LIGNIN UTILIZATION FOR THE REMOVAL OF MICROPLASTIC PARTICLES FROM WATER /

UTILIZAREA LIGNINEI PENTRU ÎNDEPĂRTAREA PARTICULELOR DE MICROPLASTIC DIN APĂ

Iuliana GĂGEANU¹); Florbela CARVALHEIRO^{*2}); Adam EKIELSKI^{*3}); Luis C. DUARTE²)

¹⁾ INMA Bucharest / Romania;

²⁾LNEG – Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia e Biorrefinarias, Lisboa / Portugal; ³⁾ Warsaw University of Life Sciences / Poland *E-mail: florbela.carvalheiro@lneg.pt; adam_ekielski@sggw.edu.pl*

DOI: https://doi.org/10.35633/inmateh-71-44

Keywords: microplastic removal, Miscanthus sp., OFMSW - Organic Fraction of Municipal Solid Wastes, Organosolv lignin, pine bark, solid anaerobic digestates, wastewater treatment

ABSTRACT

The focus of the research was to evaluate the use of lignin from different sources as an agent for the removal of diverse types of microplastics when present in wastewater. Organosolv lignin was obtained from three different sources (Miscanthus sp., pine bark and solid anaerobic digestates from Organic Fraction of Municipal Solid Wastes) by an ethanol-based organosolv treatment carried out in a pressurized stirred-tank reactor. The lignins obtained were evaluated as an adsorbent for diverse types of microplastics: High-density polyethylene (HDPE), Polystyrene (PS), Expanded Polystyrene (EPS), and Polypropylene (PP). All lignins used had the capacity to capture plastic particles from all plastic types, but a differential absorbance potential was found both for plastic types and lignin samples. EPS was the least adsorb type for all lignin sources, with the remaining plastics presenting equivalent results. Pine bark lignin was the best adsorbent among the tested feedstocks, always presenting the best performance for all plastic types. The direct utilization of organosolv hydrolysates, avoiding lignin recovery presented a similar behaviour. These results open the possibility to develop new natural, plant-based, adsorbents for microplastic removal from contaminated wastewater.

REZUMAT

Scopul cercetării a fost evaluarea utilizării ligninei din diferite surse ca agent pentru îndepărtarea diferitelor tipuri de microplastic atunci când sunt prezente în apele uzate. Lignina a fost obținută prin metoda organosolv din trei surse diferite (Miscanthus sp., scoarță de pin și digestat anaerob solid din fracțiunea organică a deșeurilor solide municipale) printr-un tratament pe bază de etanol, realizat într-un reactor sub presiune cu agitare. Lignina obținută a fost evaluată ca adsorbant pentru diverse tipuri de microplastic: polietilenă de înaltă densitate (HDPE), polistiren (PS), polistiren expandat (EPS) și polipropilenă (PP). Toate tipurile de lignină au avut capacitatea de a capta particule de plastic din toate tipurile de plastic, dar a fost observant un potențial de absorbție diferențiat atât pentru tipurile de plastic, cât și pentru mostrele de lignină. EPS a fost tipul cel mai puțin captat pentru toate sursele de lignină, materialele plastice rămase prezentând rezultate echivalente. Lignina din scoarța de pin a fost cel mai bun adsorbant dintre materiile prime testate, prezentând cea mai bună performanță pentru toate tipurile de plastic. Utilizarea directă a hidrolizatelor de organosolv, evitând recuperarea ligninei a prezentat un comportament similar. Aceste rezultate deschid posibilitatea de a dezvolta noi absorbanți naturali, pe bază de plante, pentru îndepărtarea microplasticului din apele uzate contaminate.

INTRODUCTION

Plastic production has so far exceeded 348 million tonnes per year and despite the great efforts to reduce its use, the production is expected to double by 2035. Since it will take hundreds of years for some of the polymers in plastics to fully mineralize 3-5 hundreds of years for the majority of plastic materials), plastics cause serious pollution due to their cumulative and persistent properties (*Geyer et al., 2017*). (*Moharir & Kumar, 2019; Kyrikou & Briassoulis, 2007*).

Iuliana Găgeanu, Researcher; Florbela Carvalheiro, Researcher; Adam Ekielski, Professor; Luis Duarte, Researcher

Plastics are made from various combinations of over 5,000 different polymers and other chemicals. In general, the origin of microplastic (MP) particles can be divided into two sources: primary and secondary. Primary microplastic particles are produced as such to be used in the manufacture of larger objects, or e.g. directly in cosmetic products such as facial scrubs and toothpaste, or in abrasive blasting (e.g. to remove varnish). Secondary microplastic particles are formed from the breakdown of larger plastic products (*Zhang & Zhang, 2021*).

Several definitions of Microplastics (MP) are present in the literature. Generally, polymer particles with a diameter of 1 µm to 1 mm are called microplastics (*Bayo et al., 2020; Kefer et al., 2021*), but the most common adopted definitions define MP as fragments of any type of plastic less than 5 mm in length (*Bergmann et al., 2015; Koelmans et al., 2019; Crawford & Quinn, 2016, 2016; Collignon et al., 2014, Morioka et al., 2023*).

This diversity in size, is followed by a diversity in shapes, such as microspheres, fragments, foil foam granules, and fibres, to name just a few. Most synthetic particles are plastic fibres (*Belioka and Achilias, 2023*).

As previously mentioned, the most common definition of microplastics is defined as particles with a longest diameter of less than 5 mm. Plastic particles fall into two categories: primary microplastics, which are developed for industrial use, and secondary microplastics, which are produced when plastic products and things break down. Practically speaking, the size range that has been established has been accepted as it is thought to be the range at which many biota species take food. On the other hand, nanoplastics, which fall under the conventional definition of microplastics, are described as plastic particles with a size between 0.001 and $0.1 \,\mu m$ (*Lusher et al, 2017*).

In recent years, significant attention has been drawn to the widespread presence of microplastic particles in nature and the potential threat posed by their ingestion by living organisms and their accumulation over the trophic system (*Ziani et al, 2023*). However, reliable, easy, cost-effective and reproducible ways to minimize these constraints still remain an important issue to be solved. As plastics degradation, e.g. by **biological means** is a challenge, due to their **hydrophobic nature**, a number of methods have been developed to remove microplastics from water. These include i) filtration, ii) froth flotation, iii) microbial transformation/dissimilation; iv) electrostatic separators, v) microplastics aggregation; vi) biological aggregation and vii) use of organosilanes.

1. **Filtration is the** simplest method, although it is limited to the efficiency of the filtration process. Filterbased technologies such as biofilter (*Liu et al., 2020*), ultrafiltration (UF) (*Tadsuwan & Babel, 2022*), rapid sand filter (RSF) (*Sembiring et al., 2021*), among others, have achieved the best performance in removing microplastics. Among them, the RSF technology ensures quick and effective removal of microplastics.

2. **The froth flotation method** - is a physicochemical separation based on the differences in surface properties of materials. The principle behind this method is that hydrophobic plastics are picked up by air bubbles and rise to the surface, where they are collected and separated from hydrophilic plastics (*Wang et al., 2015; Crawford & Quinn, 2017; Kokkilic et al., 2022*).

3. **Microbial transformation/dissimilation –** consists on plastic decomposing by microorganisms, involving (a) microbial adhesion to the polymer's surface, (b) the polymer's use as a carbon source, and (c) polymer degradation. Besides being difficult, this process also takes a long time.

4. Electroseparation is another possibility, in which the recovery rate of microplastics is almost 99%, making it an effective and promising technique for density separation (*Felsing et al., 2018*).

5. **Aggregation**, e.g., flocculation using chemical or biological substances is one of the promising methods for plastic separation. In this process flocs interacted with microplastics through hydrogen bonding, van der Waals forces or electrostatic forces (*Duan and Gregory, 2003; Lapointe et al., 2020*).

6. **Biological agglomeration,** is another method of purifying wastewater from microplastics is the use of bioreactors. A bioreactor system removes microplastics mainly through microbial uptake and sludge aggregate formation. In particular, domestic activated sludge likely promoted the accumulation of microplastics in wastewater treatment plants. The deposit containing microplastics is removed during the subsequent secondary deposition process (*Jeong et al., 2016*).

7. **Treatment with organosilanes**. The interaction of the organic group of organosilanes with the surface of microplastics leads to their attachment to the surface of the microplastic being collected in agglomerates in the first stage of the fixation process. The disadvantage of this method is the need to remove organosilane residues from the water.

Although the methods described above are suitable for purifying water from plastic in the vicinity of the source of contamination, they also present some drawbacks as: high costs for reactors of complex systems, the need to perform additional operations to remove some of the added compounds from the treated water, the use of chemical substances, etc.

As alternative to the former processes, the use of lignin for microplastic extraction from water is starting to be discussed and investigated, as it could represent a natural and safe manner to clean wastewaters that does not involve additional equipment or special reactors/tanks for processing the wastewater.

It has been proven in many publications that lignin can be used as an absorbent of metal ions. The factor that is responsible for the sorption function of lignin, free phenolic hydroxyl group and abundant vacant ortho- or para-sites, is able to absorb the heavy metal ions (Gupta et al.,2021). Therefore, due to the hydrophobic nature of plastics (PE, HDPE), it is possible for plastic microparticles to attach to lignin particles and form micro agglomerates.

Lignin is a complex natural polymer that represents up to one-third of the lignocellulosic biomass content whose structure depends on the origin source and on the method of obtaining it. Lignin can be extracted from many lignocellulosic biomass residues and byproducts. In industry it is typically extracted using alkaline or sulphite-base processes, producing kraft lignin, or lignosulfonates, which are byproducts of the pulp and paper industry (Ekielski and Mishra, 2021). Other types of lignin are those obtained as biorefinery by-products, i.e. after steam explosion or acid hydrolysis pre-treatments (*Martins et al., 2022, Gosselink, 2011*), but the purity of those lignins is typically low. High pure lignins, i.e., more reactive, and containing a low carbohydrate and ash content, can be obtained through the pre-treatment of biomass with organic solvents, i.e., alcohols, organic acids, or ketones, called organosolv processes (*Zhang et al., 2016*). Organosolv covers a broad range of solvents but the most used is ethanol due to its low cost and low boiling point, which allow an easy recovery. Furthermore, it also allows an efficient delignification (*Carvalheiro et al., 2022*).

MATERIALS AND METHODS

Biomass feedstocks

Mischantus sp. biomass was purchased from Comgoed (NL) by TU Delft and distributed by the Dutch Organization for Applied Scientific Research (TNO) within the consortium of the Brisk 2 project. The feedstock was supplied as pellets and was stored in plastic containers at room temperature. Pine bark (Maritine Pine, *Pinus pinaster*) was kindly provided by a Portuguese processor (Alfarroxo, Figueira da Foz, Portugal). The feedstock was supplied as chips and was stored in plastic containers at room temperature. Anaerobic solid digestate obtained from the Anaerobic Digestion of the organic fraction of municipal solid wastes (OFMSW) was kindly provided by Tratolixo (Abrunheira, Portugal). The feedstock was supplied as a slurry, and upon reception it was dried at 80° C until constant weight, screened for the removal of plastics by visual inspection, and then stored at room temperature. Figure 1 presents their typical morphology. All materials were milled to pass a 4 mm screen before use.

Organosolv process and lignin recovery

Lignin was obtained by an organosolv extraction using a 2-liter stainless steel, pressurized reactor (Parr Instruments Company, Moline, IL, USA) (Figure 2). The organosolv process was carried out using a liquid-to-solid ratio (LSR) of 7 (for *Miscanthus sp.* and pine bark) and a LSR=3 for the digestate, dry basis. A solvent ethanol:water (50:50 w/w) solution was used. The process was run under non-isothermal conditions heating up to 190°C followed by a rapid cooling to room temperature.

Miscanthus pellets Pine bark Digestate
Fig. 1 - Sources for obtaining lignin used for experiments

Fig. 2 - Laboratory equipment for extracting lignin

The liquid obtained from the process containing dissolved lignin was then treated to precipitate lignin using cold acidified water (distilled water brought to pH = 2 using H₂SO₄). After incubation (2 h, 30°C, 150 rpm), the precipitated lignin was recovered after centrifugation in a benchtop centrifuge (at 5000 *g*, 20 min, room temperature).

After drying (45°C, 48 h), the lignin thus obtained was intended to be used as a capturing agent for microplastics. Another approach was to use water contaminated with microplastics to precipitate lignin, analysing in the end both the precipitated lignin and the supernatant obtained.

Microplastic particles preparation

The types of plastic used were high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS) and expanded polystyrene (EPS), collected from waste commercial packaging materials. Large pieces of plastic were used to obtain microplastic by sanding the plastic pieces using sand paper with a medium grit P40 (ISO 6344). Plastic samples thus obtained were mixed with water at a 1:20 ratio (Figure 3).

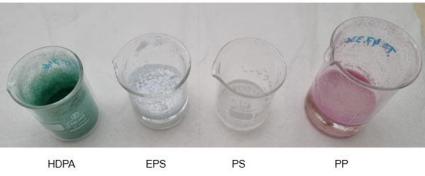


Fig. 3 - Plastic samples used for experiments

Microplastic particles characterization

A Brightfield OPTIKA B-50 microscope equipped with camera was used to determine the size of the different types of microplastics. The plastic-water solution was mixed and samples were placed on microscope slides and then observed using the 40x objective, taking pictures. Reference size images were taken using a 100 μ m wide object subjected to microscope observation (Figure 4). The images were processed using ImageJ.JS software version 11.

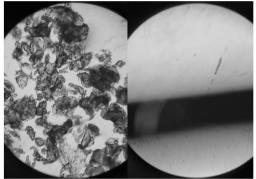


Fig. 4 - Plastic size analysis Left – Microscopic view of the Microplastic water solution microscopic; right – reference size picture

Microplastics removal by lignin assays

To determine the possibility of removing microplastic from water using lignin, microscope slides were covered with 0.5 g of the three types of lignin obtained, dried, and weighed (Figure 5). The microscope slides were submerged in the plastic-water suspension (contained 1 g of plastic in 500 ml demineralized water), prepared for each type of plastic and left inside the mix for two hours, in circular containers with 60 mm diameter, next creating a water current at 50 rpm using a magnetic agitator, in order for the plastic particles to flow through the solution. The slides were then removed, weighed and let to dry.

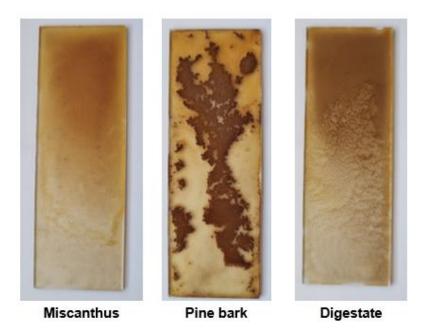


Fig. 5 - Slides covered with lignin samples

The dried slides were observed using the microscope to determine if the plastic particles adhered to the lignin particles for each type of plastic and each type of lignin separately.

A second test using the hydrolysate obtained directly from organosolv treatment which contained soluble lignin, was also carried in order to evaluate both lignin and plastic co-precipitation. For this method, 50 ml capacity falcons were used, adding 6.5 g of lignin solution (organosolv hydrolysate) to the falcon and 26 g of plastic containing-water 1:20 solution. The filled falcons (Figure 6) were set in the incubator at 30 °C for 2 h.

Fig. 6 - Falcons containing organosolv and plastic-water solution: Left – before centrifugation; right – after centrifugation

After incubation, the suspension was centrifuged as described above. The supernatant) was removed and weighed and the falcon with pellet was dried in oven (45° C, 48 h) and then weighed.

Table 1

RESULTS

Plastic particle size analysis

Using the particle size analysis software, 50 measurements were taken, the results being presented in Table 1.

Area Mean StdDev Min Max Perin. Angle Cir. Median Skew AR Pound Solidity Length No. µm ² µm ² µm µm <td< th=""><th></th><th></th><th></th><th></th><th></th><th>Pla</th><th>stic par</th><th>ticle siz</th><th>e anal</th><th>ysis resu</th><th>lts</th><th></th><th></th><th></th><th>Table</th></td<>						Pla	stic par	ticle siz	e anal	ysis resu	lts				Table
1 2634 118 37 55 202 546 -34 0 116 -0 0 0 Nah 566 2 1947 142 42 54 214 60 -37 0 151 -0 0 0 Nah 506 4 1214 61 14 38 90 248 -90 0 101 -0 0 Nah 248 5 1947 104 33 200 244 -40 0 914 -0 0 Nah 472 7 2586 26 27 0 170 278 -48 0 851 -0 0 Nah 476 11 135 133 33 37 166 276 -99 0 82 -0 0 Nah 476 12 412 143 38 32 44 165 268 -70		Area	Mean	StdDev	Min					•		AR	Round	Solidity	Length
1 1947 142 42 54 114 400 -37 0 151 -0 0 0 NaN 506 3 2451 137 28 102 155 566 -29 0 131 -0 0 0 NaN 206 5 1947 104 33 38 200 449 0 101 -0 0 0 NaN 404 6 2906 32 47 184 472 400 9 22 0 NaN 538 8 2954 28 26 12 136 12 140 0 51 0 0 0 NaN 400 11 1351 97 27 34 152 167 100 153 0 0 0 0 NaN 400 11 1351 90 13 10 15 10 10 <th< td=""><td>No.</td><td></td><td>μm²</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></th<>	No.		μm²		-	-				•					
3 2451 137 28 102 195 506 -29 0 131 -0 0 0 NaN 248 4 1214 61 14 38 96 248 -49 0 588 -0 0 0 NaN 440 6 2290 96 32 47 184 472 -40 0 94 -0 0 NaN 472 7 2588 58 18 26 12 51 136 278 -48 0 85 -0 0 NaN 478 10 135 93 37 166 276 -99 0 82 -0 0 NaN 476 11 135 93 37 166 28 -37 0 69 -0 0 NaN 475 14 143 38 24 165 286 -0 104 -															
4 1214 61 14 38 96 248 -49 0 50 50 0 0 NaN 404 5 1947 104 33 38 200 404 -40 0 94 -0 0 0 NaN 404 6 2260 66 32 27 0 170 538 -39 0 22 0 0 NaN 404 9 1351 87 22 51 136 276 0 0 20 0 0 NaN 400 11 1351 97 27 34 152 490 110 0 0 0 0 NaN 403 12 141 183 32 37 162 30 0 0 0 0 NaN 428 13 100 38 32 47 137 130 10 10									0		-0	0		NaN	
5 1947 104 33 38 200 470 470 0 941 -0 0 0 NAN 472 6 2290 96 32 47 184 472 -40 0 941 -0 0 0 NAN 538 8 2954 58 18 26 125 136 278 -48 0 85 -0 0 NAN 615 91351 93 39 37 166 276 -99 0 82 -0 0 0 NAN 470 12 413 33 38 48 184 276 -118 0 82 -0 0 0 NAN 473 13 140 475 148 435 -66 0 104 0 0 NAN 481 13 110 33 51 187 126 101 100															
6 2290 96 32 47 184 472 -40 0 94 -0 0 0 NaN 472 7 2588 26 27 0 170 538 -39 0 22 -0 0 0 NaN 472 9 1351 87 22 51 136 278 -48 0 85 -0 0 0 NaN 278 10 2597 77 34 152 490 -116 0 100 -0 0 NaN 276 11 1351 93 39 37 186 276 -99 0 82 -0 0 0 NaN 475 12 142 101 18 657 140 475 -152 0 103 -0 0 NaN 481 14 143 83 32 47 187 158 102 -0 0 NaN 482 15 2107 34 57									-						
7 2888 26 77 0 170 538 -39 0 22 -0 0 0 NAN 538 8 2954 58 18 26 142 615 -140 0 51 -0 0 0 NAN 278 10 2359 97 27 34 152 490 -116 0 100 -0 0 0 NAN 490 11 1351 37 275 34 152 490 -116 0 85 -0 0 0 NAN 490 11 1433 32 44 166 298 -37 0 69 -0 0 0 NAN 428 15 2107 109 38 48 184 435 -66 0 1042 -0 0 NAN 428 16 962 107 34 57 187 152 0 103 -0 0 NAN 163 17 100															
8 2954 58 18 22 51 130 278 448 0 85 -0 0 0 NaN 278 10 2359 97 27 34 152 490 116 0 100 -0 0 0 NaN 278 11 1351 93 39 37 186 276 -99 0 82 -0 0 0 NaN 276 12 412 101 18 68 132 84 -311 1 105 0 0 0 NaN 475 14 143 83 32 44 165 266 0 104 -0 0 0 NaN 475 14 143 83 32 57 187 155 113 104 0 0 0 NaN 475 18 102 110 39 51 187<															
9 1351 97 27 51 136 278 -48 0 85 -0 0 0 NaN 278 10 2359 97 27 34 152 490 -116 0 100 -0 0 0 NaN 490 11 1551 93 39 37 186 278 -31 1 105 -0 0 0 NaN 84 13 2209 90 18 57 140 475 -118 0 85 -0 0 0 NaN 425 15 2107 109 38 48 184 435 -66 0 103 -0 0 NaN 435 16 962 107 34 57 147 152 1 113 0 NaN 426 18 802 110 32 87 199 77 150									-		-		-		
10 2359 97 27 34 152 490 -116 0 100 -0 0 NaN 490 11 1351 93 39 37 166 276 -99 0 82 -0 0 0 NaN 84 13 2290 90 18 57 140 475 -118 0 85 -0 0 0 NaN 84 14 1443 83 32 44 166 298 -37 0 69 -0 0 NaN 435 15 2107 109 38 48 187 -155 0 103 -0 0 NaN 435 16 962 110 32 59 11 155 -152 0 102 -0 0 NaN 163 17 1305 110 39 55 204 163 -118 0 102 -0 0 NaN 163 12 164 95 85 <td></td>															
11 1351 93 39 37 186 276 -99 0 82 -0 0 NaN 276 12 1412 101 18 68 132 84 -31 1 105 -0 0 NaN 84 14 143 83 32 44 166 298 -37 0 69 -0 0 NaN 298 15 2107 109 38 48 184 435 -66 0 104 -0 0 NaN 435 16 962 107 34 57 187 158 90 0 102 -0 0 NaN 288 17 1305 110 32 59 211 163 58 0 102 -0 0 NaN R63 180 111 39 55 204 163 118 0 91 -0 0 NaN 163 12 1612 111 39 55 175 <td></td>															
12 412 101 18 68 132 84 -31 1 105 -0 0 NaN 84 13 2290 90 18 57 140 475 -118 0 85 -0 0 0 NaN 475 14 1443 83 32 44 166 286 -37 0 69 0 0 NaN 435 16 962 107 34 57 187 195 -152 0 103 -0 0 NaN 435 17 1305 110 32 59 211 163 -58 0 102 -0 0 NaN 82 18 802 110 32 59 211 163 -118 0 109 -0 0 NaN 82 22 2061 72 23 39 171 427 -56 0 63 -0 0 NaN 412 1512 119 47 37 <td></td>															
13 2290 90 18 57 140 475 -118 0 85 -0 0 0 NAN 279 14 1443 83 32 44 166 298 -37 0 69 -0 0 0 NAN 299 15 2107 34 57 187 195 -152 0 103 -0 0 0 NAN 435 16 962 110 32 59 111 155 -58 0 0 0 NAN 163 18 02110 32 59 185 -58 0 0 0 NAN 82 20 389 138 32 87 199 77 -150 1 118 -0 0 NAN 163 21 1512 194 72 23 39 171 427 -56 0 63 -0 0 NAN 310 22 2111 94 74 73 0									-						
14 1443 83 32 44 166 298 -37 0 69 -0 0 NaN 298 15 2107 109 38 48 184 435 -66 0 104 -0 0 0 NaN 435 16 962 107 34 57 187 155 10 102 -0 0 0 NaN 268 18 802 110 32 59 211 163 -58 0 102 -0 0 NaN 826 19 412 119 20 86 163 82 -126 1 118 -0 0 NaN 826 20 389 138 32 87 199 77 -150 1 145 -0 0 NaN 427 21 100 172 23 39 117 477 56 0 63 -0 0 NaN 315 22 156 168 26 <td></td>															
15 2107 109 38 48 184 435 -66 0 104 -0 0 0 NAN 435 16 962 107 34 57 187 195 -152 0 103 -0 0 0 NAN 125 17 1305 110 32 59 211 163 -58 0 102 -0 0 0 NAN 163 19 412 119 20 86 163 82 -126 1 118 -0 0 0 NAN 82 20 892 138 32 87 199 77 -150 1 145 0 0 NAN 163 21 802 111 39 55 204 163 -118 0 109 -0 0 NAN 427 23 1534 95 185 315 -138 0 170 -0 0 NAN 426 151 151 153															
16 962 107 34 57 187 195 -152 0 103 -0 0 0 NAN 195 17 1305 110 39 51 187 268 -00 0 102 -0 0 0 NAN 268 18 021 110 32 59 211 163 -58 0 102 -0 0 NAN 82 20 389 138 32 87 199 77 -150 1 145 -0 0 NAN 77 21 802 111 39 55 204 163 -118 0 91 -0 0 NAN 163 22 150 172 39 171 427 -56 0 0 0 0 NAN 310 25 1508 163 150 167 43 0 85 -0									_		-		-		
17 1305 110 39 51 187 268 -90 0 102 -0 0 0 NaN 163 18 802 110 32 59 211 163 -58 0 102 -0 0 0 NaN 163 20 389 138 32 87 199 77 -150 1 145 -0 0 0 NaN 77 21 802 171 39 55 204 163 -118 0 109 -0 0 0 NaN 427 22 2061 72 23 39 171 427 -56 0 63 -0 0 0 NaN 315 24 1512 194 47 37 206 310 -9 0 113 -0 0 NaN 310 25 1008 168 20 316 157 -74 0 83 -0 0 NaN 163 26															
18 802 110 32 59 211 163 -58 0 102 -0 0 0 NaN 163 19 412 119 20 86 163 82 -126 1 118 -0 0 0 NaN 82 20 389 138 32 87 199 77 -150 1 145 -0 0 0 NaN 77 23 1534 95 28 59 185 315 -138 0 91 -0 0 NaN 310 24 1512 19 47 37 206 310 -9 0 113 -0 0 NaN 310 25 1008 168 20 119 204 206 3 0 170 -0 0 NaN 467 26 68 20 119 204 206 35															
19 412 119 20 86 163 82 -126 1 118 -0 0 NaN 77 20 389 138 32 87 199 77 -150 1 145 -0 0 0 NaN 77 21 802 111 39 55 204 163 -118 0 109 -0 0 0 NaN 427 22 2061 72 23 39 171 427 -56 0 63 -0 0 NaN 427 23 153 95 28 59 185 315 -138 0 91 -0 0 NaN 427 25 1008 168 20 119 204 206 3 0 170 -0 0 NaN 427 26 108 15 85 153 597 -74 0 83 -0 0 NaN 187 28 916 108 15															
20 389 138 32 87 199 77 -150 1 145 -0 0 NaN 77 21 802 111 39 55 204 163 -118 0 109 -0 0 0 NaN 163 22 2061 72 23 39 171 427 -56 0 63 -0 0 0 NaN 427 23 1534 95 28 59 185 315 -138 0 91 -0 0 NaN 315 24 1512 119 47 37 206 310 -9 0 113 -0 0 NaN 206 26 267 89 23 51 153 457 -74 0 83 -0 0 NaN 1132 28 916 108 15 85 136 187 -90 0 132 -0 0 NaN 1132 29 5451 64 <td></td>															
21 802 111 39 55 204 163 -118 0 109 -0 0 0 NaN 427 23 1534 95 28 59 185 315 -138 0 91 -0 0 0 NaN 427 23 1534 95 28 59 185 315 -138 0 91 -0 0 0 NaN 315 24 1512 119 47 37 206 3 0 170 -0 0 0 NaN 206 26 266 89 23 51 153 467 -43 0 85 -0 0 NaN 467 27 288 64 26 36 187 -90 0 102 -0 0 NaN 1132 29 5451 64 29 34 167 172 2 0 70 0 0 NaN 1132 30 4161 69															
22 2061 72 23 39 171 427 -56 0 63 -0 0 NaN 427 23 1534 95 28 59 185 315 -138 0 91 -0 0 0 NaN 315 24 1512 119 47 37 206 310 -9 0 113 -0 0 0 NaN 316 25 1008 168 20 119 206 3 0 170 -0 0 0 NaN 4067 26 2267 89 23 51 153 597 -74 0 83 -0 0 NaN 427 28 916 108 15 85 136 187 -90 0 102 -0 0 NaN 187 29 5451 64 29 34 161 717 122 0 70 0 0 NaN 187 29 161 132															
23 1534 95 28 59 185 315 -138 0 91 -0 0 NaN 315 24 1512 119 47 37 206 310 -9 0 113 -0 0 NaN 310 25 1008 168 20 119 204 206 3 0 170 -0 0 0 NaN 206 26 2267 89 23 51 153 467 -74 0 83 -0 0 NaN 467 27 2886 84 26 36 153 597 -74 0 83 -0 0 NaN 187 28 916 108 15 85 136 187 -90 0 102 -0 0 NaN 187 29 5451 64 29 34 161 870 53 0 132 -0 0 NaN 185 31 916 132 26 <td></td>															
24 1512 119 47 37 206 310 -9 0 113 -0 0 0 NaN 310 25 1008 168 20 119 204 206 3 0 170 -0 0 0 NaN 206 26 2267 89 23 51 153 467 -43 0 85 -0 0 0 NaN 467 27 2886 84 26 36 153 597 -74 0 83 -0 0 0 NaN 187 28 916 108 15 85 136 187 -90 0 102 -0 0 NaN 187 29 5451 64 29 34 161 870 53 0 132 -0 0 NaN 187 30 4191 69 24 34 161 870 53 0 132 -0 0 NaN 152 31															
25 1008 168 20 119 204 206 3 0 170 -0 0 0 NAN 206 26 2267 89 23 51 153 467 -43 0 85 -0 0 0 NAN 467 27 2886 84 26 36 153 597 -74 0 83 -0 0 0 NAN 597 28 916 108 15 85 136 187 -90 0 102 -0 0 NAN 187 29 5451 64 29 34 187 1132 -163 0 53 -0 0 NAN 187 30 4191 69 24 34 161 870 57 0 64 -0 0 NAN 185 31 916 132 26 68 184 185 -57 0 85 -0 0 NAN 595 32 865															
26 2267 89 23 51 153 467 -43 0 85 -0 0 0 NaN 467 27 2886 84 26 36 153 597 -74 0 83 -0 0 0 NaN 597 28 916 108 15 85 136 187 -90 0 102 -0 0 0 NaN 187 29 5451 64 29 34 161 870 5 0 64 -0 0 NaN 187 30 4191 69 24 34 161 870 5 0 132 -0 0 NaN 185 31 916 132 26 68 184 185 -53 0 132 -0 0 NaN 185 32 847 73 16 51 117 172 2 0 100 -0 0 NaN 552 34 2657 <															
27 2886 84 26 36 153 597 -74 0 83 -0 0 0 NAN 597 28 916 108 15 85 136 187 -90 0 102 -0 0 0 NAN 187 29 5451 64 29 34 161 870 5 0 64 -0 0 0 NAN 1132 30 4191 69 24 34 161 870 5 0 64 -0 0 0 NAN 870 31 916 132 26 68 184 185 -53 0 132 -0 0 0 NAN 172 32 847 73 16 51 117 172 2 0 61 -0 0 0 NAN 552 33 2863 84 26 35 136 552 -142 0 61 -0 0 NAN 152								-	-		-				
28 916 108 15 85 136 187 -90 0 102 -0 0 0 NaN 1132 29 5451 64 29 34 187 1132 -163 0 53 -0 0 0 NaN 1132 30 4191 69 24 34 161 870 5 0 64 -0 0 0 NaN 870 31 916 132 26 68 184 185 -53 0 132 -0 0 0 NaN 187 32 847 73 16 51 117 172 2 0 70 -0 0 NaN 555 34 2657 70 28 34 156 552 -142 0 61 -0 0 NaN 552 35 1672 102 32 51 187 345 2 0 100 -0 0 NaN 278 37															
29 5451 64 29 34 187 1132 -163 0 53 -0 0 0 NaN 1132 30 4191 69 24 34 161 870 5 0 644 -0 0 0 NaN 870 31 916 132 26 68 184 185 -53 0 132 -0 0 0 NaN 185 32 847 73 16 51 117 172 2 0 70 -0 0 0 NaN 172 33 2863 84 26 35 136 595 -77 0 85 -0 0 0 NaN 595 34 2657 70 28 34 156 552 -142 0 61 -0 0 NaN 345 36 1351 101 37 34 187 278 9 0 172 -0 0 NaN 410 <															
30 4191 69 24 34 161 870 5 0 64 -0 0 0 NaN 870 31 916 132 26 68 184 185 -53 0 132 -0 0 0 NaN 185 32 847 73 16 51 117 172 2 0 70 -0 0 0 NaN 172 33 2863 84 26 35 136 595 -77 0 85 -0 0 0 NaN 595 34 2657 70 28 34 156 552 -142 0 61 -0 0 0 NaN 355 35 1672 102 32 51 187 278 -94 0 91 -0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 NaN 512									-		-	_	-		
31 916 132 26 68 184 185 -53 0 132 -0 0 0 NaN 185 32 847 73 16 51 117 172 2 0 70 -0 0 0 NaN 172 33 2863 84 26 35 136 595 -77 0 85 -0 0 0 NaN 595 34 2657 70 28 34 156 552 -142 0 61 -0 0 NaN 552 35 1672 102 32 51 187 345 2 0 100 -0 0 NaN 345 36 1351 101 37 34 187 278 -94 0 91 -0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 NaN 212 39 1145															
32 847 73 16 51 117 172 2 0 70 -0 0 0 NaN 172 33 2863 84 26 35 136 595 -77 0 85 -0 0 0 NaN 595 34 2657 70 28 34 156 552 -142 0 61 -0 0 0 NaN 552 35 1672 102 32 51 187 345 2 0 100 -0 0 0 NaN 345 36 1351 101 37 34 187 278 -94 0 91 -0 0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 0 NaN 212 39 1145 115 29 53 175 235 -27 0 113 -0 0 NaN 212															
33 2863 84 26 35 136 595 -77 0 85 -0 0 0 NaN 595 34 2657 70 28 34 156 552 -142 0 61 -0 0 0 NaN 552 35 1672 102 32 51 187 345 2 0 100 -0 0 0 NaN 345 36 1351 101 37 34 187 278 -94 0 91 -0 0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 NaN 212 39 1145 115 29 53 175 235 -27 0 113 -0 0 NaN 225 40 1328 135 32 68 203 272 10 134 -0 0 NaN 449 42 2176															
34 2657 70 28 34 156 552 -142 0 61 -0 0 0 NaN 552 35 1672 102 32 51 187 345 2 0 100 -0 0 0 NaN 345 36 1351 101 37 34 187 278 -94 0 91 -0 0 0 NaN 278 37 1992 166 35 85 213 410 -138 0 172 -0 0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 NaN 252 39 1145 115 29 53 175 235 -27 0 113 -0 0 NaN 252 40 1328 135 32 68 203 272 10 0 134 -0 0 NaN 449 42									-						
35 1672 102 32 51 187 345 2 0 100 -0 0 0 NaN 345 36 1351 101 37 34 187 278 -94 0 91 -0 0 0 NaN 278 37 1992 166 35 85 213 410 -138 0 172 -0 0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 0 NaN 235 39 1145 115 29 53 175 235 -27 0 113 -0 0 0 NaN 235 40 1328 135 32 68 203 272 10 0 134 -0 0 NaN 2472 41 756 149 29 101 212 152 -13 0 150 -0 0 NaN 449 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>															
36 1351 101 37 34 187 278 -94 0 91 -0 0 0 NaN 278 37 1992 166 35 85 213 410 -138 0 172 -0 0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 0 NaN 512 39 1145 115 29 53 175 235 -27 0 113 -0 0 0 NaN 235 40 1328 135 32 68 203 272 10 0 134 -0 0 NaN 272 41 756 149 29 101 212 152 -13 0 150 -0 0 NaN 449 42 2176 100 36 39 181 449 129 0 98 -0 0 N NaN 232 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>															
37 1992 166 35 85 213 410 -138 0 172 -0 0 0 NaN 410 38 2473 95 35 39 187 512 -48 0 91 -0 0 0 NaN 512 39 1145 115 29 53 175 235 -27 0 113 -0 0 0 NaN 235 40 1328 135 32 68 203 272 10 0 134 -0 0 0 NaN 272 41 756 149 29 101 212 152 -13 0 150 -0 0 NaN 449 42 2176 100 36 39 181 449 129 0 98 -0 0 NaN 449 43 2107 141 32 74 204 434 -14 0 136 -0 0 NaN 282 45 </td <td></td>															
38 2473 95 35 39 187 512 -48 0 91 -0 0 0 NaN 512 39 1145 115 29 53 175 235 -27 0 113 -0 0 0 NaN 235 40 1328 135 32 68 203 272 10 0 134 -0 0 0 NaN 235 41 756 149 29 101 212 152 -13 0 150 -0 0 0 NaN 152 42 2176 100 36 39 181 449 129 0 98 -0 0 0 NaN 449 43 2107 141 32 74 204 434 -14 0 136 -0 0 NaN 434 44 1374 72 23 46 153 282 -40 0 70 -0 0 NaN 272															
39 1145 115 29 53 175 235 -27 0 113 -0 0 0 NaN 235 40 1328 135 32 68 203 272 10 0 134 -0 0 0 NaN 272 41 756 149 29 101 212 152 -13 0 150 -0 0 0 NaN 272 42 2176 100 36 39 181 449 129 0 98 -0 0 0 NaN 449 43 2107 141 32 74 204 434 -14 0 136 -0 0 NaN 434 44 1374 72 23 46 153 282 -40 0 70 -0 0 NaN 282 45 1328 86 24 51 149 272 -64 0 86 -0 0 NaN 272 46													-		
40 1328 135 32 68 203 272 10 0 134 -0 0 0 NaN 272 41 756 149 29 101 212 152 -13 0 150 -0 0 0 NaN 152 42 2176 100 36 39 181 449 129 0 98 -0 0 0 NaN 449 43 2107 141 32 74 204 434 -14 0 136 -0 0 0 NaN 434 44 1374 72 23 46 153 282 -40 0 70 -0 0 NaN 282 45 1328 86 24 51 149 272 -64 0 86 -0 0 NaN 272 46 2451 99 32 51 204 505 -62 0 91 -0 0 NaN 225 47															
4175614929101212152-130150-000NaN1524221761003639181449129098-000NaN4494321071413274204434-140136-000NaN434441374722346153282-40070-000NaN282451328862451149272-64086-000NaN272462451993251204505-62091-000NaN2054710991213260185225-270117-000NaN404498021203756186163-1520114-000NaN163															
4221761003639181449129098-000NaN4494321071413274204434-140136-000NaN434441374722346153282-40070-000NaN282451328862451149272-64086-000NaN272462451993251204505-62091-000NaN5054710991213260185225-270117-000NaN2254819471154247216404-1740114-000NaN404498021203756186163-1520114-000NaN163															
43 2107 141 32 74 204 434 -14 0 136 -0 0 0 NaN 434 44 1374 72 23 46 153 282 -40 0 70 -0 0 0 NaN 282 45 1328 86 24 51 149 272 -64 0 86 -0 0 0 NaN 282 46 2451 99 32 51 204 505 -62 0 91 -0 0 0 NaN 505 47 1099 121 32 60 185 225 -27 0 117 -0 0 0 NaN 225 48 1947 115 42 47 216 404 -174 0 114 -0 0 NaN 404 49 802 120 37 56 186 163 -152 0 114 -0 0 NaN 163 <td></td>															
44 1374 72 23 46 153 282 -40 0 70 -0 0 0 NaN 282 45 1328 86 24 51 149 272 -64 0 86 -0 0 0 NaN 272 46 2451 99 32 51 204 505 -62 0 91 -0 0 0 NaN 505 47 1099 121 32 60 185 225 -27 0 117 -0 0 0 NaN 225 48 1947 115 42 47 216 404 -174 0 114 -0 0 NaN 404 49 802 120 37 56 186 163 -152 0 114 -0 0 NaN 163															
451328862451149272-64086-000NaN272462451993251204505-62091-000NaN5054710991213260185225-270117-000NaN2254819471154247216404-1740114-000NaN404498021203756186163-1520114-000NaN163															
462451993251204505-62091-000NaN5054710991213260185225-270117-000NaN2254819471154247216404-1740114-000NaN404498021203756186163-1520114-000NaN163															
4710991213260185225-270117-000NaN2254819471154247216404-1740114-000NaN404498021203756186163-1520114-000NaN163															
48 1947 115 42 47 216 404 -174 0 114 -0 0 0 NaN 404 49 802 120 37 56 186 163 -152 0 114 -0 0 0 NaN 163															
49 802 120 37 56 186 163 -152 0 114 -0 0 0 NaN 163															

Regardless of the plastic type, it was found that the minimum length of plastic particles was 77 μ m, the smallest total area of 389 μ m² and the maximum length was 1132 μ m with an area of 5451 μ m. The average length was 362 μ m with a total area of 1755 μ m.

Plastic removal

The dried slides covered with lignin and then submerged in plastic-water solution were observed under the microscope and the images taken were analysed (Figure 7), showing that the smaller plastic particles adhered to the lignin particles, which could mean that there is good potential for using lignin as water cleaning agent for water contaminated with microplastic.

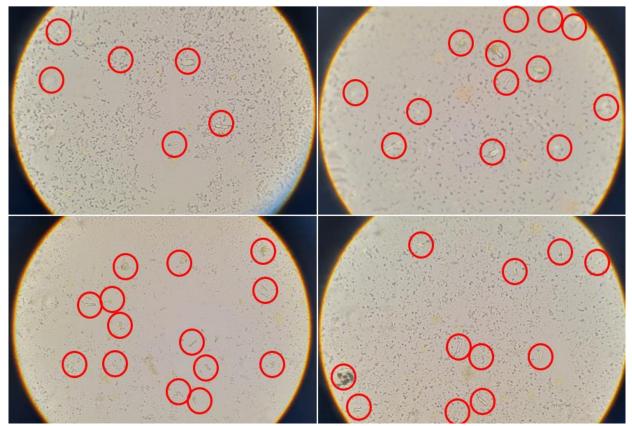


Fig. 7 - Plastic captured in lignin solution

The results from calculating the percentage of plastic removed from the plastic-water solution using lignin as a capture agent are shown in Figure 8.

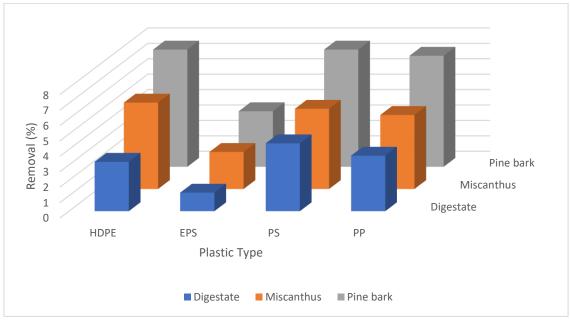


Fig. 8 - Microplastic removal as a function of plastic type and lignin origin

Table 2

Analysing the data in Figure 8, it was found that the best results were obtained in the case of pine bark lignin and the weakest plastic removal was in the case of digestate lignin, for all the types of plastics used. Also, expanded PS adhered the least to the lignin surface for all types of lignin.

The results from calculating the amount of plastic captured in the lignin by using the plastic-water solution to precipitate the lignin are shown in Table 2 and figure 9.

Lignin types	Plastic types	Falcon	Organosolv	Plastic water solution	Filled falcon	Supernatant	Falcon + precipitate	in the	Percentage of plastic captured	
		g	g	g	g	g	g	g	%	
	HDPA	13.76	6.51	26.05	46.32	26.13	20.19	0.076	5.80	
Miscanthus	PS	13.93	6.51	26.05	46.49	26.09	20.40	0.036	2.80	
sp.	PS	13.75	6.5	26.04	46.29	26.11	20.18	0.069	5.29	
	PP	13.75	6.62	26.04	46.41	26.11	20.30	0.075	5.75	
	HDPA	13.92	6.51	26.05	46.48	26.14	20.34	0.089	6.80	
Pine bark	PS	13.81	6.51	26.06	46.38	26.10	20.28	0.038	2.90	
Pine bark	PS	13.78	6.5	26.05	46.33	26.13	20.20	0.080	6.14	
	PP	13.81	6.51	26.05	46.37	26.16	20.21	0.108	8.30	
	HDPA	13.84	6.52	26.06	46.42	26.07	20.35	0.014	1.10	
Dissoctato	PS	13.84	6.51	26.04	46.39	26.05	20.34	0.007	0.55	
Digestate	PS	13.76	6.52	26.05	46.33	26.07	20.26	0.020	1.55	
	PP	13.74	6.51	26.04	46.29	26.05	20.24	0.008	0.65	

Results from calculating the amount of plastic captured in the lignin after precipitation

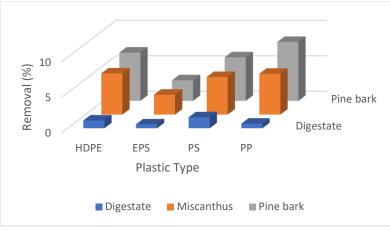


Fig. 9 - Microplastic removal from the lignin after precipitation

Analysing the data in Table 2 and Figure 9, it was found that the best results were obtained again in the case of pine bark and *Miscanthus sp.* lignin and the weakest plastic removal was in the case of digestate lignin, for all the types of plastics used. Also, expanded PS adhered the least to the lignin surface for all types of lignin. An explanation for which the percentages of plastic captured in the digestate lignin is even lower than in the case of lignin covered slides is because the digestate had a lower lignin content than *Miscanthus sp.* and pine bark, therefore, the organosolv used for precipitation had less lignin in which the plastic could be captured.

Overall, from the experiments performed to evaluate how plastic particles adhere to lignin, it was found that lignin had the capacity to capture plastic particles both in the solid lignin part after precipitation and centrifugation, but also in the supernatant obtained, leading to the conclusion that contaminated water can be used for lignin precipitation, reducing clean water consumption for obtaining lignin.

As microplastic removal using lignin has only been researched using lignin to form larger flocs that need to be subsequently removed (*Sacco et al., 2023*), the method proposed in this paper represents a novel approach for wastewater treatment and additional research is needed to further explore the effectiveness of lignin to capture microplastic particles from wastewater.

CONCLUSIONS

Microplastic poses a real threat to both humans and animals, because it can be easily ingested. Microplastic presents in wastewater or even water that is considered fresh is difficult to capture because of its size and floatability. The paper proposed a preliminary study on the possibility to use lignin as an agent for capturing microplastic particles from water by using two methods: the use of lignin as a passive filter for plastic contaminated water and the use of plastic contaminated water to precipitate lignin.

Lignin from three types of sources (*Miscanthus sp.*, pine bark and digestate) was used and the experiments were conducted using water contaminated with four types of plastic (high-density polyethylene, polypropylene, polystyrene and expanded polystyrene).

Both methods showed good preliminary results, plastic being captured in the lignin for both methods in all the samples examined, leading to the conclusion that lignin has potential for removing microplastic particles from wastewater.

ACKNOWLEDGEMENT

This work was partially supported under the BRISK2 project that has received funding from the European Union's Horizon 2020's Research and Innovation Programme under Grant Agreement number 731101, and by the Romanian Ministry of Research Innovation and Digitalization, through Programme 1 - Development of the national research-development system, Subprogramme 1.2 - Institutional performance - Projects for financing excellence in RDI, Contract no. 1PFE/30.12.2021. The work was partially carried out at the Biomass and Bioenergy Research Infrastructure (BBRI), funded by the BBRI-LISBOA-01-0145-FEDER-022059 project that is supported by the Operational Programme for Competitiveness and Internationalization (PORTUGAL2020), by Lisbon Portugal Regional Operational Programme (Lisboa 2020) and by North Portugal Regional Operational Programme (Norte 2020) under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

REFERENCES

- Bayo, J.; Olmos, S.; López-Castellanos, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. *Chemosphere, 238*, 124593, https://doi.org/10.1016/j.chemosphere.2019.124593.
- Belioka, M.-P.; Achilias, D.S. (2023). Microplastic Pollution and Monitoring in Seawater and Harbor Environments: A Meta-Analysis and Review. Sustainability, 15, 9079. https://doi.org/10.3390/su15119079.
- [3] Bergmann, M.; Gutow, L.; Klages, M. (2015). Marine Anthropogenic Litter. Springer. ISBN 978-3-319-16510-3, DOI 10.1007/978-3-319-16510-3.
- [4] Carvalheiro, F.; Duarte, L.C.; Pires, F.; Van-Dúnem, V.; Sanfins, L.; Roseiro, L.B.; Gírio, F. (2022). Effective Mild Ethanol-Based Organosolv Pre-Treatment for the Selective Valorization of Polysaccharides and Lignin from Agricultural and Forestry Residues. *Energies*, 15, 5654. doi.org/10.3390/en15155654.
- [5] Collignon, A.; Hecq, J.-H.; Galgani, F.; Collard, F.; Goffart, A. (2014). Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean–Corsica), *Marine Pollution Bulletin Volume 79, Issues 1–2*, 293-298.
- [6] Crawford, C.B.; Quinn, B. (2016). Microplastic Pollutants (first ed.), *Elsevier Science. Volume 79, Issues* 1–2, 293-298, ISBN: 9780128104699https://doi.org/10.1016/j.marpolbul.2013.11.023.
- [7] Crawford, C.B.; Quinn, B. (2017). Microplastic separation techniques, *Microplastic Pollutants*, 203-218, https://doi.org/10.1016/B978-0-12-809406-8.00009-8.
- [8] Danso, D.; Chow, J.; Streit, W.R. (2018). Plastics: Environmental and biotechnological perspectives on microbial degradation. *Appl. Environ. Microbiol.*, 85 (19), e01095-19, https://doi.org/10.1128/AEM.01095-19.
- [9] Ekielski, A; Mishra, P.K. Lignin for Bioeconomy: The Present and Future Role of Technical Lignin. Int. J. Mol. Sci. 2021, 22, 63. https://doi.org/10.3390/ijms22010063.
- [10] Felsing, S.; Kochleus, C.; Buchinger, S.; Brennholt, N.; Stock, F.; Reifferscheid, G. (2018). A new approach in separating microplastics from environmental samples based on their electrostatic behavior. *Environ. Pollut. 234:* 20-28. doi: 10.1016/j.envpol.2017.11.013.

- [11] Geyer, R.; Jambeck, J.R.; Law, K.L. (2017) "Production, Use, and Fate of All Plastics Ever Made. Science Advances 3, no. 7: e1700782, https://dx.doi.org/10.1126/sciadv.1700782.
- [12] Gosselink, R. J. A. (2011). Lignin as a renewable aromatic resource for the chemical industry. *Doctoral Thesis*, Wageningen University, Wageningen, NL.
- [13] Gupta A, Sharma V, Sharma K, Kumar V, Choudhary S, Mankotia P, Kumar B, Mishra H, Moulick A, Ekielski A, et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials. 2021; 14(16):4702. https://doi.org/10.3390/ma14164702
- [14] Jaiswal, S.; Sharma, B.; Skukla, P. (2020). Integrated approaches in microbial degradation of plastics. Environmental Technology & Innovation, Volume 17, 100567, https://doi.org/10.1016/j.eti.2019.100567
- [15] Jeong, C.B.; Won, E.J.; Kang, H.M.; Lee, M.C.; Hwang, D.S.; Zhou, B.; Souissi, S.; Lee, S.J; Lee, J.S. (2016). Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus), *Environ. Sci. Technol., 50, 16*, 8849–8857, https://doi.org/10.1021/acs.est.6b01441.
- [16] Kefer, S.; Miesbauer, O.; Langowski, H.-C. (2021). Environmental Microplastic Particles vs. Engineered Plastic Microparticles—A Comparative Review. *Polymers*, 13(17), 2881; https://doi.org/10.3390/polym13172881.
- [17] Koelmans, A.A.; Nor, N.H.M.; Hemrsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. *Water Res.* 155: 410– 422. doi: 10.1016/j.watres.2019.02.054.
- [18] Kokkilic, O.; Mohammadi-Jam, S.; Chu, P.; Marion, C.; Yang, Y.; Waters, K. (2022). Separation of plastic wastes using froth flotation – An overview, *Advances in Colloid and Interface Science Volume 308*, 102769, https://doi.org/10.1016/j.cis.2022.102769.
- [19] Kyrikou, I.; Briassoulis, D. (2007). Biodegradation of Agricultural Plastic Films: A Critical Review. J Polym Environ 15:125–150, DOI 10.1007/s10924-007-0053-8.
- [20] Liu, F.; Nord, N.B.; Bester, K.; Vollertsen, J.; (2020). Microplastics Removal from Treated Wastewater by a Biofilter. Water, 12(4), 1085; https://doi.org/10.3390/w12041085.
- [21] Lusher, A.; Hollman, P.; Mendoza-Hill, J. (2017). Microplastics in fisheries and aquaculture Status of knowledge on their occurrence and implications for aquatic organisms and food safety. Food and Agriculture Organization of the United Nations, Rome, ISBN 978-92-5-109882-0.
- [22] Martins, M. M.; Carvalheiro, F.; Gírio, F. (2022). An overview of lignin pathways of valorization: from isolation to refining and conversion into value-added products. *Biomass Convers. Bior.* doi.org/10.1007/s13399-022-02701-z.
- [23] Moharir, R.V.; Kumar, S. (2019). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review, *Journal of Cleaner Production, Volume* 208, 65-76, https://doi.org/10.1016/j.jclepro.2018.10.059.
- [24] Morioka, T.; Tanaka, S.; Yamada, Y.; Yukioka, S.; Aiba, F. (2023). Quantification of microplastic by particle size down to 1.1 μm in surface road dust in an urban city, Japan, *Environmental Pollution, Vol. 334,* 122198, https://doi.org/10.1016/j.envpol.2023.122198.
- [25] Rochman, C., Hoh, E., Kurobe, T.; The, S.J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. *Sci Rep* 3, 3263. https://doi.org/10.1038/srep03263.
- [26] Sembiring, E.; Fajar, M.; Handajani, M. (2021). Performance of rapid sand filter single media to remove microplastics, *Water Supply 21 (5): 2273–2284*, https://doi.org/10.2166/ws.2021.060.
- [27] Sturm, M.T.; Horn, H.; Schuhen, K. (2021). Removal of Microplastics from Waters through Agglomeration-Fixation Using Organosilanes—Effects of Polymer Types, Water Composition and Temperature. *Water, 13,* 675. https://doi.org/10.3390/w13050675.
- [28] Tadsuwan, K.; Babel, S. (2022). Microplastic abundance and removal via an ultrafiltration system coupled to a conventional municipal wastewater treatment plant in Thailand. *Journal of Environmental Chemical Engineering, Volume 10, Issue 2*, 107142, https://doi.org/10.1016/j.jece.2022.107142.
- [29] Wang, C.; Wang, H.; Fu, J.; Liu, Y. (2015). Flotation separation of waste plastics for recycling—A review. *Waste Management Volume 41,* 28-38, https://doi.org/10.1016/j.wasman.2015.03.027.
- [30] Zeenat Elahi, A.; Bukhari, D. A.; Shamim, S.; Rehman, A.; (2021). Plastics degradation by microbes: A sustainable approach, *Journal of King Saud University – Science, Volume 33, Issue 6*, 101538, https://doi.org/10.1016/j.jksus.2021.101538.

- [31] Zhang, Z.; Harrison, M. D.; Rackemann, D. W.; Doherty, W. O. S.; O'Hara, I. M. (2016). Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. *Green Chem.* 18, (2), 360-381.
- [32] Zhang, C., Zhang, D. (2021). Microplastics. In: Cui, W., Fu, S., Hu, Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_318-1.
- [33] Ziani, K.; Ioniţă-Mîndrican, C.B.; Mititelu, M.; Neacşu, S.M.; Negrei, C.; Moroşan, E.; Drăgănescu, D.; Preda, O.T. (2023). Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. *Nutrients. Jan 25;15(3):617.* doi: 10.3390/nu15030617.