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ABSTRACT  
Currently, drones have been gradually applied in the field of agriculture, and have been widely used in 

various types of agricultural aerial operations such as precision sowing, pesticide spraying, and vegetation 

detection. The use of agricultural UAVs for pesticide spraying has become an important task in the 

agricultural plant protection process. However, in the crop spraying process of agricultural UAVs, it is 

necessary to traverse multiple spray points and plan obstacle avoidance paths, which greatly affects the 

efficiency of agricultural UAV crop spraying operations. To address the above issues, traditional particle 

swarm optimization (PSO) algorithms have strong solving capabilities, but they are prone to falling into local 

optima. Therefore, this study proposes an improved PSO algorithm combined with the A* algorithm, which 

introduces a nonlinear convergence factor balancing algorithm for global search and local development 

capabilities in the traditional PSO algorithm, and adopts population initialization to enhance population 

diversity, so that the improved PSO algorithm has stronger model solving capabilities. This study designs two 

scenarios for agricultural UAV crop spraying path planning: one without obstacles and one with obstacles. 

Experimental simulation results show that using the PSO algorithm to solve the obstacle-free problem and 

then using the A* algorithm to correct the path obstructed by obstacles in the obstacle scenario, the 

agricultural UAV crop spraying trajectory planning based on the PSO-A* algorithm is real and effective. This 

research can provide theoretical basis for agricultural plant protection and solve the premise of autonomous 

operation of UAVs. 

 

摘要 

目前，无人机已逐步应用于农业领域，并广泛应用于精密播种、农药喷洒、植被探测等各类农业空中作业。使

用农业无人机喷洒农药已成为农业植保过程中的一项重要任务。然而，在农业无人机的作物喷洒过程中，需要

穿越多个喷洒点并规划避障路径，这大大影响了农业无人机作物喷洒作业的效率。针对上述问题，传统的粒子

群优化算法具有较强的求解能力，但容易陷入局部最优。因此，本研究提出了一种与 A*算法相结合的改进 PSO

算法，在传统 PSO 算法中引入了一种具有全局搜索和局部开发能力的非线性收敛因子平衡算法，并采用种群初

始化来增强种群多样性，使改进的 PSO 算法具有更强的模型求解能力。本研究设计了两种农业无人机作物喷洒

路径规划场景：一种是无障碍场景，另一种是有障碍场景。实验仿真结果表明，在障碍场景中，使用 PSO 算法

解决无障碍问题，然后使用 A*算法校正障碍物遮挡的路径，基于 PSO-A*算法的农业无人机作物喷洒轨迹规划

是真实有效的。该研究可以为农业植物保护提供理论依据，解决无人机自主运行的前提。 

 

INTRODUCTION 

 Science and technology are the primary productive forces and the key support for the high-quality 

development of agriculture. With the increase in agricultural scale and modernization level, traditional manual 

pesticide spraying can no longer meet the needs of field crops (Aggarwal S. et al., 2021). In order to better 

meet the needs of farmers, drones have been widely used in the fields (Al-Hourani A. et al., 2014). With the 

continuous advancement and application of drone technology, drones have become a mature tool in the 

fields and a new weapon for pesticide spraying (Andreev A. S. et al., 2019). Compared with traditional 

manual spraying methods, drone pesticide spraying has the advantages of high speed, high efficiency, and 

large-scale operation (Batliner M. et al., 2021). In terms of cost, time, and expenses, drone spraying 

significantly reduces labor costs, saves water, and increases pesticide utilization rate by more than 30%.  
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In addition to the significant improvement in efficiency, using drones for pesticide spraying can 

automate tasks without the need for manual intervention (Bensafia Y. et al., 2018). It not only protects 

farmers from pesticide exposure but also prevents soil and ecosystem damage (Eschmann H. et al., 2021). 

Using drones for spraying can reduce the labor pressure on farmers and improve the comfort and safety of 

their work (Hasan S. F. et al., 2020). These drones are equipped with advanced navigation and sensing 

technologies, allowing for precise spraying of field crops (Hassan R. et al., 2020). By controlling flight height, 

speed, and liquid dosage reasonably, the amount of pesticide used can be effectively reduced, waste can be 

minimized, and spraying accuracy can be improved (Huang Y. et al., 2019). In the long run, it can also 

reduce labor costs and machinery losses, saving farmers a significant amount of expenses (Keyvan M. et al., 

2020). 

 With further technological advancements, drones will be able to respond more quickly to the pest 

control needs during crop growth and spray pesticides in a timely manner (Khalilpour S. A. et al., 2020), 

which helps ensure the quality and yield of agricultural products (Li P. et al., 2018). Moreover, traditional 

pesticide spraying often leads to pesticide atomization and dispersion (Li P. et al., 2018), causing air and 

water pollution. The application of drone pesticide spraying will further achieve and improve precise spraying, 

reduce pesticide usage and dispersion, and minimize environmental pollution (Li X. et al., 2019). By 

improving agricultural productivity and reducing pesticide use, rural drone pesticide spraying can create more 

economic benefits for farmers and enhance agricultural comprehensive benefits (Lv S. P. et al., 2019). 

Resolving the "agriculture, rural areas, and farmers" issues is a key focus of rural industrial revitalization. In 

the future, high-standard farmland construction will continue to be promoted across the country, modern 

technology-based farming methods will be widely adopted, and agricultural production will be mechanized 

and intelligent (Ou M. et al., 2022). With the support of "drones +", farming will become easier and smarter, 

and a new form of "smart agriculture" will gradually unfold in the fields (Peng H. et al., 2020). 

 Currently, in order to adapt to the development trend of modern agriculture and efficient agriculture, 

the Ministry of Agriculture and Rural Affairs has actively responded to the call of the central government and 

accelerated the construction of high-standard farmland (Pizarro L. A. O. et al., 2020). It focuses on 

implementing the rural revitalization strategy, advancing land storage and technology storage, and making 

the improvement of grain production capacity a top priority. This indicates that the distribution of farmland will 

shift from dispersed to regular and concentrated development, and agricultural plant protection will face the 

demand for large-scale operations (Ren B. et al., 2020). Only through modern agricultural machinery and 

equipment can this be effectively solved, creating broad application space for aerial plant protection 

represented by drones. Unmanned Aerial Helicopter (UAH) plays an important role in agricultural plant 

protection with its characteristics of large payload, long endurance, hovering, and vertical takeoff and landing 

(Rubio J. et al., 2020). It will also become the development direction of new intelligent agricultural machinery 

and equipment.  

Currently, UAH and rotary drones have been widely used in the prevention and control of pests and 

diseases in crops such as rice, cotton, and jujube (Santos C. et al., 2020). However, there is still a long 

transition phase from "spraying" to "spray irrigation", and automatic or autonomous flight based on flight 

routes is one of the effective ways to improve agricultural plant protection efficiency. In previous studies, 

three commonly used spraying methods in irregular operating areas for plant protection were summarized, 

and a reasonable scanning route planning method based on graph theory was proposed to plan rational 

routes from the perspectives of route selection, waypoint collection, and obstacle avoidance, enabling UAH 

to operate autonomously (Talak R. et al., 2019). However, most of the current research is based on the ideal 

route planning design of a single operating area. Considering the complex conditions of flight constraints, 

task constraints, and obstacle constraints in actual UAH flights, it is necessary to optimize the segmentation 

of large-scale regular rectangular plant protection areas to ensure the efficient flight of UAH in plant 

protection processes and meet practical operational requirements (Wang F. et al., 2017). In view of this, this 

paper proposes a crop protection route segmentation method based on "spraying unit modules". Firstly, the 

full coverage operation mode of UAH is determined (Wang G. et al., 2021), and then, the minimum spraying 

operation unit during plant protection operations is determined as the objective function based on the flight 

distance of the unmanned aerial vehicle in the non-flow spraying mode (Wang H. et al., 2021). The concept 

of minimum module segmentation is adopted to optimize the rectangular farmland. Finally, the overall 

planning of the plant protection operation area and the optimization design of the operation route are 

achieved (Welabo A. et al., 2020). 



Vol. 71, No. 3 / 2023  INMATEH - Agricultural Engineering 

 

627 

 With the development of smart agriculture, computer vision has achieved good results in the field of 

agriculture (Xu B. et al., 2015). For example, You et al. (2021) implemented an automatic weed identification 

system in a pasture with broadleaf weeds (You X. et al., 2021). Zeng et al. (2019) proposed a cucumber leaf 

pest identification system (Zeng Y. et al., 2019) (Zeng Y. et al., 2019). In addition, with the maturity of deep 

learning (DL) technology, it has been widely used in the field of agriculture in China (Xu J. et al., 2018). With 

the increase in the number of samples, deep learning technology has become more widely used and 

accurate in the classification and identification of crops and pests (Yang F. et al., 2018). 

 However, there is relatively little research on how to achieve process automation after identification. 

Drones are gradually transitioning from the military field to the civilian field, and their combat strategies can 

be introduced to the agricultural sector (Zhang F. et al., 2014). Drone trajectory planning is the basis of drone 

combat research and the basic guarantee of drone combat effectiveness. The model considers three 

different methods, covering most drone flight missions (Zhao J. et al., 2020). Established a target function 

based on flight time and flight safety factors, used fuzzy technology to assess threat levels, and applied 

particle swarm optimization (PSO) search strategy to drone trajectory planning (Zhao J. et al., 2021). 

Currently, swarm intelligence optimization algorithms are relatively popular in the field of drone trajectory 

planning, but swarm intelligence optimization methods are prone to local optima and cannot fundamentally 

solve the problem. Existing two-dimensional drone trajectory planning algorithms rarely consider the 

influence of obstacle space on trajectories. 

 In summary, an improved particle swarm optimization algorithm combined with the A* algorithm is 

proposed for drone trajectory planning in agricultural spraying operations. The PSO algorithm introduces the 

K-Means clustering algorithm to initialize the population to enhance population diversity, and nonlinear 

convergence factor to balance global search and local development capabilities, and the PSO algorithm's 

position update adjustment is introduced to avoid local optimization problems. The PSO algorithm is used to 

plan obstacle-free crossing trajectories for multiple marked spray tasks, and then the A* algorithm is used to 

locally avoid obstacles in the trajectory of the obstacle path. 

 

MATERIALS AND METHODS 

 The fitness function can calculate the cost of the track and compare the cost values of different 

tracks to determine the quality of the track. This article comprehensively balances three factors: track length, 

obstacle collision, and height change, and models the fitness function:  

1 2 3L C HF f f f  = + +                                                                     (1) 

 Among them: Hf  represents the cost of height change, Cf  represents the cost of obstacle collision, 

Lf  represents the cost of track length, F represents the cost of track, 1 2 3  represents the weight values 

of different costs, and is a constant, and its proportion is related to the tasks performed by the drone. 

 

 (1) Track length cost. The length of the drone's flight path is one of the important indicators for 

evaluating the quality of the flight path. Considering the limited energy supply of the drone, the shorter the 

flight path, the less time and energy consumption, and the more advantageous it is for the drone. Assuming 

the number of trajectory nodes is n, and after smoothing through interpolation, the entire trajectory consists 

of N nodes. ( )i i ix y z, ,  and 1 1 1( )i i ix y z+ + +, ,  represent the three-dimensional coordinates of the i-th node 

and the adjacent next node, respectively. Therefore, the cost of track length can be expressed as: 

( ) ( ) ( )
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 (2) Obstacle collision cost. When the flying altitude of the drone is lower than the height of the 

obstacle and the distance from the center point of the obstacle is less than the radius of the obstacle, a 

collision occurs. In order to maintain a certain distance between track nodes and obstacles, it is necessary to 

calculate the collision cost of obstacles: 
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 Among them, N is the total number of nodes after the smooth trajectory, T is the number of obstacles, 

obsiR is the radius of obstacle i, and ,i jC is the distance between the i-th obstacle and the j-th trajectory node. 

 (3) Highly variable costs. In order to prevent collisions with mountains or other obstacles and avoid 

radar search, drones must raise or lower their altitude, but repeated raising and lowering may also endanger 

the safety of drones. Therefore, it is necessary to constrain altitude changes, and the variance of track 

altitude can describe the stability of flight altitude as the cost of altitude changes: 

 (4) Highly variable costs. In order to prevent collisions with mountains or other obstacles and avoid 

radar search, drones must raise or lower their altitude, but repeated raising and lowering may also endanger 

the safety of drones. Therefore, it is necessary to constrain altitude changes, and the variance of track 

altitude can describe the stability of flight altitude as the cost of altitude changes: 

2

1 1

1 1N N

H k k

k k

f z z
N N= =

 
= − 

 
                                                          (5) 

 In the formula: kz  is the altitude value at the k-th track node, and N is the total number of track 

nodes.  

 

A* Algorithm 

 The A* algorithm is a heuristic search method with high search efficiency, which can solve the 

shortest and most effective path in a static environment. In A*, the weight of each path is the sum of two 

costs, namely the cost and the heuristic distance from the starting node to the current node. Starting from the 

starting point, it is possible to search for 8 directions, use the evaluation function to obtain the values of the 

extension nodes for comparison, select the minimum value as the next extension node, and cycle this 

process until the search is completed. Finally, the final path was obtained. Because each search uses the 

lowest estimated node as the next expansion node, the final cost is the lowest. The evaluation function is 

shown in equation (6): 

( ) ( )( )f n g n h n= +                                                                   (6) 

 In equation (1): h(n) is the estimated cost from node n to the endpoint; g(n) is the actual cost from 

the starting node to node n; f(n) is the evaluation function of node n. 

The determination of the valuation function is closely related to the actual situation and will directly 

affect the results of the A* algorithm. Therefore, the Manhattan distance is used as a heuristic function: 

( ) d n d nh n x x y y= − + −                                                             (7) 

 In equation (2): nx  is the abscissa of node n; dy is the ordinate of the target point; dx  is the 

abscissa of the target point; ny  is the ordinate of node n. 

 The A* algorithm is a heuristic search algorithm used to evaluate each search location during path 

planning, the evaluation function is shown in equation (8): 

 F(n)=G(n)+H(n)                                                                    (8) 

 In the formula: is the estimated cost of the optimal path from the n-th node to the target node. The 

actual cost from the starting point to the n-th node. The search process is identified through the OPEN table 

and the CLOSED table. The OPEN table records the nodes to be searched, the CLOSED table records the 

nodes that have been searched, and the OPEN table continuously rearranges according to the evaluation 

function to find the best node to achieve the search process. 

 

Improved Particle Swarm Optimization Algorithm 

 The basic idea of the PSO algorithm is to seek the optimal solution through information sharing and 

mutual reference between individuals. Firstly, each particle represents a candidate solution in the PSO, and 

due to the randomness of the elementary particles, random solutions can be used to initialize them.  
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Secondly, by using a defined fitness function to evaluate particle state, individual optimal positions 

and global optimal positions can be obtained through comparison. Then, each iteration, the particles will 

reference and update their positions and velocities, and will also dynamically update. Through repeated 

iterations, the optimal solution is ultimately obtained. In this article, each particle represents a trajectory. 

Considering trajectory planning in three-dimensional space, assuming the number of trajectory nodes is n, 

for the k-th particle, equation (9) represents its position vector, and equation (10) represents its velocity 

vector. 

( ) ( )
( ,1) ( , )

, , , , , ,x y z x z

k k k

T
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n
P P P P P P P=  

  
                                             (9) 
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V V V V V V V=  

  
                                            (10) 

 If there are S particles in the particle swarm, there must be a single optimal position for the S 

particles, and for the entire particle swarm, there must also be a global optimal position, as shown in 

equation (11): 
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                                                (11) 

 By substituting the position of particles into the fitness function F, the trajectory quality of particles 

can be evaluated. The higher the trajectory quality, the smaller the fitness function value F of the 

corresponding particle. For particle k, if the F-value after the t-th iteration is less than the value of the 

previous t -1st iteration, it will be updated. Otherwise, its historical best position will still be used, as shown in 

equation (12). Finally, among the historical optimal positions of S particles, choose the one with the lowest F-

value as the global optimal position, as shown in equation (13): 
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( ) ( ) ( ) ( ) ( )1, ,
( ) min[ ( ), , ( )]G
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F P t F P t F P t=                                    (13) 

 In the next iteration, the velocity and position of each particle are updated according to equation (14) 

as follows: 

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

1 1 2 2,
1

1 1
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k k k
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 + =  +   − +   −


+ = + +

                    (14) 

 In the formula, w represents the inertia weight used to inherit the velocity of particles, and is the 

learning factor representing the learning ability to the best state of one's own history. The learning factor 

represents the learning ability of the optimal individual in the group, which is any random number between 0 

and 1. It is also an arbitrary random number between 0 and 1. 

 The inertia weight w directly affects the search ability of particles. The larger the value, the better the 

particle inherits the original speed, resulting in higher speed and stronger global search ability. By 

dynamically changing the value of inertia weight w, it is convenient to adjust the global and local search 

capabilities of particles at different time periods. This article adopts an exponential form of inertia weight 

adjustment method to improve convergence speed: 

 max min min( ) exp (1 )w w w t w= −  −  +                                           (15) 

 max1,2,t T                                                                 (16) 

 In the formula (15), wmin is the minimum value of w, wmax is the maximum value of w, Tmax is the 

maximum number of iterations, t is the current number of iterations, α is used to control the decay rate of 

inertia weight, and is a constant coefficient. 

 Traditional particle swarm optimization algorithms have poor population diversity. Introducing 

evolutionary operators such as crossover and mutation into its algorithm can effectively improve the diversity 
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of the population and avoid generating local optima. The commonly used mutation operators include 

Gaussian mutation (GM) and Cauchy mutation (CM). Due to the large range of random numbers and low 

peaks in the Cauchy distribution, introducing the Cauchy mutation operator in the PSO algorithm is more 

advantageous for particles to quickly jump out of local extremum and increase population diversity. If x 

satisfies the condition given in equation (17), it will become a Cauchy distribution. 

( )
0 2 2

0

1
( ; , ) [ ]f x x

x x y





=

− +
                                                       (17) 

( , )x − +                                                                          (18) 

where: y is the width of x0 related to half, and x0 is the position of the maximum value of the function. When 

x=1, x0=0 and x satisfy the condition of probability density function, equation (19) is its cumulative 

distribution function: 

 

1 1
( ;0,1) arctan( ) ,

2
F x x


= +                                                         (19) 

( , )x − +                                                                          (20) 

 By performing an inverse transformation on equation (19), the inverse function can be obtained, and 

then the random numbers generated through uniform distribution can generate random numbers that follow 

the Cauchy distribution: 

1 1
arctan( )

2

1
tan ( )

2

CM Rand
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+ =
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                                                          (21) 

 In the equation, Rand is any real number uniformly distributed within the range of (0,1), and CM is 

the Cauchy mutation operator. 

 Similar to inertia weights, the step size of Cauchy mutation also needs to be dynamically adjusted in 

order to generate certain large step size disturbances in the early stages of algorithm operation, causing 

particles to jump out of the current position and avoid local optima. In the later stage, convergence is 

accelerated in smaller steps, and the update rule for each particle in each iteration is: 

 ' exp (1 )k k kP P P CM t = +   −                                                       (22) 

 max1,2, ,t T                                                                     (23) 

 In the formula, 
'

kP  is the position of particle k after Cauchy mutation, maxT  is the maximum number of 

iterations, kP  is the position of particle k, β is the current number of iterations, is a constant coefficient, used 

to control the speed of variation step size. 

 

Algorithm Steps 

 In summary, the implementation steps of the 3D trajectory planning algorithm for agricultural drone 

spraying based on PSO-A* algorithm are as follows: 

 Step 1: Create an agricultural drone spraying environment based on the A* algorithm, and set the 

starting and ending points of the drone; 

 Step 2: Initialize the particle position and various parameters, including the total number of particles 

S, maximum number of iterations, maximum speed, number of track nodes n, maximum inertia weight, total 

number of track nodes n, minimum inertia weight, learning factors C1, C2, etc. 

 Step 3: Smoothing a trajectory containing only n trajectory nodes through cubic spline data 

interpolation to obtain a trajectory containing n trajectory nodes, which is used to calculate the fitness values 

of particles in equations (9) to (14); 

 Step 4: Find the individual and global optimal positions of each particle; 

 Step 5: Update the Cauchy mutation operator CM using equation (20), and obtain the particle 

position for the next iteration using equation (21); Update the inertia weight w using equation (17); 
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 Step 6: Update particle velocity Vk and position Pk according to equation (16), where if Vk and Pk 

cross the boundary, take the boundary value; 

 Step 7: Repeat steps 3 to 6 until the final flight path for agricultural drone spraying is obtained. 

 

RESULTS 

 Assuming the agricultural drone spraying operation area is T (L × W, where L is the horizontal length 

and W is the vertical length), under the same initial conditions (environmental factors, aircraft status, payload, 

etc.), the PSO algorithm, A* algorithm, and PSO-A* algorithm are used to achieve complete coverage of the 

target spray points. 

 

PSO Algorithm for Obstacle-Free Trajectory Planning 

 The simulation experiment scene is set as a 700 m × 700 m agricultural drone spraying operation 

area. The specific distribution of the spray points in the operation area is shown in Table 1. The particle 

swarm algorithm is used to solve the path planning problem for multiple spray points in obstacle-free space. 

In the experiment, the parameters of the particle swarm optimization algorithm are set as follows: 50 particles, 

maximum iterations of 200 times, and learning factors C1 and C2 both set to 1.5. When the number of spray 

points is 30, the convergence curve of the PSO algorithm is shown in Figure 2, and the path planning of the 

PSO algorithm is shown in Figure 3. From Figure 2, it can be seen that the fitness curve of 30 task points in 

the PSO algorithm converges, and the optimal traversal path is found in the 98th iteration of the PSO 

algorithm. The PSO algorithm has good convergence effect, indicating that the PSO algorithm has strong 

modeling and solving capabilities. 

 
Fig. 1 - Operation area length and spraying point location coordinates (m) 

 

 
Fig. 2 - PSO algorithm convergence curve 
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Fig. 3 - PSO algorithm track planning path 

 

 

A* Algorithm Obstacle Avoidance Trajectory Planning 

 Obstacle avoidance trajectory planning based on A* algorithm, where the coordinates of building 

obstacles and spraying points are shown in Figure 4. Interactively mark obstacle areas to generate obstacle 

map masks. The obstacle area of the building is not accessible, and other areas are free to pass through. 

 
Fig. 4 - Coordinates of barrier buildings and spraying points (m) 

 
Fig. 5 - A* algorithm track planning path 
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Using the A* algorithm to avoid obstacles and plan the spraying trajectory of agricultural drones with 

obstacles at the work site. The trajectory planning effect is shown in Figure 5, and it can be seen from the 

figure that the A* algorithm has a good effect on obstacle avoidance trajectory planning. Taking into account 

the length and smoothness of the trajectory, the A* algorithm can be selected for obstacle avoidance 

trajectory planning. 

 

Path Planning of Farmland Spraying Drones Based on PSO-A* Algorithm 

 Using PSO-A* algorithm to solve the trajectory planning problem of multiple spraying points in 

obstacle space. During the experiment, the parameters of the particle swarm optimization algorithm were set 

to 50 particle swarms, with a maximum number of iterations of 200, and learning factors C1 and C2 of 1.5. 

When the number of spraying points is 30, the convergence curve of the PSO-A* algorithm is shown in 

Figure 6, and the trajectory planning of the PSO-A* algorithm is shown in Figure 7. When agricultural drones 

spray in farmland areas, when obstacles are found in the planned trajectory from spraying point 16 to 

spraying point 9, the A* algorithm is used for obstacle avoidance secondary trajectory planning. The 

trajectory section starts at the coordinates of spraying point 16 and targets at the coordinates of spraying 

point 9 to correct this route. Figure 7 shows the A* algorithm's search for obstacle avoidance secondary 

correction effect trajectory, resulting in the trajectory planning results of unmanned aerial vehicles with 

multiple spraying points in farmland. 

 
Fig. 6 - PSO-A* algorithm convergence curve 

 

 
Fig. 7 - PSO-A* algorithm track planning path 
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CONCLUSION 

 This study proposed a field trajectory planning method for agricultural drones based on the PSO-A* 

algorithm. According to the actual requirements of agricultural drone field spraying, the multi-area operation 

trajectory problem was transformed into an optimization model of the particle swarm algorithm. Trajectory 

planning is a very complex optimization problem, and there is no absolute optimal solution in theory, only 

approximate optimal solutions can be obtained.  

In addition to planning the flight trajectory of the drone, this study also optimized the low-altitude 

obstacle avoidance trajectory to better adapt to the requirements of low-altitude mission scenarios. The 

proposed trajectory planning algorithm for plant protection drones based on the PSO-A* algorithm can better 

find the approximate optimal trajectory of the plant protection drone in actual plant protection operations. 

 The PSO-A* algorithm has stronger capabilities in solving the trajectory planning model for drone 

spraying operations. The optimal traversal trajectory was found in the 98th iteration. The particle swarm 

algorithm has good convergence effect, indicating strong modeling and solving capabilities. In an 

environment with obstacles, the A* algorithm was used to avoid obstacles and plan the trajectory of 

agricultural drones in operational areas with obstacles. The A* algorithm has good performance in obstacle 

avoidance flight trajectory planning. Considering the length and smoothness of the trajectory, the A* 

algorithm can be used for obstacle avoidance flight trajectory planning. 

 In summary, the combination of the particle swarm algorithm and the A* algorithm not only improves 

the modeling and solving capabilities of the model, but also shortens the length of the trajectory planning. By 

fully considering the obstacle avoidance issues during low-altitude operations, dual trajectory correction can 

be performed to avoid collisions, which is beneficial to the implementation of unmanned aerial field spraying 

operations. This study did not consider how to determine the working task points. If machine vision and deep 

learning recognition processes are introduced, and the sample size is large enough, automatic extraction 

and classification of spray points (such as pest infested areas, weed areas, etc.) can be achieved, which can 

improve the autonomy of unmanned agricultural spraying operation systems and promote the development 

of smart agriculture. 
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