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ABSTRACT 

Quality assessment of apples is a pivotal task in the agriculture and food industries, with direct implications for 

economic gains and consumer satisfaction. Traditional methods, whether manual, mechanical or 

electromechanical, face challenges in terms of labor intensity, speed, and quality control. This paper introduces 

a solution using machine learning algorithms – specifically, Convolutional Neural Networks (CNNs) – for a 

more nuanced and efficient apple quality assessment. Our approach offers a balance between the high-speed 

capabilities of electromechanical sorting and the detailed recognition achievable with human evaluation. A 

dataset consisting of over 2000 apple images, labeled as 'Good' or 'Damaged', was compiled for training and 

validation purposes. The paper investigates various architectures and hyperparameter settings for several 

CNN models to optimize performance metrics, such as accuracy, precision, and recall. Preliminary evaluations 

indicate that the MobileNet and Inception models yield the highest levels of accuracy, emphasizing the potential 

of machine learning algorithms to significantly enhance apple quality assessment processes. Such 

improvements can lead to greater efficiency, reduced labor costs, and more rigorous quality control measures. 

 

REZUMAT 

Evaluarea calității merelor este o sarcină esențială în industriile agricole și alimentare, cu implicații directe 

asupra câștigurilor economice și a satisfacției consumatorilor. Metodele tradiționale, fie manuale, mecanice 

sau electromecanice se confruntă cu provocări în ceea ce privește efortul considerabil de muncă, viteza și 

controlul calității. Această lucrare propune o soluție care utilizează algoritmi de învățare automată – mai exact, 

rețele neuronale convolutive (CNN) – pentru o evaluare mai fină și mai eficientă a calității merelor. Abordarea 

noastră oferă un echilibru între capacitățile de sortare cu viteză mare ale metodelor electromecanice și 

recunoașterea detaliată realizabilă cu evaluarea umană. A fost compilat în scopuri de antrenare și validare un 

set de date compus din peste 2000 de imagini cu mere, fiecare măr fiind etichetat ca 'Bun' sau 'Stricat'. 

Lucrarea investighează diverse arhitecturi și configurări ale hiperparametrilor pentru mai multe modele de CNN 

în scopul optimizării indicatorilor de performanță (acuratețea, precizia, recall-ul). Evaluările preliminare indică 

faptul că modelele MobileNet și Inception oferă cele mai înalte niveluri de acuratețe, subliniind potențialul 

algoritmilor de învățare automată de a îmbunătăți semnificativ procesele de evaluare a calității merelor. Astfel 

de îmbunătățiri pot conduce la o eficiență mai mare, reducerea costurilor de muncă și tehnici de control al 

calității mai riguroase. 

 
INTRODUCTION 

The agriculture and food industries are among the most critical sectors not only for economic stability 

but also for ensuring human health and safety. One of the key steps in the food supply chain is the assessment 

of product quality, especially for fruits like apples, which constitute a significant portion of global fruit 

consumption. Quality assessment serves multiple purposes, such as grading for market pricing, segregating 

products for different usage scenarios (e.g., fresh consumption, juice extraction, or processed foods), and 

ensuring the overall safety and quality of the food. It is a complex but essential activity that is usually the 

intersection of human expertise, mechanical sorting technologies, and now, emerging computational methods. 
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In the context of automated quality assessment of apples, it is crucial to recognize the range of issues 

that can impact apple quality. Among parasitic diseases, Gray Mold, caused by the fungus Botrytis spp., 

manifests as a grayish fuzzy mold and can occur both in the field and during storage. Blue Mold, attributed to 

Penicillium expansum Thom, results in soft, water-soaked lesions covered with blue-green spores, commonly 

manifesting post-harvest. Lenticel Rot, due to the fungus Pezicula malicorticis Jacks Naum., affects the 

lenticels of apples, leading to dark lesions and a degradation in fruit quality (Jamwal et al., 2002). 

Equally significant are non-parasitic diseases and damages. Superficial Scald is a physiological 

disorder that causes brown or dark patches on the apple's skin during long-term cold storage. Jonathan Spot 

appears as small, dark spots on the fruit's skin and is often associated with mineral imbalances or 

environmental stress factors. Internal Browning is another post-harvest disorder where the internal tissues of 

the apple turn brown, often due to storage conditions. Soft Scald is similar to Superficial Scald but results in 

soft, water-soaked lesions on the skin. Lastly, Soggy Breakdown makes the internal tissue of the apple turn 

water-soaked and spongy, often as a result of improper storage conditions (Srivastava et al., 2021). By 

understanding these parasitic and non-parasitic diseases and damages, the accuracy and reliability of 

automated quality assessment systems in categorizing and grading apples can be enhanced (Nataraj et al., 

2018). 

Despite its critical importance, the traditional methods employed for apple quality assessment have 

significant limitations. Manual sorting and grading are labor-intensive, time-consuming, and prone to human 

error. On the other hand, mechanical methods, although faster, often lack the nuanced understanding of 

'quality,' as they primarily rely on size and weight as the determinant factors. These methods may overlook 

other essential quality metrics such as skin defects, color uniformity, and internal qualities that are important 

for grading and consumer satisfaction. 

Recent advances in computer vision and machine learning have opened new avenues for automating 

quality assessment tasks. Convolutional Neural Networks (CNNs) have shown particular promise in image 

recognition challenges, extending their applicability to the agriculture sector (Li et al., 2021). Existing research 

has explored CNN-based approaches for defect detection in various fruits, vegetable classification, and even 

crop disease prediction. However, most of these studies have either focused on different fruits or have been 

limited to smaller datasets. Commercial solutions have begun to integrate machine learning but are often 

constrained by proprietary algorithms and high operational costs. 

In the realm of automated apple sorting, Kavdir and Guyer (2002) utilized backpropagation neural 

networks (BPNNs) for sorting Empire and Golden Delicious apples based on surface quality. They employed 

both pixel gray values and texture features derived from apple images as inputs to their neural network 

classifiers. Their study explored two distinct classification scenarios: a 2-class classification, separating apples 

as either 'defective' or 'good,' and a 5-class classification that included various sub-categories of defects. 

Interestingly, they found that reducing the image resolution did not adversely affect classification accuracy, 

thereby offering a faster training and testing phase. Moreover, spectral bands were identified as effective 

indicators for distinguishing specific surface characteristics, such as bruising, leaf roller defects, and puncture 

marks. In terms of performance, the 2-class classifier achieved a classification success ranging from 89.2% to 

100%. For the 5-class scenario, classification success varied between 89.7% and 100%, depending on the 

apple variety and the features used. Importantly, the research indicated that BPNN classifiers generally 

outperformed other methods when using pixel intensity as features, as opposed to extracted texture features. 

They concluded that neural networks could effectively capture the non-linear relationships between input 

features and output classes, and that spectral bands beyond 1000 nm improved defect identification in specific 

apple varieties. Despite the publication date of 2002, this work remains significantly relevant and pioneering in 

the field of using neural networks for apple sorting. Even in today's context, the findings and methodologies of 

Kavdir and Guyer stand out for their innovative approach in applying neural networks to agricultural tasks. 

Their use of BPNNs in this area laid an important work for subsequent research and developments, and the 

results they achieved continue to be pertinent in contemporary applications. 

Yu et al. (2023) investigates the potential of Convolutional Neural Networks (CNNs) for the task of 

apple variety classification. Using a total of 7,439 apple images that represent 13 different apple classes, the 

study employs various deep learning architectures, namely AlexNet, VGG-19, ResNet-18, ResNet-50, and 

ResNet-101. The study employed two different dataset configurations to test the models, revealing that dataset 

balance plays a crucial role in classification performance. Specifically, all tested models achieved an accuracy 

above 96.1% when trained on a dataset with a training-to-testing ratio of 2.4:1, as compared to 89.4–93.9% 
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accuracy on a dataset with a ratio of 1:1. The VGG-19 model stood out, achieving a perfect 100% accuracy 

on the first dataset and 93.9% on the second. The study further delves into the impact of network architecture 

and depth on model size, accuracy, and computational time. It was found that as the number of layers in a 

model increased, so did its size, accuracy, and the time required for training and testing. Additionally, the 

authors employed techniques like feature visualization, strongest activations, and Local Interpretable Model-

Agnostic Explanations (LIME) to interpret how different models understand and classify apple images. It was 

discovered that while series networks like AlexNet and VGG-19 focus on apple contours or shapes for 

classification, Directed Acyclic Graph (DAG) networks like ResNets focus on the entire apple region. The work 

not only confirms the applicability of CNNs in apple recognition but also contributes to the understanding of 

their interpretability, thereby providing a foundation for future agricultural applications of deep learning. This 

article is well-aligned with the broader scope of present research, as it similarly investigates the application of 

Convolutional Neural Networks (CNNs) for fruit classification, focusing particularly on apple varieties. The 

insights from this study provide a foundational understanding for the current research, particularly regarding 

the influence of dataset configuration and model architecture on classification performance. Acknowledging 

the shortcomings of existing methods, the present paper aims to explore the feasibility of machine learning 

algorithms, specifically Convolutional Neural Networks (CNNs), for an automated, efficient, and nuanced apple 

quality assessment. A thorough evaluation of various CNN architectures is conducted to ascertain the most 

effective in terms of accuracy, precision, and recall metrics. Additionally, this research introduces a custom 

CNN architecture, uniquely designed for apple sorting, and compares its performance with established models. 

Wan and Goudos (2020) offer a refined framework that uses an advanced version of the Faster R-

CNN algorithm, specifically designed for multi-class fruit identification tasks. Distinctive in their approach is the 

development of an extensive image dataset gathered from real-world outdoor orchards, featuring 4,000 images 

of fruits such as apples, mangoes, and oranges. To augment this dataset and improve model generalizability, 

they apply various data augmentation strategies. Their architectural enhancements, particularly the alterations 

made to the convolutional and pooling layers of the Faster R-CNN model, serve dual objectives: they 

accelerate the fruit detection process and enhance accuracy. Benchmarking studies corroborate the superiority 

of their method, showing that it surpasses existing models like YOLO, YOLOv2, YOLOv3 and Fast R-CNN in 

both speed and detection precision. Specifically, the modified Faster R-CNN model significantly outperforms 

these alternatives and demonstrates a mean Average Precision (mAP) exceeding 91% for multiple fruit types. 

This work represents a significant stride forward in the automation of agricultural processes. Its practical 

relevance lies in its potential applications for robotic harvesters, providing them with the capability to detect 

multiple types of fruits with high accuracy and speed. 

Li et al. (2021) present a Convolutional Neural Network (CNN) model specialized for apple quality 

identification. The model successfully navigates the complexities associated with apple images, particularly 

when the background resembles the apple's surface. The authors compared their CNN-based approach with 

Google's Inception v3 and traditional image processing techniques that use features such as Histogram of 

Oriented Gradient (HOG) and Gray Level Co-occurrence Matrix (GLCM), paired with a Support Vector Machine 

(SVM) classifier. The CNN model showcased unparalleled training and validation accuracies, peaking at 99% 

and 98.98% respectively. Further, the model surpassed its competition in an independent test set, 

demonstrating an accuracy rate of 95.33%. Additionally, the CNN model proved to be more time-efficient, 

completing its training in just 27 minutes. The study reveals the potential of the proposed CNN model in 

complex apple quality assessment scenarios, outperforming existing models in both speed and accuracy. The 

authors plan to extend this model to gauge various apple attributes like color, size, ripeness, and even 

physiological disorders. They also envision expanding its utility to classify other fruits and integrate it into real-

time sorting machinery. 

Liu (2020) focuses on the role of deep learning in fruit classification, which is crucial for automating 

self-checkout and packaging systems in supermarkets. The study introduces a deep convolutional neural 

network model, called Interfruit, designed to handle the complexities inherent in fruit classification, such as 

category similarities. A unique dataset of 40 fruit categories was developed to train and test the Interfruit model. 

The study also uses an improved stack model that integrates the strengths of AlexNet, ResNet, and Inception. 

Interfruit achieved an overall test accuracy of 92.74%, surpassing other leading models in the domain. The 

model obviates the need for manual feature extraction and employs various network parameters and data 

augmentation strategies to bolster its predictive capabilities. Such high performance indicates the robustness 

and technical validity of the Interfruit model. The study concludes that Interfruit offers a promising and 



Vol. 71, No. 3 / 2023  INMATEH - Agricultural Engineering 

 

486 

comprehensive solution for automatically identifying and classifying fruits in supermarkets, aiding in quick 

retrieval of pricing and other identification information. 

Zhang et al (2019) present an innovative paper that addresses the critical need for effective and 

efficient fruit detection in agricultural robots. Their approach leverages an advanced multi-task cascaded 

convolutional network (MTCNN) for high-accuracy, real-time performance. One of the contributions of this 

paper is the introduction of an improved image augmentation method, known as "fusion augmentation," 

designed to further elevate the performance of the fruit detector. To validate their model, the authors created 

a robust dataset that includes images from apple orchards as well as additional images from the Internet and 

ImageNet. The system was not only successful in detecting apples but also showed promising results when 

extended to other fruits like strawberries and oranges. In terms of efficiency, the system processed 100 images 

in under 80 seconds, closely approximating real-time performance. Given these results, this study's fruit 

detection system holds significant promise for broader applications, particularly in automating various 

agricultural tasks like sorting, grading, and yield estimation. 

Keresztes et al. (2018) explore real-time fruit detection for proximal imaging, typically done using 

tractor-mounted cameras in orchards and vineyards. Their method is a two-step process that combines 

geometrical pre-processing with deep neural network (DNN) classification. The geometric pre-processing step, 

which employs a radial Hough-like operator, quickly narrows down probable regions where fruits may be 

located, making the subsequent DNN classification more efficient. The system was rigorously tested on grapes 

and apples, with encouraging outcomes that show high correlations with manual counting methods — up to 

0.96 for grapes and 0.85 for apples. Moreover, the technology leverages an intelligent camera system, which 

is both cost-effective and easily adaptable to existing agricultural machinery like tractors. The camera system 

allows for the acquisition of large datasets while maintaining controlled lighting conditions for consistent fruit 

detection. This approach not only proves its efficacy in fruit detection but also offers valuable insights into 

agronomic parameters that could be crucial for advancing precision agriculture. Thus, the method holds 

potential not just for improving current farm management strategies but also for contributing to the development 

of more sophisticated decision-support tools in the future. 

The Table 1 offers a summarized overview of the state-of-the-art research in the field of automated 

fruit sorting and classification, with a specific focus on apple sorting and quality assessment. This area of study 

has seen significant advancements, thanks to machine learning algorithms, particularly Convolutional Neural 

Networks (CNNs), and other data-driven methodologies. The table categorizes research papers by their 

authors and key contributions, outlines the methods and algorithms employed, and encapsulates their 

performance metrics or findings.  

Another contribution to the field of automated fruit grading is the review of Seema et al. (2015). Their 

paper delves into the critical role of computer vision in agricultural automation, specifically focusing on fruit 

grading and sorting. They argue that while traditional human-operated methods are prone to errors and 

inefficiencies, computer-vision systems offer a more accurate and efficient alternative. The review identifies 

that the most commonly employed features for computer vision-based sorting are color, texture, and 

morphological characteristics. These features are typically used to assess factors like diseases, maturity, and 

overall quality of the fruit. Among the various machine learning techniques explored, Support Vector Machines 

(SVMs) were found to deliver high accuracy rates. However, Adaptive Neuro Fuzzy Interference Systems 

(ANFIS) provided the best overall performance. On the color modeling front, the HIS (Hue, Saturation, 

Intensity) model was highlighted as particularly effective due to its alignment with human perception. The 

review concludes that machine vision systems hold the potential to significantly improve the efficiency and 

accuracy of fruit grading, thereby making a strong case for their broader adoption in the agricultural sector. 

 

Table 1 

Overview of the state-of-the-art research in the field of automated fruit sorting and classification 

Paper 
Methods and 

Algorithms Used 
Key Contributions Performance and Findings 

Kavdir and Guyer 
Backpropagation Neural 

Networks (BPNNs) 

Surface quality classification into 2 
and 5 classes. Explores pixel gray 

values and texture features. 

89.2% to 100% classification 
success depending on apple 

variety and features. 

Fanqianhui Yu, Tao 
Lu, Changhu Xue 

CNNs (AlexNet, VGG-
19, ResNet-18, ResNet-

50, ResNet-101) 

Focuses on apple variety using deep 
learning. Explores dataset 
configurations and model 

architectures. 

Accuracy > 96.1% with a 
balanced dataset. VGG-19 
achieved 100% accuracy. 
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Paper 
Methods and 

Algorithms Used 
Key Contributions Performance and Findings 

Shaohua Wan and 
Sotirios Goudos 

Modified Faster R-CNN 
Extensive real-world dataset and 

architectural enhancements for multi-
class fruit detection. 

mAP > 91% for multiple fruit 
types, outperforming YOLO and 

Fast R-CNN. 

Li, Feng, Liu, Han CNNs 
Specialized for apple quality. 

Compares CNN-based approach with 
Inception v3 and traditional methods. 

Training and validation 
accuracies peaked at 99% and 

98.98%. 

Wenzhong Liu Interfruit (Deep CNN) 
Designed for self-checkout and 

packaging systems. Uses a unique 
dataset of 40 fruit categories. 

Test accuracy of 92.74%, 
outperforming leading models. 

Li Zhang et al. 
Multi-Task Cascaded 

Convolutional Networks 
(MTCNN) 

High-accuracy, real-time performance 
for agricultural robots. Introduces 

"fusion augmentation." 

Processes 100 images in < 80 
seconds, showing real-time 

performance. 

Barna Keresztes et 
al. 

Radial Hough-like 
operator + DNNs 

Two-step process for real-time fruit 
detection using tractor-mounted 

cameras. 

High correlation with manual 
counting: up to 0.96 for grapes 

and 0.85 for apples. 

 

MATERIALS AND METHODS 

The prevailing trend in automated fruit sorting research leans toward intricate classification schemes 

that involve complex feature sets and multiple quality metrics. While such approaches have merit, they often 

bypass a critical, foundational decision point in the agricultural supply chain: the initial binary classification of 

fruit as either acceptable or subpar for consumption or sale. The importance of this primary bifurcation cannot 

be overstated, as it serves as an essential presorting step for more granular quality evaluations, packaging, 

distribution, and other downstream processes. 

The integration of a binary classification system as a presorting stage prior to multi-class classification 

offers a multitude of advantages. One of the immediate benefits is the quick filtration of subpar produce, 

enabling only quality apples to proceed to the more resource-intensive multi-class classification stage, thereby 

enhancing its accuracy and effectiveness. This method is computationally efficient, as it ensures that the 

greater computational resources required for multi-class classification are expended only on apples that have 

already passed a basic quality threshold. This initial classification also addresses the issue of class imbalance, 

which can otherwise disproportionately skew the performance of multi-class classifiers. The binary filter 

removes low-quality apples from the outset, mitigating this problem. Moreover, multi-class classifiers frequently 

encounter boundary issues that a preliminary binary sort can effectively alleviate by widening the distinctions 

between 'damaged' and 'good' classes, thereby improving the efficiency and accuracy of the multi-class 

system. In addition, this binary presorting technique enables a modular approach to fruit grading. It can function 

as a stand-alone unit that feeds into more specialized multi-class systems, offering greater flexibility in 

deployment and scalability. Training machine learning models for multi-class classification often takes longer; 

however, this initial binary sort streamlines the process by reducing the data set size and complexity, potentially 

accelerating training times. Furthermore, the simplicity of a binary model lowers the risk of overfitting compared 

to more complex multi-class models, serving as a regularization technique that enhances the generalization 

performance of subsequent models. Troubleshooting is also simplified; when errors occur, it is easier to 

determine whether they originated during the binary or multi-class classification stage. Finally, this presorting 

stage yields financial benefits by reducing both computational and labor costs, as fewer apples need to pass 

through the resource-intensive multi-class classification process. Overall, the use of a binary presorting stage 

substantially optimizes the apple grading process, rendering subsequent multi-class classifications more 

efficient, accurate, and cost-effective. 

The current study addresses this often-overlooked area by introducing a robust method for this initial 

categorization. By establishing a reliable and efficient binary classification system, the research lays the 

groundwork for subsequent, more nuanced quality assessments. This initial filtration stage can have 

substantial implications for the agricultural supply chain, including the potential for reduced labor costs and 

minimized error rates in later stages of quality assessment.  

The dataset initially comprises a total of 2468 apple images, all of which were personally captured in 

a single apple orchard. To improve the dataset's robustness and diversity, the original set of 2468 images was 

augmented, expanding the total number of images to 4200. The advantage of sourcing all images from the 

same area lies in the consistency it brings to the data. The dataset was collected during the peak harvest 

season to ensure representative sampling. Variability due to different lighting conditions, apple varieties, and 

background interference is minimized, thereby allowing the model to learn more efficiently and accurately. The 
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images are divided into two categories: ”Good” apples and ”Damaged” apples. These categories were created 

by manually inspecting each apple, ensuring a reliable and consistent labeling process.  

In the orchard from which the apples used in this dataset were harvested, various cultivars were 

present, each exhibiting unique characteristics, most notably in the color of their skin when fully matured. 

These cultivars included the Golden Delicious, the Jonathan, and the ”Rabbit's Snout” (”Bot de iepure” in 

Romanian). The aim of this study was not to discriminate between these cultivars, but rather to conduct binary 

classification without taking skin color into account. While the inclusion of multiple cultivars with different mature 

skin colors undoubtedly complicates the classification task and may inhibit achieving high accuracy, this 

approach was intentionally chosen. The objective was to evaluate the efficacy of an apple sorting process that 

is cultivar-agnostic and does not rely on the specific hue of the skin at maturity for classification. This sets the 

groundwork for a more universally applicable sorting algorithm that can handle apples from diversified sources. 

For easier data processing and model training, the images are organized into two separate folders 

corresponding to these categories. The original resolution of each image is 3648x2736 pixels. However, for 

computational efficiency and to facilitate faster training, these images were resized to a uniform shape of 

150x150 pixels with 3 color channels (RGB). The input shape for the Convolutional Neural Network was set to 

(150, 150, 3), corresponding to the height, width, and the number of color channels of the resized images. An 

exception was the MobileNet network, for which the input shape was 224x224x3. The choice of image size is 

a trade-off between computational efficiency and model performance. Smaller images like 128x128 are faster 

to process and require less memory, but they might lack detail that could be important for classification. Larger 

images retain more detail but are computationally more expensive to process and may require more memory. 

With a larger number of pixels, the model might learn noise or insignificant variations in the data, rather than 

truly relevant features. This can lead to overfitting, especially if the training dataset is relatively small. During 

training, a tendency towards overfitting was observed, which led to the decision to use the 150x150 format, 

except for the MobileNet network (Simonyan and Zisserman, 2015; Pen at al., 2023; Ke et al., 2023; Abdo et 

al., 2023). 

In our dataset, a class distribution where 55% of the apples fall under the ”Good” category and 45% 

are categorized as ”Damaged” can be observed. While the classes are not perfectly balanced, the distribution 

is relatively even, with only a 10% difference between the two categories. Such a slight imbalance is generally 

not substantial enough to significantly bias most machine learning algorithms. Given the near-balanced nature 

of our dataset, the question arises whether resampling methods are necessary or not. In cases with severe 

class imbalance, resampling is often recommended to create a more balanced dataset, thereby improving 

model performance. However, in this case, the 10% disparity between the classes is quite minimal, so the 

need for resampling methods like under-sampling or over-sampling becomes less pressing. 

For a binary classification task like distinguishing between “Good” apples and “Damaged” apples, a 

150x150 image size may be sufficient if the damage is usually large-scale and easily visible. However, if the 

types of damage are subtle or require high-resolution to spot, using larger images could be beneficial. Optimal 

image size in convolutional neural networks is influenced by computational resources, the subtlety of features 

in the data, risks of overfitting with smaller datasets (sometimes using larger images can lead to overfitting, 

especially if the dataset is small), and compatibility requirements with advanced architectures. Empirical 

determination of the most appropriate image size for this specific classification problem was achieved through 

training the convolutional neural network models on multiple image dimensions. Through experimentation, 

aided by available computational resources, an optimum image size was identified for yielding the best 

performance metrics for this particular application (Simonyan and Zisserman, 2015). The dataset employed 

for this study exhibits a well-balanced distribution between the two classes, “Good” and “Damaged” apples. 

This balance enhances the reliability of the model's predictions and mitigates the risk of class bias, thereby 

improving the generalizability of the findings. 

Figure 1 offers selected samples from the dataset utilized in this study, showcasing the marked visual 

differences between the “Good” apples and the “Damaged” apples. The depicted apples belong to two distinct 

varieties, underlining the study's diversity. The first two images present apples from the “Good” apples 

category. These samples demonstrate a consistent color distribution, smooth skin texture, and an absence of 

discernible defects. In contrast, the following two images represent the “Damaged” apples category. Both of 

these apples display characteristics of a common fungal infection, evident through dark spots and altered skin 

texture. This specific infection is prevalent in the dataset. It is worth noting that the dataset did not feature 

apples with noticeable insect damage. 
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Fig. 1 - Samples from the dataset 

 

These images serve to highlight the key distinguishing features that the convolutional neural network 

model aims to learn for accurate classification. 

Choosing the optimal convolutional network architecture for evaluating apple quality depends on a 

variety of elements, such as the complexity of the visual cues in the dataset, the computational resources that 

can be allocated, and the urgency for real-time inference (Ke et al., 2023; Abdo et al., 2023; Theng et al., 2023). 

LeNet, one of the foundational architectures in Convolutional Neural Networks, was introduced by 

Yann LeCun in the 1990s and played a pivotal role in the proliferation of deep learning in image recognition 

tasks. Its architecture is designed with a series of convolutional and subsampling layers followed by fully 

connected layers, setting the stage for many subsequent CNN designs (Simonyan and Zisserman, 2015). It is 

particularly well-suited for straightforward visual tasks. Given its design simplicity and relatively fewer 

parameters compared to modern networks, LeNet can be efficient and less prone to overfitting on smaller 

datasets. Therefore, it could be an excellent fit if the apple dataset does not possess overly complex features 

(see mode used in fig. 2). 
 

  
 

Fig. 2 – LeNet Implementation 

 

Fig. 3 - VGG16 and VGG19 Implementation 
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The VGG (Visual Geometry Group) architectures, specifically VGG16 and VGG19, are convolutional 

neural networks developed by the Visual Geometry Group at the University of Oxford. They were designed to 

be simple yet highly effective for a wide range of image recognition tasks. The primary attribute that 

distinguishes VGG architectures is their depth—specifically, the number of weight layers in the network. 

VGG16 and VGG19 have 16 and 19 weight layers, respectively. VGG16 consists of 13 convolutional layers, 5 

max-pooling layers, and 3 fully connected layers. Each convolutional layer employs a small receptive field 

using 3x3 kernels, which is a key innovation contributing to the model's effectiveness. Max-Pooling layers are 

interspersed among the convolutional layers and utilize 2x2 kernels with a stride of 2 to reduce the spatial 

dimensions. Three Fully Connected layers are used at the end, the first two having 4096 channels and the 

final one having 1000 channels corresponding to the number of classes in the ImageNet dataset. ReLU 

(Rectified Linear Unit) is used as the activation function throughout the model (fig. 3). VGG19 is very similar to 

VGG16 but has 3 additional convolutional layers, increasing the depth to 19 weight layers. This makes VGG19 

slightly more complex and computationally intensive but also offers a modest improvement in performance. 

Like VGG16, it also uses 3x3 convolutional kernels, max-pooling layers with 2x2 kernels and stride of 2, and 

fully connected layers toward the end of the architecture (Nguyen et al., 2022; Ong et al., 2023; Anuar et al., 

2023; Abdo et al., 2023). 

The Inception architecture, particularly its third version, InceptionV3, is a product of Google's research 

and has been one of the standout models for image classification tasks. Built on the foundational idea of 

'network within a network', InceptionV3 employs multiple kernel sizes in parallel, rather than in series, to 

capture various spatial hierarchies of features within an image (fig. 4). This unique design choice facilitates the 

extraction of both local features using smaller convolutions and more global features with larger convolutions. 

Furthermore, the model incorporates techniques like factorization and efficient grid size reduction to keep the 

computational cost manageable. These sophisticated configurations ensure that the architecture learns a wide 

array of features at different scales. As such, InceptionV3 offers a versatile and robust approach, making it 

particularly apt for the multi-feature quality assessment in apples, where varied scales of features may be 

crucial (Ong et al., 2023; Abdo et al., 2023). 

 
Fig. 4 - Inception Implementation 

 

MobileNet, developed by Google, is specifically designed for mobile and embedded vision 

applications, striking a balance between computational efficiency and model performance. Utilizing depthwise 

separable convolutions, it factors standard convolutions into depthwise and pointwise operations, thereby 

significantly reducing the number of parameters and computational overhead without sacrificing the ability to 

capture meaningful features.  
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This design choice enables MobileNet to run efficiently even on devices with limited computational 

resources. Its architecture is not only compact but also modular, allowing for varying levels of granularity based 

on the application's requirements. If the computational budget is limited or rapid inference is required, 

MobileNet emerges as the prime choice. Its lightweight and fast processing characteristics make it suitable for 

real-time applications or environments where latency is a concern (Khazalah et al., 2023). However, like many 

efficient models, there might be a trade-off in accuracy when compared to larger, more resource-intensive 

networks (fig. 5). 

 
Fig. 5 - MobileNet Implementation 

 

EfficientNet, designed by Google researchers, rethinks the way network scaling is done by 

proportionally adjusting depth, width, and resolution. This unique, coordinated scaling ensures improved 

performance with fewer parameters (Tan and Le, 2019). Born from an optimization process, its base model 

sets a foundation, which can be expanded based on computational needs. EfficientNet balances computational 

efficiency with performance, making it a prime choice in scenarios where both factors are vital (figure 6). 

 
Fig. 6 - EfficientNet Implementation 
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For the unique demands of apple quality assessment, a custom CNN architecture may offer the most 

direct approach to achieving good performance (table 2). For example, a heightened emphasis on texture 

differentiation might necessitate a greater number of convolutional layers, while color-sensitive assessments 

could benefit from an increased number of filters in the initial convolutional layers (Ong et al., 2023; Ke et al., 

2023; Abdo et al., 2023; Anuar et al., 2023). 

All of these architectures were tested, as much as possible, under similar conditions, initially on the 

original dataset and then on the augmented dataset (batch size of 32, 30 training epochs, binary cross-entropy 

as the loss function, and the Adam optimizer with a learning rate of 0.0001). 

Table 2 

Custom CNN Model Implementation 

 

 The primary metric used for assessing the performance of the binary classification models in this study 

is Accuracy, defined as: 

Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                                   (1) 

or 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                               (2) 

where: 

TP = true positive (the items that were correctly identified as belonging to the positive class),  

TN = true negative (the items that were correctly identified as belonging to the negative class),  

FP = false positive (the items that were incorrectly identified as belonging to the positive class when 

they actually belong to the negative class - in many contexts, this is known as a "type I error" or a "false alarm”),  

FN = false negative (the items that were incorrectly identified as belonging to the negative class when 

they actually belong to the positive class - this is sometimes referred to as a "type II error" or a "miss"). 

________________________________________________________________ 

Layer (type)                                  Output Shape                          Param # 

============================================================== 

conv2d_6 (Conv2D)                      (None, 148, 148, 32)              896 

_________________________________________________________________ 

activation_10 (Activation)              (None, 148, 148, 32)             0 

_________________________________________________________________ 

max_pooling2d_6 (MaxPooling2)  (None, 74, 74, 32)                 0 

_________________________________________________________________ 

conv2d_7 (Conv2D)                       (None, 72, 72, 64)                18496 

_________________________________________________________________ 

activation_11 (Activation)              (None, 72, 72, 64)                 0 

_________________________________________________________________ 

max_pooling2d_7 (MaxPooling2)  (None, 36, 36, 64)                 0 

_________________________________________________________________ 

conv2d_8 (Conv2D)                      (None, 34, 34, 128)               73856 

_________________________________________________________________ 

activation_12 (Activation)              (None, 34, 34, 128)               0 

_________________________________________________________________ 

max_pooling2d_8 (MaxPooling2)  (None, 17, 17, 128)               0 

_________________________________________________________________ 

flatten_2 (Flatten)                          (None, 36992)                       0 

_________________________________________________________________ 

dense_4 (Dense)                          (None, 64)                              2367552 

_________________________________________________________________ 

activation_13 (Activation)             (None, 64)                              0 

_________________________________________________________________ 

dropout_2 (Dropout)                     (None, 64)                             0 

_________________________________________________________________ 

dense_5 (Dense)                          (None, 1)                               65 

_________________________________________________________________ 

activation_14 (Activation)             (None, 1)                               0 

============================================================== 

Total params: 2,460,865 

Trainable params: 2,460,865  

Non-trainable params: 0  
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This metric is well-suited for binary classification tasks where the classes are approximately balanced. 

It gives us a simple, interpretable measure of the model's overall performance (Seema et al., 2015).  

In addition to accuracy as the primary metric, the F1 score was also employed as a supplementary 

evaluation measure. For binary classification tasks such as ours, the F1 score is especially pertinent because 

it provides a balanced harmonic mean of precision and recall. This ensures that both false positives and false 

negatives are taken into account, making it a more comprehensive metric than accuracy alone, especially in 

situations where class imbalances exist (Larner, 2023). The F1 score is defined as: 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 ,                                                                    (3) 

where: 

precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (the number of correct positive results divided by the number of all positive results), 

and 

recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (the number of correct positive results divided by the number of positive results that 

should have been returned). 

In this analysis, the Binary Cross-Entropy (BCE) loss function is utilized, which is particularly suited 

for binary classification tasks. Binary Cross-Entropy quantifies the difference between two probability 

distributions: the true distribution and the predicted distribution. It measures the "distance" between the ground 

truth and our predictions, aiming to minimize this distance as the model learns. The rationale behind employing 

BCE for binary classification lies in its ability to handle probabilistic predictions. When predicting the two 

classes, it is essential not only to classify but also to measure the confidence of the model in its prediction. 

Binary Cross-Entropy penalizes the model significantly when it is confident and wrong, and to a lesser extent 

when it is unsure. This makes it particularly effective in driving the model towards making more accurate 

predictions with higher confidence (Larner, 2023). 

Mathematically, the Binary Cross-Entropy loss for a set of predictions p with respect to true labels y is 

given by: 

𝐵𝐶𝐸 = − ∑ 𝑦𝑖 log(𝑝𝑖)𝑛
𝑖=1 + (1 − 𝑦𝑖)log (1 − 𝑝𝑖),                                               (4) 

where: 

n is the number of samples, 𝑦𝑖 is the true label (0 or 1), 𝑝𝑖 is the predicted probability of the sample 

belonging to class 1. 

By optimizing this loss during the training process, the model endeavors to improve its binary 

classification performance, generating predictions that align closely with the ground truth. 

To ensure robustness and generalization capabilities, it is essential to prevent overfitting in neural 

network models. Overfitting occurs when a model excels on the training data but struggles to generalize 

effectively to unseen or new data, capturing the noise and specificities of the training set rather than the general 

patterns. To address this challenge, L1 and L2 regularization techniques are applied across the convolutional 

and fully connected layers. These techniques introduce penalties to the loss function, acting as constraints 

that discourage the model from fitting too closely to the peculiarities of the training data. 

The underlying principle of L1 and L2 regularization is the penalization of large values of model 

weights. While L1 regularization encourages sparsity by driving certain weights to zero, thereby leading to 

feature selection, L2 regularization aims to shrink weights towards zero without making them exactly zero, 

ensuring the values remain small and distributed. 

 

Mathematically, the regularization term added to the loss function can be defined as: 

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚 =  𝜆1 ∑|𝑤| + 𝜆12 ∑ 𝑤2                                                     (5) 

Here: 

 𝜆1 and 𝜆2 represent the regularization coefficients for L1 and L2, respectively, and 𝑤 signifies the 

model weights. 

Incorporating these regularization terms in neural network training ensures a balance between 

adequately fitting the training data and retaining the capability to generalize to new instances. By incorporating 

these regularization terms, it is ensured that our models achieve a balance between fitting the training data 

and retaining their ability to generalize to new dataIn initial training sessions. Early Stopping was employed to 

halt training when the validation performance ceased to improve. It was observed that Early Stopping acted 

for all models up to the 30th epoch. As a result, subsequent training sessions were adjusted to have a fixed 

number of epochs set at 30, streamlining the training process and preventing overfitting.  
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The learning rate is adaptively adjusted during training using a "Reduce On Plateau" strategy. When 

the validation loss reaches a plateau, the learning rate is reduced by a factor, facilitating the model to escape 

local minima and potentially leading to better generalization (Ke et al., 2023; Larner, 2023). 

 

RESULTS 

The application of various Convolutional Neural Network (CNN) architectures for the binary 

classification of apples produced diverse outcomes in terms of accuracy and F1 score across both training and 

validation datasets (Table 3). The results elucidate the potential and limitations of each model with respect to 

their performance metrics. 

 

Table 3  

Performance Metrics of Various CNN Architectures (%) 

Architecture Train 

Accuracy 

Train F1 

Score 

Validation 

Accuracy 

Validation 

F1 Score 

Custom CNN 0.91 0.91 0.92 0.90 

LeNet 0.96 0.96 0.95 0.95 

VGG16 0.91 0.91 0.91 0.91 

VGG19 0.90 0.90 0.90 0.90 

MobileNet 0.98 0.98 0.99 0.99 

InceptionV3 0.98 0.98 0.98 0.99 

EfficientNet 0.48 0.52 0.50 0.66 

 

 

The following subsections provide a visual representation of the performance metrics for each CNN 

architecture (figures 7-13). 
 

 
Fig. 7 - Custom CNN Architecture Performance Metrics: Accuracy and F1 Score 

 

 

 
 

Fig. 8 – LeNet Architecture Performance Metrics: Accuracy and F1 Score 
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Fig. 9 - VGG16 Architecture Performance Metrics: Accuracy and F1 Score 

 

 
Fig. 10 - VGG19 Architecture Performance Metrics: Accuracy and F1 Score 

 

 
Fig. 11 – MobileNet Architecture Performance Metrics: Accuracy and F1 Score 

 

 
Fig. 12 - InceptionV3 Architecture Performance Metrics: Accuracy and F1 Score 
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Fig. 13 – EfficientNet Architecture Performance Metrics: Accuracy and F1 Score 

 

Each figure provides a visual trajectory of how the respective models performed across epochs, 

allowing for a comprehensive understanding of the models' learning patterns and stability. The results obtained 

provide a foundation upon which the subsequent conclusions are drawn, aiming to comprehend the practical 

applicability and limitations of the explored CNN architectures in the context of apple sorting through binary 

classification. 

 

CONCLUSIONS 

The empirical exploration of different Convolutional Neural Network (CNN) architectures has provided 

a basic understanding of their potential applicability in the binary classification of apples for sorting purposes.  

Analyzing the data, it is evident that different architectures have offered various levels of performance, 

with MobileNet and InceptionV3 indicating a relatively high proficiency in this particular application, as opposed 

to the less consistent results derived from EfficientNet. The underperformance of EfficientNet might be 

attributed to various factors, such as potential misalignment between network configurations (like width, depth, 

and resolution scaling) and the particularities of the dataset, or possibly a deficiency in the volume or diversity 

of training data to adequately leverage the model’s capabilities. 

Interestingly, LeNet also demonstrated commendable performance, achieving 95% accuracy in 

validation. LeNet, one of the earlier and simpler CNN architectures, has often been acclaimed for its efficiency 

and lightweight nature, which can be particularly advantageous in scenarios where computational resources 

are limited or optimization is pivotal. Its relative simplicity, compared to more complex networks like InceptionV3 

and MobileNet, allows for easier implementation and can often be less prone to overfitting when dealing with 

smaller datasets. This architecture, despite its age and simplicity, illustrates that enhanced complexity is not 

always synonymous with superior performance and underscores the importance of aligning the network 

architecture with the specific application and dataset. 

On the other hand, while MobileNet and InceptionV3 have demonstrated higher metrics, particularly 

in validation accuracy, extending these results to wider or differing contexts requires additional scrutiny and 

validation. Employing networks that have achieved over 98% in validation accuracy, such as MobileNet and 

InceptionV3, brings with it both merits and challenges. Their high performance in this study indicates a 

capability to adeptly handle the specific classification problem, potentially offering reliable and accurate sorting 

in practical deployments. However, it is vital to consider possible limitations, such as a risk of overfitting due to 

their model complexity and depth, or the computational demands for deploying these networks, especially in 

scenarios where resources are limited, or optimization is crucial. The variation in results among the different 

CNN models implies that there is no one-size-fits-all solution, and choosing an appropriate model requires a 

balance between accuracy, computational cost, and implementation complexity. Additionally, it is crucial to 

consider that despite the quantitative results obtained, practical implementation in a real-world scenario 

encompasses a multitude of other variables that may affect performance, such as lighting conditions, apple 

varieties, and computational resources available. 

This preliminary investigation into employing various CNN architectures for apple sorting in the 

agricultural sector provides an initial step and preliminary insights into a potentially broader application. While 

the performance metrics varied among the models tested, these discrepancies underscore the importance of 

continued research and development to refine these technologies for practical, field-based applications. The 
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findings from this study present an intriguing initial viewpoint for forthcoming research. Nevertheless, while 

these results offer a noteworthy starting point, the authors intend to further refine the system by conducting 

additional testing on an operational conveyor belt tasked with sorting apples, to further evaluate and enhance 

its practical application. Looking forward, the authors intend to expand the database with a larger and more 

diverse set of images and venture into more intricate classification challenges, exploring the realm of multiclass 

classification to provide a more comprehensive and nuanced sorting mechanism within the agricultural domain. 
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