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ABSTRACT 

In this study, an online detection system of soybean crushed rate and impurity rate based on 

DeepLabV3+model was constructed. Three feature extraction networks, namely the MobileNetV2, Xception-

65, and ResNet-50 models, were adopted to obtain the best DeepLabV3+model through test analysis. Two 

well-established semantic segmentation networks, the improved U-Net and PSPNet, are used for mechanically 

harvested soybean image recognition and segmentation, and their performances are compared with the 

DeepLabV3+ model’s performance. The results show that, of all the models, the improved U-Net has the best 

segmentation performance, achieving a mean intersection over union (FMIOU) value of 0.8326. The 

segmentation performance of the DeepLabV3+ model using the MobileNetV2 is similar to that of the U-Net, 

achieving FMIOU of 0.8180. The DeepLabV3+ model using the MobileNetV2 has a fast segmentation speed of 

168.6 ms per image. Taking manual detection results as a benchmark, the maximum absolute and relative 

errors of the impurity rate of the detection system based on the DeepLabV3+ model with the MobileNetV2 of 

mechanized soybean harvesting operation are 0.06% and 8.11%, respectively. The maximum absolute and 

relative errors of the crushed rate of the same system are 0.34% and 9.53%, respectively.  

 

摘要 

为了实现大豆机械化收获破碎率和含杂在线检测，本研究构建了基于 DeepLabV3+的在线检测系统，并采用三

种特征提取网络（MobileNetV2、Xcepton-65和ResNet-50模型）测试分析获得最佳的DeepLabV3+模型。引

入改进的 U-Net和 PSPNet模型，评估 DeepLabV3+模型的性能。结果表明，在所有模型中，改进的 U-Net具

有最佳的分割性能，平均交并比值达到 0.8326。基于 MobileNetV2 的 DeepLabV3+模型的分割性能与改进的

U-Net相似，平均交并比值为 0.8180。基于MobileNetV2的DeepLabV3+模型分割大豆图像速度为 168.6ms。

以人工检测结果为基准，基于MobileNetV2的DeepLabV3+模型检测大豆含杂率的最大绝对误差和相对误差分

别为 0.06%和 8.11%，破碎率的最大绝对误差和相对误差分别为 0.34%和 9.53%。 

 

 

INTRODUCTION 

 Soybean is one of the main crops grown in China and occupies an important position in food crops. At 

present, soybean harvesting in China is mainly conducted by a harvester for mechanized harvesting at the 

early stage of plant maturity. A mechanized soybean harvesting method is to use a rice–wheat combine 

harvester, configure a flexible header, and adjust the parameters of the threshing drum to harvest soybeans 

(Chen et al., 2020). Different from cereal crops, soybean has agronomic characteristics of low pod setting and 

easy breakage. In the process of mechanized harvesting, using inappropriate harvesting machinery and 

selecting the harvesting period improperly can result in high impurity and crushed rates. At present, the 

intelligence level of soybean combine harvesters is low, and there is a lack of an online quality detection system 

for mechanized soybean harvesting.  
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 Soybean harvester drivers cannot accurately determine the operation quality of a harvester, which can 

easily lead to high impurity rate and crushed rate of soybean mechanization, affecting the quality of harvested 

soybeans and reducing the economic benefits of soybean planting (Kang et al., 2022). Therefore, an online 

inspection of the operation quality of mechanized soybean harvesting is urgently needed, which can provide a 

harvester driver with real-time information on harvesting quality crushed rate and impurity rate, helping the 

driver to determine the working status of the harvester in real time. This can effectively improve the quality of 

mechanized soybean harvesting. 

 Mechanically harvested soybeans typically contain crushed grains (e.g., skin-damaged grain and 

cotyledon split grain) due to mechanical damage and impurities (e.g., pods, plant stems, and leaves) in addition 

to intact grains. Mixed impurities differ obviously in color and in shape compared to intact grain. Namely, 

crushed grain does not change much in color but can vary in texture. Differences in color and texture between 

intact grains, crushed grains, and impurities enable the application of machine vision and image processing to 

the component classification of mechanically harvested soybean samples. 

 An online quality inspection system for mechanized soybean harvesting operation needs to segment 

intact grains, crushed grains, and impurities in soybean samples accurately. As a powerful technology in the 

field of artificial intelligence, deep learning has become a research hotspot in the field of agriculture (Bhupendra 

et al., 2022). This technology has been applied in the fields of wheat variety classification and grain disease 

identification (Laabassi et al., 2021), rice seed identification (Zhang et al., 2021), and soybean plant leaf 

identification (Wang et al., 2022).  

 Compared with traditional machine vision, deep learning is more robust and can learn more 

characteristics of soybean samples, such as the color and texture of impurities and crushed grains (Jin et al., 

2022). The DeepLabV3+ model is a semantic segmentation network, which has been proven to be effective 

and accurate in many studies (Shoushtari et al., 2022).  

 In the field of agricultural production research, this technology has been applied to the classification of 

cucumber leaf disease severity (Wang et al., 2021), wheat scab and lodging recognition (Dai et al., 2021), 

lettuce abnormal leaf segmentation (Wu et al., 2021), grape cultivation area recognition (Sun et al., 2022), and 

rice lodging recognition (Mu et al., 2022). The previous studies have demonstrated the promising application 

potential of the DeepLabV3+ model in semantic segmentation. The aforementioned studies have shown that 

semantic segmentation can be an effective method for grain recognition segmentation. Therefore, the 

application of semantic segmentation networks to identifying and segmenting mechanically harvested 

soybeans’ intact grains, crushed grains, and impurities is promising. 

 On the basis of identifying and segmenting grain image components effectively using a reasonable 

scientific quantitative model, the online detection of grain mechanized harvesting quality can be realized. Chen 

et al. used an improved watershed algorithm to segment soybean images effectively and constructed an online 

detection system for mechanized soybean harvesting quality. The test results have shown that the designed 

system can accurately calculate the crushed and impurity rates and can also provide the visual monitoring and 

warning alarm of mechanized soybean harvesting quality (Chen et al., 2020). Chen et al. segmented the 

images of rice grains harvested by a combine harvester using the U-Net model based on machine vision. The 

experimental results showed that the comprehensive evaluation index values of the rice grain segmentation, 

branch and stem segmentation, and stem segmentation were 99.42%, 88.56%, and 86.84%, respectively 

(Chen et al., 2020). According to the results of recent related studies, an online inspection of mechanized 

soybean harvesting quality can be achieved by combining machine vision and deep learning technology. 

 This study aims to segment soybean sample composition (i.e., intact grain, crushed grain, and impurity) 

at the pixel level using the DeepLabV3+ model. In this study, the collected machine-harvested soybean sample 

images are labeled as “background,” “intact grain,” “crushed grain,” and “impurity.” Aiming to identify and 

segment image components of soybean samples accurately, this paper proposes a calculation model of the 

crushed and impurity rates of mechanized soybean harvesting operations based on the soybean image data. 

Three backbones, namely the MobileNetV2, ResNet-50, and Xception-65 models, are used to determine an 

optimal backbone for the DeepLabV3+ model. The improved U-Net model (Jin et al., 2022) and the PSPNet 

model (Li et al., 2022) are introduced to verify the performance of the DeepLabV3+ model. The field 

experiments are conducted to verify the performance of the proposed online quality inspection system for 

mechanized soybean harvesting based on the DeepLabV3+ model. 
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MATERIALS AND METHODS 

Online quality inspection of mechanized soybean harvesting 

 This study developed an online detection device for the crushed and impurity rates of machine-

harvested soybean quality and the corresponding test bench, as shown in Fig. 1. 

  
Fig. 1 – The online inspection system of the soybean harvesting machine operation quality.  

(a) The block diagram of the test bench for online detection of the soybean harvesting machine quality;  
(b) the structure of the online detection device of broken impurity content 

1. storage bin for samples to be tested; 2. soybeans; 3. sampling funnel; 4. online detection device of crushed impurity content; 5. 
brackets, 6. image processing equipment; 7. data bus; 8. tested sample collection bin; 9. sliders; 10. telescopic plates; 11. bases; 12. 

guide rail seats; 13. guide rails; 14. levers; 15. direct-current steering gears; 16. data bus connectors; 17. industrial cameras; 18. 
industrial camera fixing bracket; 19. shell; 20. embedded data processing module; 21. light emitting diode visual light source; 22. 

transparent plexiglass; 23. photo window; 24. sampling chamber 

 

 The proposed online detection device for the crushed and impurity rates of machine-harvested 

soybean quality is composed of an image recognition part and a dynamic sample collection part. The image 

recognition part is used to collect and classify soybean samples in a photographing window, as well as to 

realize online recognition and segmentation of intact grains, crushed grains, and impurities in soybean 

samples. Meanwhile, the dynamic collection part is used to update soybean samples in a sampling bin 

dynamically. The online inspection system of the soybean harvesting machine operation quality controls the 

DC steering gear to rotate by 65° forward to drive the retractable plate to retract and release soybeans in the 

sampling bin. By reversing the DC steering gear by 65°, the system makes the telescopic plate extend, thus 

preventing the soybeans in the sampling bin from being discharged and achieving the goal of grain collection. 

The system realizes the dynamic update of soybean samples in the sampling bin by periodically controlling 

the forward and reverse rotation of the DC steering gear. 

 The image recognition part includes an industrial camera (LRCP10230, Huarui Vision Technology, 

Guangzhou, China), with a lens having a focal length of 12 mm and being 105 mm away from the transparent 

plexiglass, which is facing the photo window of the sampling bin. Under a LED visual light source, an RGB 

(red, green, blue) image captured by the industrial camera has a resolution of 1,280 × 1,024 pixels, and it is 

saved in the JPEG format. The image recognition part also includes an image processing device, which is 

mainly used for the recognition and classification of components of a soybean sample image. The image 

processing device is an Ubuntu18.04 host, which is Tsinghua Tongfang T45PRO laptop, with an Intel® Core® 

i7-6500U processor, 16-GB, 3,200-MHz DDR4 memory, and 6-GB Nvidia GeForce RTX3060 graphics card. 

Data annotation and augmentation 

 A total of 300 images of machine-harvested soybean samples with a resolution of 1,280 × 1,024 were 

collected and saved as the original dataset. Generally, 50-70 soybeans were included in one image. The 

original image size was too large, which could cause the GPU memory to be exhausted, so the original images 

were downsampled. Image downscaling not only can save computational costs but can also serve as a basis 

for low-pixel-resolution vision sensor research. Therefore, each image was scaled to 512 × 512 pixels by 

bilinear interpolation. LabelMe 3.16.7, which is an Image Labeling Toolbox developed by the MIT Computer 

Science and Artificial Intelligence Laboratory, was used to label the images. The intact grains, crushed grains, 

and impurities of soybeans were marked by polygons first and then were given labels of “0” for background, 

“1” for crushed grains, “2” for intact grains, and “3” for impurities. Some of the RGB images and the 

corresponding label images are shown in Figs. 2(a) and 2(b), respectively. To avoid unbalanced performance 

evaluation on the test set, the data were randomly divided into a training set (240 images) and a test set (60 

images) according to the division ratio of 4:1. 
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a) Original image                                           b) Labeled image                                                          

Fig. 2 – An example of collected RGB images 
 

 Data augmentation plays a vital role in deep learning model training. A small number of training samples 

can cause overfitting or non-convergence of a deep learning-based model (Deng et al., 2021). Data 

augmentation was performed on each image in the training set and the corresponding ground truth image 

(Cotrim et al., 2020). The data augmentation methods used in this study included random image rotation (30–

150°, 210–330°), random image scaling (0.5–0.8 times, 1.5–2.0 times), random image shearing (−30–30°), 

and horizontal mirroring; six augmented samples were generated for each training sample. Thereafter, the 

training set size was increased to 1,680 images by the above six methods. The training set images were 

randomly divided into a training set and a validation set according to the ratio of 9:1, so 1,512 images were 

used as a training set, and the remaining 168 images were used as a validation set. Based on the training set 

and validation set, the online identification and verification tests of different models for evaluating the soybean 

machine-based harvesting quality were conducted. 

 
Fig. 3 – Block diagram of the DeepLabV3+ processing a machine-harvested soybean image 

 

Deeplabv3+ architecture 

 The DeepLabV3+ model is a semantic segmentation network, which is based on the DeepLabV3 

structure, where a simple and effective decoder has been added to refine segmentation results, especially the 

segmentation results along the boundary of a target object. The DeepLabV3+ uses a spatial pyramid pooling 

module or a two-in-one encoding-decoding structure for segmentation. As shown in Fig. 3, the DeepLabV3+ 

network consists of two main parts, encoder and decoder modules. It uses the Atrous Spatial Pyramid Pooling 

(ASPP) mechanism to detect convolutional features at multiple scales by applying atrous convolutions with 

different image-level feature rates. In the encoder module, the training set is input into the backbone to obtain 

the feature map, which is then input into the ASPP that consists of a 1 × 1 convolution, three 3 × 3 atrous 

convolutions (with the atrous rates of 6, 12, and 18), and an image pooling layer. The convolution layers extract 

features locally, while the image pooling layer extracts features globally, thus obtaining multi-scale features. 

All feature maps obtained by the ASPP are concatenated into combined feature maps. Then, a 1 × 1 

convolutional layer is used to fuse the information in the combined feature map and reduce the number of 

channels of the feature map. The last feature map after the 1 × 1 convolution is used as an encoder output 

module. The encoder features are first bilinearly upsampled four times and then concatenated with the 

corresponding low-level features from the backbone with the same spatial resolution. Another 1 × 1 convolution 

is applied to the low-level features to reduce the number of channels. After concatenation, 3 × 3 convolutions 

are used to refine the features, followed by four simple bilinear upsampling. 
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Network training 

 The U-Net, PSPNet, and DeepLabV3+ models were trained and tested using Ubuntu20.04 host (Dell 

Precision 7920 Tower graphics workstation) with a GPU (Nvidia Quadro RTX5000 16 GB GPU), a 26-core 

CPU (Dual Intel® Xeon® Gold 6230R), 4.00 GHz), and a 128-GB, 3200-MHz DDR4 memory. The models 

were deployed using Python 3.6, torch 1.2.0, torchvision 0.4.0, scipy 1.2.1, numpy 1.17.0, matplotlib 3.1.2, 

opencv_python 4.1.2.30, tqdm 4.60.0, Pillow 8.2.0, and h5py 2.10.0 training environment, and the GPU and 

CPU dual devices were employed to train and test different networks. To train DeepLabV3+, improved U-Net 

and PSPNet models for soybean dataset in this study, weights of a pretrained model were used for initialization, 

which were fine-tuned with further training. These initial weights were obtained from pretrained model of the 

PASCAL VOC 2007 dataset (Yin et al., 2021). 

Field test design 

 The experimental site was the experimental soybean field in Houliu Village, Rencheng District, Jining 

City, Shandong Province. The soybean variety was also Qihuang 34; the moisture content was 12.1%; the 

thousand-kernel weight was 246.5 g. The test was conducted on October 18, 2021. The experimental 

harvesting machine was a 4LZ-6 intelligent soybean combine harvester. The field test was repeated test three 

times, with a single trip length of 200 m and an operating speed of 6 km/h. The test site is shown in Fig. 4. 

 
Fig. 4 – Field validation experimental environment 

 

 The soybean sampling device was installed under the outlet of the grain conveying device of the 

4LZ-6 intelligent soybean combine harvester, and the combine harvester was connected to the onboard 

power supply to debug the equipment. The combine harvester started harvesting, and the soybean 

crushed and impurity content detection device automatically and dynamically detected the operation effect 

online. After completing one field test, the machine was stopped, three samples were selected randomly 

from the grain tank, and the crushed rate and impurity rate were manually checked according to the 

NY/T738-2020 “Operation Quality of Soybean Combine Harvester” standard, which were used to verify 

the accuracy of the proposed system’s detection results. After the sampling was completed, the machine 

was started to perform the harvesting test; the field test was repeated two times; and the experimental 

data were used to verify the performance of the online detection system for monitoring soybean crushed 

rate and impurity rate. 

Performance evaluation 

 In this study, precision rate P, recall rate R, comprehensive evaluation index F1, intersection ratio FIOU, 

average intersection ratio FMIOU, and average processing speed Iv of a machine-harvested soybean sample 

image were used as evaluation indicators of the image recognition and classification results of different models, 

and they were respectively calculated as follows: 

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
× 100%  [%]                                                                (1) 

𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100%  [%]                                                               (2) 

𝐹1 =
2×𝑃×𝑅

𝑃+𝑅
× 100%  [%]                                                               (3) 

𝐹𝐼𝑂𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                            (4) 

𝐹𝑀𝐼𝑂𝑈 = ∑
𝐹𝐼𝑂𝑈𝑖

𝑛

𝑛
𝑖=1                                                                         (5) 

where: TP is the number of correctly classified pixels predicted to be correctly classified;  

 FP is the number of wrong classified pixels predicted to be correctly classified;  
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 FN is the number of correctly classified pixels predicted to be misclassified;  

 n is the number of categories of classification;  

 Iv is the average processing speed of a soybean sample image, [ms]. 

 In the existing methods for quality detection of a soybean combine harvester, the impurity rate 

represents the percentage of the mass of grains and impurities in a sample; the crushed rate is the percentage 

of the mass of crushed and intact grains in a sample. According to the existing measurement methods, the 

pixel-based crushed and impurity rates were calculated as follows: 

𝑃𝑧 =
𝑇𝑧

(𝑇𝑧+𝜕𝑇𝑤+𝜕𝑇𝑠)
× 100%   [%]                                                        (6) 

𝑃𝑠 =
𝑇𝑠

(𝑇𝑤+𝑇𝑠)
× 100%      [%]                                                            (7) 

where: Pz is the impurity rate of soybean, [%];  

 Ps is the crushed rate of soybean, [%];  

 Tw is the number of pixels of intact grains in a predicted image;  

 Ts is the number of pixels of crushed grains in the predicted image;  

 Tz is the number of impurities pixels in the predicted image;  

 ∂ is the ratio of the average mass of grains to the average mass of impurities for 1,000 pixel points. In 

laboratory conditions, ∂ was set to 8.66 by manual calibration. 

 The absolute and relative errors of the average value of the proposed system’s detection results and 

manual detection results were used to evaluate the performance of the online DeepLabV3+-based monitoring 

system of soybean machine-based harvesting quality. The calculation formulae were as follows: 

𝑅𝑎𝑧 = |𝑃𝑆𝑧̅̅ ̅̅ − 𝑃𝑀𝑧̅̅ ̅̅ ̅|   [%]                                                           (8) 

𝑅𝑟𝑧 =
|𝑃𝑆𝑧̅̅ ̅̅ ̅−𝑃𝑀𝑧̅̅ ̅̅ ̅|

𝑃𝑀𝑧̅̅ ̅̅ ̅
× 100%   [%]                                                    (9) 

𝑅𝑎𝑠 = |𝑃𝑆𝑠̅̅ ̅̅ − 𝑃𝑀𝑠̅̅ ̅̅ ̅|   [%]                                                          (10) 

𝑅𝑟𝑠 =
|𝑃𝑆𝑠̅̅ ̅̅ ̅−𝑃𝑀𝑠̅̅ ̅̅ ̅|

𝑃𝑀𝑠̅̅ ̅̅ ̅
× 100%   [%]                                                  (11) 

where: 𝑃𝑆𝑧̅̅ ̅̅  is the average impurity rate of samples detected by the proposed system, [%]; 

 𝑃𝑀𝑧̅̅ ̅̅ ̅represents the average impurity rate of manually detected samples, [%];  

 Raz represents the absolute error of the impurity rate, [%];  

 Rrz represents the relative error of the impurity rate, [%];  

 𝑃𝑆𝑠̅̅ ̅̅ represents the average crushed rate of samples detected by the proposed system, [%]; 

𝑃𝑀𝑠̅̅ ̅̅ ̅ represents the average crushed rate of manually detected samples, [%];  

Ras represents the absolute error of the crushed rate, [%];  

Rrs represents the relative error of the crushed rate, [%]. 

 

RESULTS 

Training performance 

 The recognition and classification performances of the improved U-Net, PSPNet, and DeepLabV3+ 

models for different backbone networks on the test set images are shown in Fig. 5. As shown in Fig. 5, 

compared to the other models, the improved U-Net achieved sample component profiles with better 

connectivity and smoother channel shapes. 

 
a) Original image  b) Labeled image  c) Improved U-Net   d) PSPNet     e) MobileNetV2    f) Xcepton-65      g) ResNet-50 

Fig. 5– Classification results of different networks on the machine-harvested soybean images 
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 The statistical results of different evaluation indicators of the recognition and classification effects of the 

improved U-Net, PSPNet, and DeepLabV3+ for different backbone networks on the test set are given in Table 

1. This study focused on three metrics, namely F1, FMIOU, and Iv. Metric F1 denotes the harmonic mean of 

precision and recall. The maximum F1 indicates that a model has an optimal balance of recall and precision. 

Further, FMIOU is a standard semantic segmentation metric, and it denotes the average value of the ratios of 

intersections and unions of all categories. The maximum FMIOU indicates that a model achieves the optimal 

overall image recognition and segmentation performance. The proposed online detection method of machine-

based soybean harvesting operation quality was applied to the mechanized soybean harvesting process to 

realize the online detection of a soybean harvester’s operation quality. It should be noted that the processing 

time of a network directly defines the system’s image recognition performance. A higher Iv indicates a faster 

image recognition speed of a model and demonstrates the actual needs of production are met better. 

 
Table 1 

 

Recognition and classification performances of different models on machine-harvested soybean images 

Detection object Parameter 

Improved U-
Net 

PSPNet 
 

DeepLabV3+ 

Vgg-16 
MobileNetV

2 
MobileNetV

2 
Xception-

65 
ResNet-

50 

Intact grains 

Precision rate [%] 89.04 86.19 87.63 88.54 85.45 

Recall rate [%] 95.07 90.66 95.61 93.62 94.43 

Comprehensive evaluation index 
[%] 

91.75 88.18 91.25 90.90 89.51 

Intersection ratio [%] 0.8483 0.7891 0.8406 0.8346 0.8109 

Crushed 
grains 

Precision rate [%] 86.16 74.59 89.16 73.97 70.04 

Recall rate [%] 88.70 78.65 80.78 92.15 86.57 

Comprehensive evaluation index 
[%] 

87.23 75.47 84.23 80.92 76.98 

Intersection ratio [%] 0.8043 0.618 0.7364 0.6916 0.6419 

Impurities 

Precision rate [%] 93.23 91.53 91.74 86.10 80.81 

Recall rate [%] 97.10 85.43 95.40 95.86 94.62 

Comprehensive evaluation index 
[%] 

95.09 88.10 93.39 90.23 86.95 

Intersection ratio [%] 0.9068 0.7894 0.877 0.825 0.7702 

Average intersection ratio [%] 0.8531 0.7322 0.8180 0.7837 0.741 

Average processing speed of a soybean sample image 
[ms] 

266.4 166.3 168.6 213.1 190.3 

 

 In terms of F1, the improved U-Net model performed the best among all models, having the recognition 

accuracies of 91.75%, 87.23%, and 95.09% for the intact grains, crushed grains, and impurities, achieving 

improvements of 3.57%, 11.76%, and 6.99% compared with the PSPNet model, respectively. The recognition 

performance of the DeepLabV3+ model was similar to that of the improved U-Net. Among the DeepLabV3+ 

models, the DeepLabV3+ model based on MobileNetV2 had the best performance, with F1 values of 91.25%, 

84.23%, and 93.39% for the intact grains, crushed grains, and impurities, respectively. The FMIOU value of the 

improved U-Net model was the highest among all models, reaching 0.8531. The PSPNet model had the lowest 

FMIOU value, of only 0.7322. The FMIOU value of the DeepLabV3+ was slightly lower than that of the improved 

U-Net model; particularly, the FMIOU values of the DeepLabV3+ based on MobileNetV2, Xception-65, and 

ResNet-50 were 0.8180%, 0.7837%, and 0.741%, respectively. In terms of average image processing time, 

the U-Net model had the worst performance among all models, with an average image processing time of 

266.4 ms. The image processing times of the DeepLabV3+ and PSPNet models based on the MobileNetV2 

were the shortest, having values of 168.6 ms and 166.3 ms, respectively. Considering the image processing 

time and accuracy jointly, the DeepLabV3+ model based on the MobileNetV2 achieved best recognition and 

segmentation results with low time consumption among all models. According to the result, the DeepLabV3+ 

model based on MobileNetV2 was more suitable for online quality inspection of machine-based soybean 

harvesting than the other models. 
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Field test results analysis 

 During the test, the MobileNetV2-based DeepLabV3+ online quality inspection system for machine-

harvested soybeans worked normally, realizing dynamic online detection of machine-harvested soybean 

samples. Table 2 provides statistical data of the bench and field experiments. 

  
a)                                                                                                                b)                                              

 
  c)                                                                                                            d)                                           

Fig. 6 – Field test results. System detection results of (a) crushed rate and (b) impurity rate.  
Manual detection results of (c) crushed rate and (d) impurity rate 

 

 The test results are shown in Fig. 6 and Table 2. In the online three-stroke mechanized soybean 

harvesting operation quality inspection test, the average impurity rates detected by the system and manual 

detection were 0.71% and 0.73%, respectively. Taking the manual detection results as a benchmark, the 

maximum absolute and relative errors of the system’s impurity rate detection results were 0.06% and 8.11%, 

respectively. The average crushed rates detected by the system and manual detection were 3.70% and 3.71%, 

respectively. Taking the manual detection results as the standard values of impurity rate and crushed rate of 

soybean samples to be tested, the maximum absolute and relative errors of the system’s crushed rate 

detection results were 0.34% and 9.53%, respectively. Therefore, there was a certain difference between the 

system’s numerical results and the manual detection results. However, all detection results indicated that 

during the actual operation, the impurity rate of the soybean combine harvester was less than 3%, while the 

crushed rate was less than 5%. According to the NY/T738-2020 “Operation Quality of Soybean Combine 

Harvester” standard, the soybean harvester shall ensure that the impurity rate is less than 3% and the crushed 

rate is less than 5% during the soybean harvesting operation. It can be seen that both detection methods 

showed that the operational performance of the soybean combine harvester conformed to the national 

standard. 

Table 2 

Statistical results of the bench and field tests 

Field 
test 

num-
ber 

System monitoring results 
Manual inspection 

results 
Statistics 

Average 
impurity rate 
of samples 

[%] 

Average 
crushed rate 
of samples 

[%] 

Average 
impurity rate 
of samples 

[%] 

Average 
crushed rate 
of samples 

[%] 

Absolute 
error of the 

impurity rate 
[%] 

Relative 
error of the 

impurity rate 
[%] 

Absolute 
error of the 

crushed rate 
[%] 

Relative 
error of the 

crushed rate 
[%] 

1 0.68 3.63 0.74 3.84 0.06 8.11 0.21 5.47 

2 0.61 3.91 0.66 3.57 0.05 7.61 0.34 9.53 

3 0.85 3.56 0.79 3.72 0.06 7.59 0.16 4.30 
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CONCLUSIONS 

 To realize online quality inspection of machine-harvested soybeans and ensure their quality, this paper 

proposes an online inspection system for machine-harvested soybeans based on deep learning. A machine-

harvested soybean component detection model is constructed using three different backbones in the 

DeepLabV3+ model. The improved U-Net and PSPNet models are introduced to analyze the detection 

performance of the constructed detection models. Considering the real-time performance and accuracy jointly, 

an optimal detection model is determined, and the crushed and impurity rates of machine-harvested soybeans 

are calculated by the quantitative model. The results show that the improved U-Net model achieves the FMIOU 

value of 0.8531 on intact grains, crushed grains, and impurities identification segmentation. The DeepLabV3+ 

model based on the MobileNetV2 has the FMIOU value of 0.8180, while its F1 values reach 91.25%, 84.23%, 

and 93.39% for the three soybean categories. In terms of speed, the MobileNetV2-based DeepLabV3+ model 

needs 168.6 ms to segment an image with a resolution of 512 × 512 pixels using an Nvidia Quadro RTX5000 

16 GB GPU, while the improved U-Net model takes 266.4 ms for the same task. Based on the manual 

inspection results, in the field test, the maximum absolute and relative errors of the impurity rate of the 

DeepLabV3+ model using the MobileNetV2 are 0.06% and 8.11%, respectively, and those of the crushed rate 

are 0.34% and 9.53%, respectively. The quality detection results of the crushed and impurity rates obtained 

by the proposed system in the soybean machine-based harvesting test can meet the needs of actual 

production. In the future, we will continue to conduct relevant field trials to verify the reliability of the mechanized 

harvesting soybean quality inspection system, and promote the industrial application of the system. 
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