 5.Offspring =2-opt(Offspring) 

 6. Assess the Offspring 

 7.evaluations =evaluations +1 

 8. If (Offspring is better than Si) Replace Si with Offspring 

 trial[i]=0 

 else 

 trial[i]=trial[i]+1 

 9. Replace lf(Offspring is better than gbestSolution) with Offspring 

 gbestSolution 
 

Observing bee stage 

 In this stage, the observing bees will select individuals by means of roulette for improvement according 

to the food source information provided by the hired bees. The probability for the i-th food source to be chosen 

is denoted as 
iprob , which is calculated as follows: 

 1) Calculate the objective function Ti of the i-th food source; 

 2) Find the minimum value min  in all Ti; 

  3) Calculate Di= Ti -min, i = 1, 2, …, FN, in which FN denotes food_Number, i.e., the number of food 

sources; 

 4) Calculate 

=

=
1

FN

i

i

sum D ; 

 5) If 0sum  , 1 0 9 0( )1i
i

D
prob

sum
=  +－ . . ; if =0sum , 1/iprob FN= . 

 In a specific bee colony, the minimum value min  of the objective function for all food sources is fixed. 

If 0sum   (namely, the objective functions of different food sources are not completely equal), 
iprob  is 

calculated. In this case, the smaller the objective functions of food sources (the better), the smaller the Di 

value, the greater the 
iprob value, i.e., outstanding food sources will be chosen at a relatively large probability. 

If =0sum  (namely, the objective functions of all food sources are equal), the probability for each food source 

to be chosen is 1/iprob FN= . 

 After one food source is successfully selected, the observing bees will perform reverse and immune 

operations for this food source, followed by the execution of the multi-step 2-opt operator. For n traversal 

points, the 2-opt operation is implemented totally － /( 1 2)n n times (Huang et al., 2021), specifically as follows. 

The pseudo-code for the watch-bee phase looks like this: 

 Calculate the selection probability prob 

 i=0; t=0; 

 While t < foodNumber 

 If rand < prob[i] 

 1.t++;  Offspring =S// Perform the reversal operator on Offspring 

 2.Offspring =nverseOperator(Offspring)// Immunize the Offspring 

 3. Offspring =immuneOperator(Offspring)// Perform the multi-step 2-opt operator on the Offspring 

 4.Offspring =exhausted2-opt(Offspring ) 

 5. Assess the Offspring 

 6.evaluations = evaluations +1 

 7.I(Offspring is better than Si. Replace Si with Offspring 

 trial[i] = 0 

 else 

 trial[i] = trial[i] + 1 

 8.If(Offspring is better than gbestSolution) 

 Replace gbestSolution with Offspring 

 End If 

 i=i+1 

 If(i== foodNumber) i= 0 

 End While 
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Scout bee stage 

 The process of the scout bee stage is as aforesaid. When the trial value of one food sources exceeds 

the limit, the food source will be abandoned, and the corresponding hired bees will be converted into scout 

bees. First, the food source with the maximum trial value in the bee colony is found, and whether its trial value 

is greater than the limit is judged. If yes, a new food source (solution) is randomly generated and improved 

using the greedy strategy, followed by the implementation of the reverse, immune, and multi-step 2-opt 

operators. Finally, the new solution is evaluated and used to replace the original food source. In this stage, the 

greedy strategy is defined as follows: the first traversal point of the old solution is kept unchanged, and the 

traversal point nearest to the first one is found from the rest ones as the second traversal point, i.e., the 

traversal point nearest to the previous one is found each time as the next traversal point until all traversal 

points are traversed. The operation of the other operators resembles that in the hired bee and observing bee 

stages, which, therefore, will not be repeated hereby. The pseudo-code for the scout bee phase looks like this: 

 // Determine the food source with the maximum trial value 

 maxTrialIndex = 0 

 For(j=l; j<foodNumber; j++) 

 If (trial[j] > trial[maxTrialIndex]) 

 maxTrialIndex =j; 

 End For 

 If trialmaxTriallndex] > limit 

 1. Randomly generate a new food source solution 

 2. Adopt greedy strategy to improve solution// Implement reversal operator on solution 

 3.solution= inverseOperator(solution)// Applies the immune operator to the solution 

 4. solution= immuneOperator(solution)// Perform the multi-step 2-opt operator on the solution 

 5.solution= exhausted2-opt(solution) 

 6. Evaluate the solution 

 7.evaluations =evaluations +1 

 8. Replace the maxTrialIndex food source with solution 

 9.trial[maxTriallndex] =0 

 End If 

Example analysis 

Simulation experiment  

 To verify the effect of the multi-field traversal path planning method proposed in this study, the 

simulation experiment was carried out using real field data and field operation parameters in MATLAB2014a 

programming environment. The actual operation area was chosen as the simulation object, with its satellite 

images displayed in Fig.1 

 
Fig. 1 - Field satellite image of traversal path planning simulation test 

 

 The working area consisted of 22 groups of fields, the boundary contour of which was irregular. The 

data parameters of each field are shown in Table 1. The working parameters of the agricultural robots were as 

follows: the minimum turning radius was 1.5 m, and the working width was 2 m.  
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In Fig.1, it is assumed that a vertical line at the leftmost endpoint is the Y axis of the coordinate system, 

and a horizontal line at the bottom endpoint is the x axis of the coordinate system, and the intersection of the 

x and Y axes is the origin of the coordinates. 

 

Table 1 
Traversal path planning simulation test field data parameters 

Farmland serial number 
Area  
( m2) 

Circumference  
( m ) 

coordinates  
( X ) m 

coordinates  
( Y ) m 

1 105 48 10.61 43.7 

2 99 45 22.8 44.12 

3 52 30 29.76 43.78 

4 237 71 23.29 38.38 

5 110 56 24.63 40.31 

6 313 105 34.29 39.08 

7 232 169 55.07 33.67 

8 241 190 73.94 32.43 

9 243 209 76.39 30.01 

10 98 52 86.35 32.43 

11 89 50 11.4 25.5 

12 225 83 35.45 20.57 

13 97 32 47.78 27.26 

14 93 106 44.7 22.75 

15 201 142 79.31 26.76 

16 237 162 79.08 27.29 

17 87 56 32.11 18.44 

18 49 30 40.37 19.26 

19 94 54 45.00 24.63 

20 102 45 51.11 26.19 

21 320 121 80.14 20.07 

22 90 48 88.78 18.98 

 

 

 In this section, the DABC algorithm was mainly used to solve some test problems in the field traversal 

of agricultural robots in hilly areas, and the simulation results were recorded and analyzed. According to the 

parameter selection experiment in the previous section, the control parameters of the DABC algorithm were 

set as colony_Size=100, limit=500, and max_Evaluations=1,000,000. The number of independent operations 

was set toNt and the number of times to successfully find the theoretical optimal value to Ns, and then the 

success rate was Ns/Nt×100%. Agricultural robots must stop at all monitoring points in the process of 

traversing fields in hilly areas. The DABC algorithm and traditional ABC algorithm were respectively subjected 

to simulation tests, and the corresponding calculation results were compared. 

 

 

RESULTS 

 To eliminate the influence of various random factors and verify the advantages and disadvantages of 

the DABC algorithm designed in this study, the DABC algorithm was used to optimize the traversal detection 

path of agricultural robots for 200 times. The convergence curve of the DABC algorithm is shown in Fig. 2. The 

optimal path of agricultural robot inspection is shown in Fig. 3 
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Fig. 2 - Convergence curve of discrete artificial bee colony algorithm 

 

 
Fig. 3 - Agricultural robot traverses the optimal path(m) 

 

 To verify the effectiveness of the model and algorithm, the traditional ABC algorithm was used on the 

same platform, and the optimization model proposed in this study was solved with the same parameters. For 

the sake of more scientific and effective experimental results, the maximum number of iterations of the 

traditional ABC algorithm was also set to 200, and its convergence curve is exhibited in Fig. 4 and the optimal 

path traversed by agricultural robots is displayed in Fig. 5. 

 
Fig. 4- Convergence curve of traditional artificial bee colony algorithm 
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Fig. 5 - Agricultural robot traverses the optimal path 

 

 The DABC algorithm was compared with the traditional ABC algorithm in the inspection path, the total 

traversal travel distance of agricultural robots, and convergence time, as seen in Table 2. 

 

Table 2 
Comparison of discrete artificial bee colony algorithm and traditional artificial bee colony algorithm 

Algorithm Inspection path Distance  
( m ) 

Algorithm convergence time  
( s ) 

Discrete artificial 
bee colony algorithm 

20→13→19→14→18→12→17→11
→1→4→5→2→3→6→7→8→9→16→15

→10→22→21→20 

207.08 56.17 

Traditional 
artificial bee colony 

algorithm 

20→13→19→14→18→12→17→11
→1→2→5→4→3→ 

6→7→9→16→15→21→22→10→8→20 

210.37 68.11 

 
 

 As seen in Table 2, the optimization ability and convergence of the DABC algorithm were stronger 

than those of the traditional ABC algorithm. It could be intuitively seen from the convergence curves of 

algorithms that in terms of the total traversal distance of agricultural robots, the optimal path length acquired 

by the DABC algorithm was better than that obtained through the traditional ABC algorithm. The total traversal 

distance of the DABC algorithm was 3.29 m shorter than that of the traditional ABC algorithm with a reduction 

of 1.59%; in the aspect of convergence time, the convergence time of the traditional ABC algorithm was longer 

than that of the DABC algorithm. In addition, the convergence time of the DABC algorithm was 11.94 s shorter 

than that of the traditional genetic algorithm by 21.26%. The experimental results show that this method has 

better performance in terms of path length and path repetition rate, and the arrangement of field traversal 

sequence and import and export can effectively reduce the path length and path repetition rate. 

By using discrete artificial bee colony algorithm to search for the optimal traversal order of task target 

points, the agricultural robot can traverse all target points with minimum moving cost. At the same time, the 

discrete artificial bee colony algorithm is used to plan the cross-region connection path, and the shortest and 

collision-free walking path between the target points is found. In the traversal process of agricultural robot, the 

vertex of the zone closest to the end point of the previous farmland is selected as the starting point of this 

farmland, and then "round-trip" traversal planning is carried out along the long side, and finally the traversal 

path planning of the entire farmland map is realized. 

 

CONCLUSIONS 

In this study, a new DABC algorithm was proposed to effectively solve the field traversal problem of 

agricultural robots in hilly areas. Then, the effectiveness of the proposed algorithm was verified through 

simulation experiments. Finally, the main conclusions were drawn as follows: 
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 (1) Given the small and densely distributed fields in hilly areas with obstruction by ridges between 

fields and no connected relations between fields, a method of establishing the connected relations between 

fields was proposed in this study, aiming to predict how agricultural robots will transfer to the next field after 

completing the coverage path of one field. 

 (2) A DABC algorithm was raised to solve the field traversal order planning problem. Following the 

idea of the adaptive strategy, the new algorithm transformed feasible solutions into food sources by means of 

path encoding. In the hired bee, observing bee, and scout bee stages, new food sources were generated by 

the algorithm based on the discrete crossover operator, reverse operator, and immune operator, and the 

algorithm performance was improved using the famous single/multi-step 2-opt local search algorithm. The 

MATLAB simulation experimental results showed that the average traversal path distance obtained by the 

improved genetic algorithm was reduced by 1.59% than that acquired through the traditional genetic algorithm. 

 (3) Through the comparative analysis of experiments, the field traversal order and the entrance and 

exit arrangement obtained by the proposed method can effectively reduce the path length and its repeatability, 

providing the superiority and feasibility of the proposed method. Meanwhile, the trajectory coordinates output 

by the algorithm can provide a reference for the large-area operations of agricultural machinery drivers or 

unmanned agricultural machineries. The follow-up study will focus on solving the challenges faced by 

intelligent algorithms in practical applications, especially online real-timeliness of navigation systems, Kalman 

linear filtering, etc. 
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