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ABSTRACT 

Rat-hole area and number of rat holes are indicators of the level of degradation and rat damage in grassland 

environments. However, rat-hole monitoring has consistently relied on manual ground surveys, leading to 

extremely low efficiency and accuracy. In this paper, a convolutional block attention module (CBAM) model 

suitable for rat-hole recognition in desert grassland monitoring, called grassland monitoring-CBAM, is 

proposed that comprehensively incorporates unmanned aerial vehicle hyperspectral remote-sensing 

technology and deep-learning methods. Validation results show that the overall accuracy and Kappa coefficient 

of the model were 99.35% and 98.90%, which were 3.96% and 3.35% higher, respectively, than those of the 

basic model. This study represents a breakthrough in the intelligent interpretation of rat holes and provides 

technical support for the subsequent rapid interpretation of grassland rat holes and rat damage evaluation. It 

also provides a solution for the fine classification and quantitative inversion of similar landscape features. 

 
摘要 

鼠洞面积和鼠洞数是监测和评价草原退化分级及草原鼠危害等级的双重指标。然而鼠洞监测一直沿用人工地面

勘察，效率和精度极低。本研究综合运用无人机高光谱遥感技术和深度学习方法，首次提出了一种适用于荒漠

草原监测中鼠洞识别的卷积块注意力模块（CBAM）模型（GM-CBAM）。经过精度验证，模型的总体精度和

Kappa 系数分别为 99.35%、98.90%，相较于基础模型分别提高了 3.96%、3.35%，解决了小样本、高冗余及

混合像元导致的识别精度低、泛化能力差等难题，实现了荒漠草原景观下鼠洞的高精度识别。本研究不仅在鼠

洞的智能解译方法上有所突破，为后续快速解译草原鼠洞及鼠害等级评价等研究提供了技术支持，也为其他相

似景观地物的精细分类和定量反演提供了解决思路。 

 
INTRODUCTION 

 Grassland rodents not only degrade grassland ecological environments, which restricts animal 

husbandry production, but also endanger human health. As an important part of the terrestrial ecosystem, 

grasslands have a practical significance in building an ecological barrier and promoting the animal husbandry 

economy (Torok et al., 2021). In recent years, owing to the combined effects of global climate change and 

overgrazing, large-scale grassland degradation has occurred in Inner Mongolia, China (Lyu et al., 2020). 

Grassland degradation has improved the suitability of the habitat for rodents, resulting in a sharp increase in 

the rodent population and eventually leading to frequent rodent damage (Hua et al., 2022). The increase in the 

number of rodents in a grassland environment leads to the consumption of large amounts of vegetation and 

causes conflict between rodents and livestock. Their tunnelling behaviour causes large areas of secondary 

bare land, which weakens the self-healing ability of the grassland ecosystem. In addition, rodents carry 

pathogens that are a serious threat to human and animal health. Therefore, establishing an effective and 

dynamic grassland rodent monitoring mechanism to protect the grassland ecology and promote animal 

husbandry production is of great significance.  
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 Efficient and accurate monitoring of rodent damage is a prerequisite for devising prevention strategies 

and measures. Traditional carpet-style manual surveys (Garba et al., 2014) are a time-consuming and 

laborious method of counting rat hole numbers and distribution, and cannot satisfy the demands of large-scale  

rodent monitoring. Satellite remote sensing has low spatial resolution and cannot acquire detailed spatial 

distribution information about rat holes. It can only indirectly reflect areas affected by rodent damage through 

vegetation loss (Chidodo et al., 2020), thus limiting its application. Currently, unmanned aerial vehicle (UAV) 

remote sensing boasts excellent mobility and efficiency, leading to its wide application in fields such as 

geological mapping (Villarreal et al., 2022), disaster warning (Ghali et al., 2022), and precision agriculture 

(Boursianis et al., 2022). The combination of UAVs and hyperspectral imaging enhances the discernibility 

between rodent damage information on the ground and vegetation shadows (Qin et al., 2020), furnishing the 

fundamental hardware requirements for identifying rat holes in grassland degradation monitoring. However, 

further research is necessary to intelligently, accurately, and quickly interpret rat holes from UAV hyperspectral 

images. 

 Low recognition accuracy and poor generalization capability are currently bottlenecks in remote 

sensing classification research. Deep learning is considered the most advanced method in hyperspectral 

image processing at present. However, these bottlenecks remain unsolved because of the influence of small 

samples, nonlinear high redundancy, and mixed pixels. Classification methods based on spectral features (1D-

CNN) or spatial features (2D-CNN), which ignore the interwoven relationship between space and spectrum, 

result in insufficient feature extraction capability of the network. Subsequent researchers proposed 

classification methods based on joint spatial–spectral features (3D-CNN), significantly improving classification 

accuracy. However, 3D-CNNs are limited in generating large-scale 3D-CNN models because of the number 

of parameters and computational resources required. Moreover, small-sample training sets are more prone to 

overfitting issues. Recently, researchers have proposed combining attention mechanisms with CNNs to solve 

small-sample-size and imbalance issues (Liu et al., 2022; Wang et al., 2022). Attention mechanisms can be 

understood as an information selection method, focusing on different weight distribution based on the 

importance of given information and filtering out key information for the current task. Most current research 

regarding attention remains focused on the classification of urban architecture, forests, and crops, without 

considering the complexity of desert grassland landscapes. When existing models are applied to the 

identification of objects in desert grasslands, the recognition accuracy is typically far from expectations 

because of insufficient generalization ability, particularly in cases with complex topography and fragmented 

object distribution. Therefore, developing models for fragmented desert grassland landscape objects under 

the influence of small samples, high redundancy, and mixed pixels and realizing effective feature mining to 

improve object recognition accuracy is crucial. 

 To achieve high-precision, intelligent recognition of burrows in complex desert grassland landscapes, 

in this study hyperspectral data were collected of desert grassland burrow sample plots under natural light 

using UAV-based hyperspectral remote-sensing technology. By comprehensively employing multiscale 3D 

convolution, convolutional block attention module (CBAM) attention mechanisms, and dual-branch feature 

fusion, a GM-CBAM model suitable for burrow recognition in desert grasslands is proposed. 

 The main contributions of this study are as follows: 

 1. To address the mixed pixel issue, a grassland monitoring base model (GM-B model) was developed 

by using algorithms such as multiscale 3D convolution and dual-branch feature fusion. The GM-B model 

extracts global spatial-spectral joint features with adaptive receptive fields through multiscale 3D convolution, 

effectively overcoming the interference of mixed pixels. The dual-branch feature fusion enables the feature 

maps to contain more semantic information while optimizing computational efficiency. 

 2. To address small-sample-size and data-redundancy issues, attention mechanisms were added to 

the GM-B model, forming the grassland monitoring CBAM (GM-CBAM) model. The GM-CBAM model filters 

important features through the attention module, reducing data redundancy and mitigating the overfitting 

problem caused by small sample sizes. 

 3. Through performance comparisons between 2D-CNN and 3D-CNN, optimization of parameters 

such as patch size and learning rate, and performance comparisons and exploration of single-attention 

modules (channel attention, spatial attention) and mixed-attention modules (CBAM), the influence of channel 

attention and spatial attention ordering in the CBAM module on the model was investigated. The results 

enabled the development of an optimal model for grassland burrow recognition. 

 



Vol. 70, No. 2 / 2023  INMATEH - Agricultural Engineering 

 

 175  

MATERIALS AND METHODS 

Research Area Overview and Data Collection 

 The study area was in the Gegentala grassland in the central Inner Mongolia Autonomous Region. 

The area is a typical desert steppe. The constructive species of the grassland is Stipa breviflora Griseb, and 

the dominant species is Artemisia frigida Willd. The main rodents are Lasiopodomys brandtii, Meriones 

unguiculatus, Rhombomys opimus, and Spermophilus dauricus (Zhu et al., 2023). 

 The experimental area covers approximately 3 hm². The spectrometer used for data collection (Fig. 1) 

has a spectral range of 400–1000 nm, a spectral resolution of 3.5 nm, and 256 bands. At a flight altitude of 20 

m, the spatial resolution is 1.73 cm/pixel. Data were collected from July 8 to 10, 2021, with the data collection 

time window set between 10:00 and 14:00 Beijing time. During this period, solar irradiance was stable, and 

wind speed was less than 5.4 m/s. 

 
Fig. 1 - UAV hyperspectral data acquisition 

Note: Mats and flags in the figure are markers of the rat-hole quadrat. 

 
Data Preprocessing 

 The raw data were screened for image quality, and distorted and deformed data were removed. After 

reflectance correction, the standard reflectance images were obtained; the hyperspectral curves for each 

object are shown in Fig. 2. On the basis of the field investigation, the high-resolution digital images and 

hyperspectral images were used to create labels for five types of objects: burrows, vegetation, bare soil, 

sample plot marking foam pads, and sample plot marking flags. The dataset was then divided into training and 

testing sets at a 4:1 distribution ratio (Table 1). 

 
Fig. 2 - Reflectance of different objects 

 

Table 1 
Data distribution for training and test sets 

NO. Class name Training samples Testing samples 

1 Vegetation 9780 2445 

2 Bare soil 12220 3056 

3 Foam mat 332 83 

4 Flag 83 21 

5 Rat hole 85 21 

Total 22500 5626 
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Proposal of GM-CBAM Model 

 After principal component analysis was applied to the original 256 bands, the first 30 principal 

components were obtained. To address the mixed-pixel issue, the GM-B model was built using the deep-

learning algorithm concept of multiscale 3D convolution and dual-branch feature fusion. To address the small 

sample size and data redundancy issues a CBAM was added to the GM-B model, forming the GM-CBAM 

model. 

 
Base Model (GM-B) 

 The GM-B model first uses 1 × 1 × 1 convolutions for nonlinear enhancement to improve the 

generalization ability of the model. The model then employs two convolution branches for feature extraction. 

The first branch uses two layers of 5 × 3 × 3 and 3 × 3 × 3 convolution kernels, whereas the second branch 

adopts a single layer of 7 × 5 × 5 convolution kernels. Subsequently, the features of the two convolution 

branches are fused, and finally, a 1 × 1 × 1 convolution operation is applied for nonlinear enhancement again 

(Fig. 3(a)). 

 
GM-CBAM Model 

 Built upon the GM-B model, the CBAM is embedded into the convolution branches to form the GM-

CBAM model (Fig. 3(b)). The CBAM utilized in this research is essentially a mixed-channel and spatial attention 

mechanism. Compared to using channel attention mechanisms or spatial attention mechanisms separately, 

the CBAM module integrates both channel and spatial attention mapping processes, preserving more useful 

information. 

 Assuming that the intermediate input feature cube F∈RH×W×D×B
 is given (where H, W, and D represent 

the height, width, and spectral band of the feature cube, respectively, and B is the number of channels of the 

feature cube), the attention weights of different channels are obtained by modeling in the channel dimension, 

and then the attention weights of different spatial positions are obtained by modeling the feature map F1 (CA 

output) in the spatial dimension, so as to obtain the dual focus F2 of the target in the channel dimension and 

the spatial dimension. The mathematical expression of the process is: 

{
𝐹1 = 𝐴𝐶(𝐹)⨂𝐹
𝐹2 = 𝐴𝑆(𝐹1)⨂𝐹1

                  (2) 

  

In (2), 𝐴𝐶(𝐹) is the CA feature cube, and 𝐴𝑆(𝐹1) is the SA feature cube. ⊗ is the point multiplication operator, 

which represents the product of the corresponding elements of the two tensors. 

 

 
(a)  

 

 
(b)  

 
Fig. 3 - Model structure 

(a) GM-B model structure; (b) GM-CBAM model 
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RESULTS AND DISCUSSION 

 To objectively compare the classification ability of each model, the number of training iterations was set 

to 100, and the accuracy evaluation index selected the overall accuracy (OA), average accuracy (AA), and 

Kappa coefficient (K). 

Advantages of 3D convolution 

 To better evaluate the performance of 2D-CNN and 3D-CNN, performance tests under the base network 

GM-B were conducted. In this test, the patch size was set to 7, the learning rate to 0.001, and the number of 

fully connected layers to 1024. Figure 4 shows the accuracy results for 2D-CNN and 3D-CNN. Compared with 

2D-CNN, 3D-CNN exhibits significant improvements in object recognition rate and OA for all types of objects. 

 Because hyperspectral images are three-dimensional data, when 2D-CNN is used for classification, the 

drawback of channel relationship loss exists, preventing 2D-CNN from fully extracting the spectral features 

required for the classification task. Unlike 2D-CNN, 3D-CNN uses a 3D kernel to extract both spectral and 

spatial features simultaneously, resulting in features containing more effective and comprehensive high-order 

semantic information for the classification task. Overall, 3D-CNN demonstrates good classification capabilities 

in grassland degradation monitoring. 

 

 
Fig. 4 - Performance comparison between 2D-CNN and 3D-CNN 

 

 
 

Fig. 5 - Accuracy comparison for different patch sizes 
 
 

Patch Size Parameter Analysis 

 The size of the spatial input determines the amount of spatial information in the neighborhood of the 

central pixel. To evaluate the impact of patch size on model performance, five different patch sizes based on 

3D-CNN were set up: 7, 9, 11, 13, and 15. As shown in Fig. 5, the OA value initially increases significantly as 

the patch size increases, with the best performance resulting when the patch size is 11. When the patch size 

is greater than 11, the performance improvement is relatively weak, but the training time increases 

dramatically. 

 Appropriately increasing the patch size can effectively improve the classification performance of the 

model, but an overly large patch size may generate substantial noise. In addition, a larger patch size means 

more training time is required. 
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Learning Rate Parameter Analysis 

 Choosing an appropriate learning rate can effectively control the convergence speed and improve the 

performance of the model. To determine the optimal learning rate, nine different learning rates were set: 

0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, and 0.05, on the basis of patch size 11, and the OA 

values of the model for each learning rate  were obtained (Fig. 6). It was found that the model performed best 

when the learning rate was 0.0005. When the learning rate was greater than 0.005, the performance of the 

model declined because the larger learning rate made it impossible for the model to reach the global optimum. 

 

 

Fig. 6 - Comparison of different learning rates 

 
Comparison of Different Attention Modules and Selection of CBAM Combination 

 The rat-hole sample is a small sample, and significant imbalance exists among different classes of 

samples. Moreover, 3D convolution has a large number of parameters. Therefore, attention mechanisms were 

used instead of data augmentation methods to alleviate the small-sample problem. 

 To better evaluate the performance of the attention mechanism, the performance of the models were 

tested including the channel attention (GM-CA), spatial attention (GM-SA), and combined attention (GM-

CBAM) modules on the basis of the GM-B model. Three different arrangements are available for the hybrid 

attention: 1) channel attention prioritized over spatial attention (channel first in CBAM, CBAM_CF); 2) spatial 

attention prioritized over channel attention (spatial first in CBAM, CBAM_SF); and 3) channel attention and 

spatial attention in parallel (CBAM_P). As shown in Table 2, all attention modules perform better than the GM-

B model, with the hybrid-attention module (GM-CBAM) outperforming the single-attention modules (GM-CA, 

GM-SA). Among the single-attention modules, GM-CA performs better than GM-SA. Among the three different 

arrangements in the hybrid attention, CBAM_CF exhibits the best performance, followed by CBAM_P, and 

CBAM_SF is the worst. At this point, the optimal model GM-CBAM has been obtained; its OA and Kappa 

coefficient are 99.35% and 98.90%, respectively, an improvement of 3.96% and 3.35% compared to the base 

model GM-B. 

Table 2 
Classification results of different models 

Class Methods 

# GM-B GM-CA GM-SA CBAM_CF CBAM_SF CBAM_P 

Vegetation 98.04 99.94 99.06 100 100 100 

Bare soil 98.87 99. 26 99.01 100 100 100 

Mat 96.54 99.02 98.93 99.81 99.21 99.30 

Flag 90.11 98.07 97.25 99.92 98.94 99.32 

Rat hole 90.48 98.47 95.60 98.86 98.58 98.66 

OA (%) 95.39 98.93 98.88 99.35 99.13 99.20 

AA (%) 95.27 98.49 98.36 99.31 99.03 99.11 

K×100 95.55 97.96 96.83 98.90 98.58 98.63 
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 The comparison between the attention models and the base model shows that the attention mechanism, 

as an information-selection mechanism, has significant advantages in alleviating the small-sample problem 

and reducing irrelevant information mapping. 

 Comparing the combined attention module with the single attention modules proves that the hybrid 

attention mechanism has a significant advantage in mining spectral–spatial feature information in desert 

grassland hyperspectral images and demonstrates good classification performance. 

 Comparing the three different arrangements in the hybrid attention shows that channel attention 

contributes more to model performance than spatial attention. In addition, the result that GM-CA outperforms 

GM-SA in single attention modules provides further confirmation. From a spatial perspective, channel attention 

is global, whereas spatial attention is local. Evidently, the weight of local information is determined by the 

global feature distribution. 

 

Classification Results Display 

 To visually verify the rationality of the classification results, Fig. 7 shows the visualization results of the 

original hyperspectral image (Fig. 7(a)), basic network GM-B (Fig. 7(b)), single-attention module GM-SA (Fig. 

7(c)), GM-CA (Fig. 7(d)), mixed-attention network CBAM_SF (Fig. 7(e)), CBAM_P (Fig. 7(f)), and CBAM_CF 

(Fig. 7(g)). Among them, GM-B and GM-SA have noticeable misclassification; the mixed-attention module has 

no noticeable misclassification, and CBAM_CF exhibits smoother edge control. 

 

Fig. 7 - Visualization of model classification results 
(a) original hyperspectral image, (b) GM-B, (c) GM-SA, (d) GM-CA, (e) CBAM_SF, (f) CBAM_P, and (g) CBAM_CF. 

Note: Enlarged images in the boxes in Fig. 7 (b)–(g) are shown in the lower left corner. 
 

Limitations and prospects 

 The classification of desert grassland landscape features based on UAV hyperspectral images is a 

complex task, and research in this field is still in the primary stages. Although this study has made acceptable 

progress, subsequent quantitative inversion and degradation grade evaluation work needs further study. In 

addition, the GM-CBAM model must be further optimized to enable deployment to mobile devices. 

 
CONCLUSIONS 

 In this study, a low-altitude UAV hyperspectral remote sensing platform was used to collect desert 

grassland data in central Inner Mongolia, China. The GM-CBAM model was created with multi-scale 

convolution, double-branch feature fusion, and a CBAM attention mechanism. After optimizing the network 

structure and parameters, an optimal model suitable for low-altitude UAV hyperspectral remote-sensing desert 

grassland classification was obtained. Verification experiments based on the OA, AA, and Kappa coefficient 

demonstrated the superior classification ability and reliability of the model.  
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 This result provides technical support for the subsequent rapid interpretation of grassland rat holes 

and rat damage evaluation, in addition to providing methods and models for subsequent quantitative inversion 

studies of desert grassland. 
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