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ABSTRACT 

In order to rationally plan the amount of tasks and task areas for each agricultural robot in the farm, a cloud-

side collaborative task allocation scheme is proposed. The cloud platform divides farm tasks based on field 

obstacles and extracts the center of gravity prime points for each farm task; plasmas as regional task target 

points through dynamic genetic algorithms for near-field aggregation, after accelerating the solution process 

by dynamic crossover and variational operators, the Metropolis criterion is introduced to eliminate the local 

optimal solution of the algorithm and obtain the globally optimal allocation solution. The simulation experiments 

demonstrate that the total cost of task execution is reduced by 9.21%, 5.66%, and 7.21% when using four 

agricultural machines compared to three, five, and six agricultural machines, respectively, and the feasibility of 

the algorithm is proved experimentally. Reasonable task allocation can improve the overall production 

efficiency of agriculture, which is informative for unmanned farms operating in large areas. 

 

摘要 

为合理规划农场中各个农业机器人任务量与任务区域，提出一种云边协同的任务分配方案。云平台依据田间障

碍物划分农田任务，提取各个农田任务重心质点；质点作为区域任务目标点通过动态遗传算法进行近场聚合，

经动态交叉、变异算子加速求解过程，引入 Metropolis 准则，剔除算法局部最优解，得到全局最优分配解。仿

真实验表明，四台农机执行任务较三台农机、五台农机、六台农机执行任务总代价分别降低了 9.21%、5.66%、

7.21%，并通过实验证明了算法的可行性。合理的任务分配，可提高农业整体生产效率，对无人农场大区域作业

具有参考价值。 

 

INTRODUCTION 

Smart agriculture is the result of fully utilizing modern information technologies, leveraging agricultural 

data as a production factor, and integrating modern information technologies such as the Internet of Things, 

big data, and intelligent equipment across agriculture. With the large-scale popularization and application of 

cloud platform and driverless, the autonomous operation of intelligent farm machinery in unmanned farms has 

gradually become a mainstream development way (Huang et al., 2022; Tanzilya. et al., 2021; Jeff, 2020). 

Based on Cloud Edge Collaboration technology, according to the difference between the operation site and 

robot performance, the robots are divided into tasks within the farm, and the operation area is reasonably 

planned, which helps to utilize the advantages of group operation and improve the operation efficiency 

(Nikitenko et al., 2018; Teslya et al 2020; Zhu et al, 2018). 

Cloud-side collaborative work is the process by which the cloud platform divides the area to be worked 

on and assigns it to a specific robot based on the performance of the swarm of robots within a known 

environment (Ferrer et al., 2021). Task assignment simplifies robotic swarm operations through discrete job 

scenarios, and is an important research direction for achieving collaborative group operations. At present, the 

research of cloud-side multi-machine collaboration is mainly in the field of aerospace drones (Hu et al., 2020), 

underwater exploration robots (Jensen-Nau et al., 2021), disaster search robots (Haris et al., 2017), etc. 
However, due to the complexity of the agricultural environment and the pressing need to address the issue of 

full coverage in agricultural machinery operations, there is a lack of research on cloud robot collaboration in 
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the field of agriculture. Xiangyin Zhang et al. (2023) proposed a two-layer learning search with elite particles 

to improve the genetic algorithm and reduce the robot search and rescue time. Fu-Zhen Zhang and others 

(2022) obtained smoother multi-UAV trajectories on the basis of global cost minimization by establishing 

heterogeneous target cost matrices to solve the UAV trajectory model separately. Wang et al., (2023), 

proposed a multi-objective optimization algorithm under multiple constraints with one-inflection point 

collaboration and introduced the binary crossover method to perturb the local search and verified the 

effectiveness of the algorithm. Viraj et al., (2022), illustrate the key components of a cloud robotics system 

through an architectural formulation that inspires how cloud robotics systems can be utilized to solve real-world 

problems. Rahman et al., (2019) offloaded multiple tasks to robots individually through a multilevel decision 

scheme with multilayer genetic algorithms for parcel picking and distribution applications in a 36-cell workspace 

warehouse scenario with a master robot completing the task flow of assigning 40 nodes. The above studies 

are mostly on industrial robot collaboration, but have a better guidance for carrying out swarm collaboration 

on farmland robots. 

In this paper, an unmanned farm with smart farm machine collaboration is taken as a research context, 

where the unmanned farm is partitioned into several sub-areas due to field roads and farm obstacles. A near-

field segmentation of the full field is performed by an improved genetic algorithm to obtain several different 

subsets of tasks to be operated, and the agricultural machines are scheduled to operate in different subsets 

of tasks in a discrete manner. The operation of different agricultural machines in close proximity to each other 

reduces the non-operational path loss of significant cross-area operations, reduces operating time, and 

effectively avoids accidental machine collisions when operating in different subsets of tasks. 

 

MATERIALS AND METHODS 

Cloud robotics architecture 

Intelligent robots in unmanned farms offload complex issues such as task allocation, job scheduling, 

and path planning to cloud platforms and edge cloud platforms, and the robots only need to be equipped with 

basic sensors and basic network equipment to realize farmland operation tasks. As the decision-making layer 

of intelligent agricultural production, the cloud platform carries out regional segmentation based on the static 

map provided by the user, forms the operation plan in accordance with the algorithm of the task allocation 

model, schedules the robots to complete the farm operation tasks, and feeds the monitoring data back to the 

user in the process of the task execution to ensure the controllability and stability of the operation. The cloud 

robot architecture is shown in Fig. 1. 

 
Fig. 1 - Cloud robot architecture 

 

Job scenario analysis 

Multi-machine cooperative task assignment is a process of assigning the sequence of operations and 

tasks to specific farm machines before operations. Take the collaborative harvesting machine scenario in 

unmanned farm as an example, decompose the irregular farmland geometric model into multiple triangles and 

calculate the center of gravity, connect the center of gravity to get a simplified graph, continue to solve the 

center of gravity of the farmland in a loop and use the center of gravity as a task chain traversing the prime 

points to plan the order of operation of agricultural machines, and the way of planning the center of gravity of 

the farmland is shown in Fig. 2. The harvester operates round-trip within the sequence of operations at the 

rated machine operating width, and the farm machinery operates as shown in Fig. 3. 
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Fig. 2 - Farmland center of gravity planning 

 

 
Fig. 3 - Agricultural reciprocating operations 

The actual scenarios of group collaboration are complex and variable, in order to simplify the problem 

and facilitate the planning of mathematical models, the following assumptions are made based on the actual 

farm scenarios:  

(1) The performance parameters and operational parameters of the robot are known; (2) Only one 

farm machine may operate on each task; (3) The operational path of the farm task is known; (4) Agricultural 

machines are allowed to duplicate parts of their paths during operations; (5) The mission is considered fully 

accomplished when all farm machinery returns to the mission rendezvous point. 

R: Indicates the group of farm machinery to be assigned to the operation, r is the number of the 

machine in the fleet, R={1, 2, 3, …, r} and 1t  . 

T: indicates the total number of current job tasks, t is the assignment number, T={1, 2, 3, …, t} and 

1t  . 

E: denotes the set of performance parameters of the first agricultural machine. { , , ,i i i iv w  =

, , , , }i i i i il c   , 
i  denotes the average speed of the operating state of the agricultural machinery (km/h), 

iv  

denotes the average non-operational speed of the farm machine (km/h), i  denotes the power lost in the 

operating state of the agricultural machine (kW/h), wi denotes the non-operational power loss of the farm 

machine (KW/h), li  denotes the width of the agricultural machinery (m), ci denotes the turning radius of farm 

machinery (m), i  denotes the turning angle of the farm machine, i  denotes the operational efficiency of 

agricultural machinery (m2/h), i  denotes the residual energy of the farm machinery (kW). 

M: denotes the set of task parameters M={ at, (x1t, y1t )(x2t, y2t )(x3t, y3t )(x4t, y4t )(xct, yct ), p, q, d },

ta  denotes the size of the task area (m2), , (x1t, y1t )(x2t, y2t )(x3t, y3t )(x4t, y4t ) denotes the coordinates of the 

execution point of the task operation, p denotes the maximum horizontal width of the farmland (m), q denotes 

the maximum vertical length of the farmland (m), d denotes the distance between the centers of gravity of 

neighboring subregions (km). 

 

Multitasking job cost function  

According to Job Scenario Analysis, the task cost is generated during the operation of the agricultural 

machine, which is mainly composed of the total path traveled, the maximum task completion time and the total 

energy loss. Assuming that there are r agricultural machines, t operational tasks available in the environment, 

the following objective function can be defined: 

 
1 1

max( )
r r

i i i p

i i

f S L Q f  
= =

= + + +   (1) 

In the formula,  f  is the operational generation value, Si is the total amount of time it takes for the farm 

machine to complete its task, Li is the total path of agricultural machinery to accomplish a task, Qi is the total 

energy loss of the farm machine to accomplish the task, λ, μ, δ is the weighting factor and λ, μ, δ[0,1],  fp  

is the penalty function in the task system. 

Task assembly point ( , )s sx y =   as point 0, the t subregions are the 1st to the points in order, 

therefore, the center of gravity distance matrix d between any two subregions in the farm is:  
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On the basis of the complete workload T, task subset partitioning of farmland based on operation-

independent factors such as farm roads and non-operational farmland yields a set of neighboring aggregated 

tasks U  for continuous operations. Within the operation subset U, the tasks are performed by the 

designated farm machine Er


. The mathematical model is given in the following equation:  

 
1 2 ...T U U U= + + +

  
(3)

 

 
...        {1,2, }i jU M M i, j t = + + 

    
(4)

 

 
Er U

→
 

(5)

 
The time Si for a farm machine to complete a task consists of three parts: the time for the regional 

transition, the time for the task operation, and the time for the return trip, and the task time is calculated by the 

formula:  

 1
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(6) 

The distance Li of the path of the farm machine to complete the task consists of three parts: the 

regional path transformation, the path of the farm machine operation, and the return path of the farm machine, 

and the total path of the task is calculated by the formula:  
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(7) 

The energy loss Qi of the farm machine to complete the task consists of three parts: the energy loss 

of the farm machine adjacent to the task shift, the energy loss of the farm machine operation, and the energy 

loss of the farm machine return trip, and the energy loss is calculated by the formula:  

 1
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(8) 

After the initial task allocation scheme is formed, the feasibility of this scheme is evaluated by 

substituting the average operating efficiency of the agricultural machine as a parameter into the penalty 

function. The penalty function pf  is given in the following equation:  

 1 1 1

1
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(9) 

In the formula, the area of operation is predicted with the average operating time and operating 

efficiency of all agricultural machines of the program, and compared with the total area of the actual task. 

Second, depending on the complexity of the operating environment, the total working time in the ideal state is 

calculated and differed from the actual working time as a measure of the cost factor of energy consumption, 

and the parameter   is calculated as follows: 

 
1 i i

i i

Q

Q







= 

   
(10)

 

Genetic code 

Traditional genetic algorithms have strong stochastic search ability and global optimization ability, but 

the random crossover and mutation methods are prone to premature emergence of local optimal solutions, 

which cause the algorithm to converge prematurely (Alan et al., 2021; Wang et al., 2021).  
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In order to ensure that the algorithm can find the optimal solution, the dynamically adjusted crossover 

operator and variation operator are designed; and the Metropolis criterion is introduced to enhance the ability 

of the algorithm to jump out of the local optimal solution. 

The chromosome is encoded in three distributed segments, with the first segment representing the 

sequence of tasks, t tasks grouped in chaotic order from 1 to t, with a total of t positions. The second paragraph 

indicates the number of operating farm machinery, with 1 digit. The third segment indicates the number of the 

farm machine, corresponding to the intermittent tasks, respectively, with a total of r digits. Chromosomal gene 

coding is shown in Fig. 4. 

 

 
Fig. 4 - Chromosome gene coding map 

 

Choice of operator 

In this paper, roulette algorithm with elite retention strategy was chosen to design the selection operator. 

According to the encoding design in Figure 4, an initial population of C individuals is generated. By calculating 

the fitness of each individual using Formula 1, the fitness value of individual i  in the population is obtained 

as 
iCf . Using the optimal value 

maxf  of the population from each iteration as the evaluation criteria, C1 elite 

individuals are selected. Subsequently, the complementary population C2 is obtained by dynamically updating 

the crossover operator with the variation operator, and the population update process is as follows:  

 iC
i

max

f
p

f
=

 (11) 
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1 2C C C= +

 (13) 
Dynamic crossover, Variational operators 

Gene crossover is the recombination of slices of genes at different locations on a chromosome, and 

gene mutation is the mutation of a gene at a random location on a chromosome. In order to accelerate the 

process of population evolution, the crossover probability PC and mutation probability Pm are dynamically 

adjusted according to the relationship between the difference between the current individual fitness value of 

the population and the average fitness value of the population, as well as the elite retention of the population 

C1. The dynamic calculation formula is as follows: 
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In the formula, 
maxf   is the maximum value of current population fitness, f   is the mean value of 

population fitness, 
'f  is the value of cross individual fitness, 

1 2,k k  is the crossover coefficient, 2k  is the 

default coefficient of the crossover operator and 1 2 1.0k k+ = , 4k  is the default coefficient of the variation 

operator and 3 4 1.0k k+ = . 
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Improved genetic algorithm flowchart  

Dynamic crossover, variational operators improve the ability to find local optima, but the algorithm is 

prone to terminate early and ignore the global optimum. Therefore, it is necessary to expand the search scope 

to jump out of the local optimal solution. The Metropolis criterion accepts floating solutions with a certain 

probability, which strengthens the fault tolerance of the algorithm and enables it to probabilistically jump out of 

the local optimal solution.  

 

The probability sp  mathematical model is as follows:  
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In the formula, mx is the maximum number of iterations of the algorithm, mf is the number of iterations 

of the current algorithm. The flow of the improved genetic algorithm is shown in Fig. 5.  
 

 
Fig. 5 - Improved genetic algorithm flowchart 

 

RESULTS 

Task preprocessing 

In order to verify the feasibility and effectiveness of the allocation algorithm in this paper, simulation 

experiments are carried out in Windows 10 system based on python3.9 environment. Taking the unmanned 

farm as the experimental environment, after extracting the unmanned farm e-map, the unmanned farm is 

divided into multiple sub-regions based on multiple field obstacles, and the center of gravity of each sub-region 

is extracted as the task chain traversal prime point, and the farm e-map is shown in Fig. 6(a). The electronic 

map of the farm is converted into map feature information that can be recognized and stored by the computer, 

and the length and width of the farmland are used as the horizontal and vertical axes within the two-dimensional 

coordinate system to establish the farm task mass map, as shown in Fig. 6(b). 
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a) Map of the farm 

 
b) Map of the center of gravity of farmland 

Fig. 6 - Farm map 

 

Subset division of agricultural machinery tasks 

The task chain formed by the elite ant colony algorithm is used as the basis for subset division. The 

partial parameters of the task plot obtained according to the task platform in the experiment are shown in Table 

1, and the partial parameters of the performance of the six agricultural machines are shown in Table 2.  

Table1 
Parameters of the mission plots 

Farmland 

serial 

number 

Area (m2) 
Coordinate of the 

mass point 

Farmland 

serial 

number 

Area (m2) 
Coordinate of the 

mass point 

1 16390.54 (698.4,96.4) 13 20707.13 (330.7,154.2) 

2 16515.65 (703.2,221.7) 14 24085.33 (375.7,247.3) 

3 14451.20 (675.1,336.4) 15 15577.27 (363.1,314.7) 

4 12386.74 (661.7,391.4) 16 13387.69 (412.7,387.3) 

5 14200.96 (601.8,452.3) 17 10947.88 (313.4,357.4) 

6 16202.86 (575.4,75.2) 18 17078.69 (282.1,427.3) 

7 16953.57 (582.3,168.7) 19 15452.15 (137.4,62.7) 

8 11510.91 (579.7,250.3) 20 13575.37 (87.4,155.4) 

9 11198.11 (547.6,400.2) 21 10572.52 (79.3,247.8) 

10 13325.13 (446.7,449.1) 22 10760.20 (108.7,318.6) 

11 17579.16 (470.4,122.8) 23 8695.74 (201.4,332.7) 

12 11948.83 (380.4,63.4)    

 

Table 2 

Performance parameters of agricultural machines 

Farmland 

serial 

number 

Operating 

rate  

(km/h) 

Non-operating 

rate  

(km/h) 

Operating 

loss  

(kW/h) 

Non-operating 

loss  

(kW/h) 

Average 

efficiency 

(m2/h) 

Energy 

(kJ) 

 

1 4.60 9.7 57.81 29.78 6500 4617.324 

2 4.50 10.2 60.13 29.41 5300 4958.424 

3 4.30 9.6 57.61 28.97 5600 4849.956 

4 4.10 9.7 59.12 29.45 6000 5063.112 

5 3.90 9.8 58.21 30.51 6200 5009.292 

6 4.60 10.1 59.34 28.98 5800 5356.224 

 

Assuming that the operating state of the farm machine is exactly the same as the planning operating 

state of the algorithm, the initial population size of the improved genetic algorithm is 30, and the initial pc=0.6, 

pm=0.2, k1=0.4, k2=0.6, k3=0.8, k1=0.2. After 1000 iterations, the optimal solution for task assignment of 

different groups of agricultural machines is obtained, and the task operation flow is shown in Figs. 7 to 10.  
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Fig. 7 - Three farm machines in operation 

 
Fig. 8 - Four farm machines in operation 

 
Fig. 9 - Five farm machines in operation 

 
Fig. 10 - Six farm machines in operation 

 

The unmanned farm is divided into 23 farmland tasks to be operated, and the improved genetic algorithm 

is used to plan the task area for farm machinery operation, and output the chromosome solution for task 

allocation, which is decoded to obtain the different farm machinery task sequences, and the farm machinery 

task sequences are shown in Table 3. In the allocation scheme, the task cost is analyzed by the task sequence 

of the agricultural machine and the performance parameters of the agricultural machine, and the maximum 

operating time of the agricultural machine, the total loss of task energy, the total path of the task and the penalty 

function are taken as the initial evaluation criteria, and the secondary evaluation is carried out based on the 

differences in the weighting ratio of the four and is taken as the total cost of the task, and the final task cost of 

the operation is shown in Table 4. 

Table 3 

Sequence of agricultural machinery tasks 

Number of 

agricultural 

machines 

Task   

 Sequence 

Task  

 Sequence 

Task  

 Sequence 

Task  

 Sequence 

Task  

 Sequence 

Task     

Sequence 

three 19→20→21→22

→23→17→14 

12→13→7→8

→2→1→6→11 

15→16→3→4→

9→5→10→18 

   

four 19→20→21→22

→23 

12→13→7→ 

1→6→11 

14→17→18→10

→16→15 

9→5→4→3

→2→8 

  

five 12→13→6→ 

11 

19→20→21→

22→23 

14→17→18→10

→16 

7→1→2→8 3→4→5→9

→15 

 

six 19→20→21 12→13→ 

6→11 

14→17→23→22 15→16→10

→18 

8→2→1→7 9→5→4→3 

 

Table 4 

Cost of agricultural machinery tasks 

Number of 

agricultural 

machines 

Maximum 

operating time 

(h) 

Energy loss 

(kJ) 

Total path 

(km) 

Non-operational 

path (km) 

Penalty 

function 

Aggregate 

consideration 

three 18.98 11065.104 226.71 3.77 41.73 1171.39 

four 14.82 10799.388 227.32 4.38 25.16 1127.23 

five 12.25 10598.292 227.93 4.99 -18.04 1063.45 

six 10.52 10927.62 228.45 5.51 33.27 1146.10 
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According to Table 4, the maximum operating time of the six farm machines is the smallest, and this 

option should be preferred when faced with tasks that are more agro-temporal. However, the operation of 

multiple farm machines causes an increase in the non-operational path and penalty function thereby increasing 

the total cost, and the penalty function in the table shows peaks and valleys with the increase in the number 

of farm machines. In this task allocation five farm machines were the most reasonable, the total cost of the 

task was reduced by 7.21% compared to six farm machines, but the operating time was increased by 16.44%, 

which was difficult to meet the requirements in the face of the task with strong agronomic nature. It can be 

seen that when faced with different agricultural tasks should be based on different operational needs to 

determine a reasonable allocation program to ensure the optimal global benefits.  

 

Experimental verification 

In the actual operation of the unmanned farm, the information collection robot can collect the growth 

conditions of crops at different growth stages in the farmland by traversing the farmland with the RMONCAM 

HD600 infrared camera. In this paper, the task assignment and field full traversal experiments were conducted 

by the farmland information collection robot built by Shandong University of Science and Technology in 

cooperation with Zibo Harvest Seed Industry Company, the experimental site was the south lawn of the library 

of Shandong University of Technology. 

This paper collects the map of the experimental environment and transforms it into an electronic map 

to provide a basis for subsequent task allocation, simulates the actual agricultural production activities to divide 

the experimental site into 11 sub-areas, as shown in Fig. 11, and selects three information acquisition robots 

to carry out experimental verification. Some of the operational parameters of the three information-gathering 

robots are summarized in table 5. 

 

 
a. Task segmentation 

 
b. Robot field traversal 

Fig. 11 - Farm task operation 

Table 5 

 Operational parameters of the information-gathering robot 

Number of 

agricultural 

machines 

Operating rate 

(m/s) 

Non-operating rate 

(m/s) 

Turning radius 

(m) 

Operating width 

(m) 

r-1 1.4 2.1 1.5 1.2 

r-2 1.4 2.1 1.5 1.2 

r-3 1.8 2.7 1.8 1.5 

 

In this experiment, the sequence of tasks for each robot is r-1:4→3→2→1,r-2:5→6→7,r-

3:8→9→10→11.The robot departs from the mission rendezvous point (the pentagonal labeled point in Fig. 

11a), sequentially into the planning work area, and return to the mission rendezvous point upon completion of 

all tasks. The cloud platform counts the actual traversed area, area repetition rate, and the actual working time 

of each robot to complete the task, and monitors the execution of the whole task, designing the human-machine 

interaction interface as in Fig. 12, and the results of the operation data statistics are shown in Table 6. 
 

 
Fig. 12 - Human-machine interaction interface 
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Table 6 

Machine operation data 

Cloud data r-1 r-2 r-3 

operating area (m2) 376.5 414.4 385.7 

area repeatability 14.15% 21.4% 18.7% 

operation time (min) 34.7 42.1 38.7 

 

In this paper, the task allocation is based on the theoretical workload of each robot, and the farm 

operation is planned in a theoretically optimal way, so the path repetition rate is low when each robot traverses. 

As can be seen from Table 7, each of the participating robots is able to achieve 100% coverage of their 

respective work areas, and all of them are able to complete the traversal task within a short working time, 

which proves the effectiveness of the proposed algorithm.  

 

CONCLUSIONS 

The large-scale operation of unmanned farms is the direction for the development of smart agriculture. 

Compared to traditional manual labor, the operational capacity of unmanned agricultural machinery far 

exceeds the former. Based on the information of different agricultural lands and the performance parameters 

of agricultural machinery, this paper establishes an objective function to reasonably allocate tasks, ensuring 

the optimal use of resources. This has reference value for the large-scale operation of unmanned farms.  

This paper establishes a multi-machine task cost model and maps the operation time, energy loss, and 

task path into the improved genetic algorithm. It analyzes task allocation schemes for different numbers of 

agricultural machinery to achieve optimal collaborative benefits among multiple machines. The results indicate 

that the optimal task allocation scheme is to deploy five agricultural machines, which reduces energy loss by 

4.22%, 1.86%, and 3.01% respectively compared to operations with three, four, and six machines. Additionally, 

it lowers the total cost by 9.21%, 5.66%, and 7.21% in each scenario. The on-site operations demonstrate that 

the algorithm is capable of completing the assigned tasks with relatively low task costs. 
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