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ABSTRACT  

The water availability in soil strongly influences crop growth by sustaining photosynthesis, respiration, and the 

maintenance of plant temperature. The water availability will decrease due to crop evapotranspiration (ETc) 

which is influenced by reference evapotranspiration (ETo) and crop coefficient (Kc). During water shortage, Kc 

is strongly influenced by soil evaporation coefficient (Ke) and basal crop coefficient (Kcb) which can be 

calculated using the Blue Red Vegetation Index (BRVI). The purpose of this study was to apply and evaluate 

a new method of estimating ETo, Ke, and Kcb at a research site using a Deep Neural Network (DNN) with 

minimum requirements. The results of the ETo estimation using DNN shows a good output with a determinant 

coefficient (R2) being 0.774. Meanwhile, the estimates of Ke and Kcb show excellent results with the 

determinant coefficient (R2) being 0.9496 and 0.999 respectively.   

 

ABSTRAK   

Ketersediaan air dalam tanah sangat mempengaruhi pertumbuhan tanaman untuk mempertahankan 

fotosintesis, respirasi, dan pemeliharaan suhu tanaman. Ketersediaan air akan berkurang akibat 

evapotranspirasi tanaman (ETc) yang dipengaruhi oleh evapotranspirasi referensi (ETo) dan koefisien 

tanaman (Kc). Pada saat kekurangan air, Kc sangat dipengaruhi oleh koefisien penguapan tanah (Ke) dan 

basal crop koefisien (Kcb) yang dapat dihitung dengan menggunakan Normalized Difference Vegetation Index 

(NDVI). Tujuan dari penelitian ini adalah untuk menerapkan dan mengevaluasi metode baru estimasi ETo, Ke, 

dan Kcb di lokasi penelitian menggunakan Deep Neural Network (DNN) dengan persyaratan minimum. Hasil 

estimasi ETo menggunakan DNN menunjukkan output sangat baik dengan koefisien determinan  (R2) 0.774. 

Sementara itu, estimasi Ke dan Kcb menghasilkan luaran sangat baik dengan koefisien determinan (R2) 

secara  berurutan adalah  0.9496 dan 0.999.  
 

 

INTRODUCTION 

One of the factors that affect crop growth is the availability of water which functions as a solvent and 

medium for biochemical reactions, a raw material for photosynthesis, and a determinant to maintain constant 

crop temperature. Water availability is extremely dependent on rainwater because some of the rainwater that 

seeps into the ground will be stored in it. However, water in the soil will be increasingly limited during the dry 

season due to increased temperature which subsequently raises evapotranspiration. Likewise, solar radiation 

and wind speed are likely to increase evapotranspiration (Luo et al., 2021) (Dong et al., 2020) (Kiefer et al., 

2019). On the other hand, relative humidity (RH) is the ratio between actual water vapor pressure and saturated 

water vapor pressure at a specific temperature which affects the decrease in evapotranspiration when RH 

increases (Fu et al., 2022). Other factors that affect evapotranspiration are environmental factors, such as the 

nature of vegetation and anthropogenic management (Jiao et al., 2019). Given these driving factors to water 

availability, researchers generally analyze temperature, solar radiation, humidity, wind speed, and rainfall to 

estimate evapotranspiration using Artificial Neural Networks (ANN) (Vulova et al., 2021; Ferreira & França, 

2020; Elbeltagi et al., 2020; Ferreira et al., 2019;  Saggi and Jain, 2019). 

The estimation of evapotranspiration using an ANN with a big dataset produces very good results. 

However, ANN-based evapotranspiration estimation with small dataset can also be a promising option in the 

absence of big datasets (Feng et al., 2019).  
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In this direction, this study investigated the use of the minimum dataset requirement involving Tmean 

and RHmean to estimate evapotranspiration. In addition, Tmean and RHmean datasets, BRVI, and basal crop 

coefficient (Kcb) from the FAO table in one growing season were used as input parameters to estimate the 

Kcb of sample crops and soil evaporation coefficient (Ke) on the research site. 

In this scenario, this study aimed to apply and evaluate a new model of evapotranspiration estimation 

using DNN with a minimum dataset requirement based on the Internet of Things (IoT). 

 

MATERIALS AND METHODS 

Research site 

 The research site was located at the University of Jember, East Java, Indonesia, located at -8.16346o 

and 113.71305o with a tropical climate and two seasons, the rainy season and dry season. The beginning of 

the rainy season occurs in September, while the dry season begins in April. In this dry season, the water 

availability in the soil decreases, so some crops do not receive sufficient water supply through irrigation. This 

has an impact on crop growth and yields. 

 

Datasets 

This study used data on temperature (T), relative humidity (RH), Kcb from the FAO table, and BRVI from 

crop images recorded by cameras based on the Internet of Things (IoT) from January 2022 to April 2022. 

Peanut plants were used as samples in this study. Tmean and RHmean generated through a 4-hour data 

recording served as input data for DNN-based ETo estimation. Meanwhile, ETo from the IoT-based lysimeter 

measurement was compared against the estimated output of ETo. The Tmean, Rhmean, and Kcb from the 

FAO table and BRVI in one growing season were used as input data to estimate the soil evaporation coefficient 

(Ke) and Kcb of crops on the research site. Temperature and humidity sensors were used to record T and RH. 

Meanwhile, the load cell sensor was used as an IoT-based grass crop weight sensor to measure ETo. The 

change in the weight of grass and soil was considered as the weight of evapotranspiration of water and 

converted to the actual ETo height. Temperature and humidity sensors were placed around the crop while the 

growing media and crops were placed on top of the load cell. The node MCU ESP8266 module which 

functioned as an internet connection microcontroller was used for recording T, RH, and ETo and sending these 

data to a cloud server.  

Peanut images were captured using a camera sensor placed above the crop canopy by attaching it to 

a pole. The camera was put next to the crop to capture RGB data directly on the crop leaves (Putra et al., 

2020). Red (R) and blue (B) bands in the image crops were used for BRVI calculations (Delalieux et al., 2023). 

The specifications of camera sensor, T and RH sensor, and load cell sensor are presented in Table 1, and the 

equipment arrangement is shown in Figure 1. 

 

Table 1  

Specification of the camera sensor, temperature sensor, humidity sensor, and load cell sensor 

Sensor Specification 

Camera sensor module • Connectivity using WiFi 802.11b/g/n, Bluetooth 4.2 with BLE. 

• Microcontroller computing power up to 600 DMIPS. 

• The memory storage of 520KB SRAM + 4MB PSRAM + SD card 

slot. 

• A 9-pin GPIO port. 

• 2MP camera with JPEG image format. 

• An external FTDI adapter to connect the camera, sensor module 

to the mini-USB port. 

Temperature (T) and relative 

humidity (RH) sensors 

• Measuring range of 20-90% RH and temperature 0-50°C. 

• Measurement accuracy of ±5% RH and ±2°C.  

• Voltage source of 5V DC. 

• Current consumption of 0.5mA-2.5mA. 

Load cell • Aluminum alloy as basic material 

• Dimensions 8x1.25x1.25 cm  

• Operating temperature range of -20oC – 65oC  

• Output of 0.1mV - 1mV/V  

• The margin of error ≤1.5% 
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Fig. 1 - The arrangement of camera sensor equipment, weighting lysimeter device,  

IoT-based temperature, and humidity sensor 

 

 

The estimation of Kcb using BRVI 

The estimation of Kcb of peanut plants on the research site was done by identifying a linear relationship 

between the NDVI and the FAO Kcb of peanut plants, while the NDVI of peanut plants was calculated by 

equation 1. Furthermore, the NDVI was plotted with the Kcb from the FAO table (Kcb-FAO) at the same plant 

phase and age (Reyes-gonzález et al., 2018; Sánchez et al., 2021; de Oliveira et al., 2020). The relationship 

between NDVI and Kcb was based on the fact that NDVI will tend to increase until the development stage and 

decrease at the late season stage (harvest). Likewise, Kcb tends to rise in the initial stage up to the 

development stage, but it is likely to decrease in the late season stage. As an alternative, a scatter plot in the 

form of a triangle between Land Surface Air Temperature (LST) and NDVI can be used to estimate Kcb (Chen 

and Liu, 2020). The resultant linear equation was used as the basis for calculating the Kcb-NDVI value  (Niu 

et al., 2020). On the other hand, the use of RGB cameras for taking plant images has been widely used to 

diagnose plant physiological characteristics including leaf chlorophyll content (Liu et al., 2021). B and R bands 

on the RGB camera image are used to calculate the Blue Red Vegetation Index (BRVI) which functions to 

assess the biophysical properties of the vegetation index. Therefore, BRVI is identical to the NDVI value 

calculated using the NIR and R band  (Putra and  Soni, 2017). 

𝐵𝑅𝑉𝐼 =
(𝐵−𝑅)

(𝐵+𝑅)
                                                                           (1) 

The accuracy rate of Kcb estimation can be justified by referring to the correlation coefficient. A very 

good correlation is marked by coefficient index ranging from 0.9 to 1.0, a range of 0.70 to 0.89 is a good 

correlation, a range of 0.40 to 0.69 denotes a moderate correlation, and a range of 0.1 – 0.39 indicates weak 

correlation (Schober et al., 2018).   

 

The estimation of ETo using DNN 

The estimation of evapotranspiration using DNN employed an architecture involving 1 input layer, 4 

hidden layers, and 1 output layer with a Rectified Linear Unit (ReLU) activation function. The ReLU activation 

function was chosen because it has a better performance than sigmoid logistics (Huang et al., 2019). 

Meanwhile, the data compositions for DNN modeling at the training and testing stages were 70% and 30% 

respectively. 
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The DNN-based estimation of ETo using minimum dataset requirement 

This research engaged minimum dataset requirements comprising Tmean, RHmean, and the actual 

ETo measurement results of an IoT-based lysimeter within 7 days of data recording, with a duration of 4 hours 

each day. The input data were Tmean and Rhmean while ETo was used as comparison data against DNN 

output.  

 

 
Fig. 2 - DNN architecture for ETo estimation using minimum dataset requirement. 

 

The estimation of Kcb and Ke  

Changes in crop growth from the initial planting to harvesting were indicated by Kcb. The Kcb at the 

initial stage was constant and started to rise during the development stage. The Kcb remained constant until 

the mid-season stage, but it sank until the late season stage. Meanwhile, the Ke can be derived from NDVI 

and a fraction of vegetation cover (Fc), such as equations 3 and 4 (Zhang et al., 2019; Wang T. et al., 2021). 

In general, the Fc value of FAO (Fc-FAO) in each crop stage was described as follows: (a) initial stage (0 – 

0.1); (b) crop development stage (0.1 – 0.8); (c) mid-season stage (0.8 – 1); and (d) late season stage (0.8 - 

0.2) (Allen et al., 1998).   

𝐾𝑒 = 0.9 ∗ (1 − 𝐹𝑐)                                                                (2) 

𝐹𝑐 = 1.19 ∗  (𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)                                                      (3) 

  𝐹𝑐 = 1.26 ∗ 𝑁𝐷𝑉𝐼 − 0.18                                                           (4) 

 

Based on this description, Tmean, RHmean, and BRVI of the peanut plants were used as input data 

to estimate Kcb and Ke with the aid of DNN. The target data which included Kcb-BRVI and Ke-FAO served as 

comparative data against the DNN output. Kcb-BRVI was generated from the linear equation between Kcb, 

FAO tables, and BRVI, while Ke was generated from equation 2. The DNN architecture is shown in Figure 3. 

 
Fig. 3 - DNN Architecture of Kcb and Ke Estimation 
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RESULTS 

RGB camera sensor calibration 

RGB camera sensor was calibrated by calculating the relationship between the BRVI of the RGB camera 

sensor (BRVI-camera sensor) and the NDVI spectrometer (NDVI-spectrometer). The NDVI was generated by 

calculating the reflectance rate of the red and blue bands in the leaf samples. Meanwhile, the combination of 

RGB bands from the camera sensor had to be extracted first to produce red and blue bands, and then the red 

and blue band reflectance rate was calculated to estimate the BRVI. The calibration results demonstrate a 

very satisfactory accuracy with R2 of 0.8973 (see Figure 4). 

 
Fig. 4 - The result of camera sensor calibration 

 

The estimation of Kcb using BRVI 

The images of peanut plants were captured at different stages of plant growth, including the initial stage, 

development stage, and mid-season stage. Furthermore, the BRVI in the images was calculated using the 

QGis 3.10 software as shown in Figure 5.  

 
Fig. 5 - The calculation of the NDVI-RGB of peanut plant images from the initial stage to mid-season stage 
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The calculation results of the BRVI from the peanut plant images using a camera sensor indicated 

similar trend between the BRVI and Kcb-FAO. The trend was marked by constant value in the initial stage and 

an increase in the development stage, but constant value was restored in the mid-season stage. This shows 

a very strong correlation between BRVI and Kcb-FAO, as indicated by R2 of 0.8748 (Figure 6). By implication, 

BRVI can be used to estimate the Kcb of peanut plants. This finding resonates with previous research reporting 

that the NDVI and Kcb of plants were positively correlated (Niu et al., 2020). In harmony, another study 

confirms that NDVI can be used to estimate Kc on the field in all plant phases (Zhang et al., 2019). 

 
 

Fig. 6 - The trends of BRVI and Kcb-FAO in peanut 

 

The estimation of ETo using minimum dataset requirements 

ETo estimation based on DNN used a minimum requirement dataset in the form of Tmean, RHmean, 

and actual ETo recorded every 4 hours from January 8th, 2022 to January 15th, 2022. Input and target data are 

presented in Figure 7, while the ETo estimation results can be seen in Figures 8 and 9.  

 
Fig. 7 - Input and target data for estimating ETo using DNN 

 

 
Fig. 8 - ETo estimation using DNN with minimum dataset requirements 
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Based on Figure 7, the trend of ETo is similar to that of Tmean but different from that of Rhmean. Tmean 

and ETo tend to increase simultaneously. On the other hand, when RHmean increases, ETo tends to decrease. 

This is coherent with a previous research which states that an increase in temperature increases ETo, but an 

increase in RH has the opposite effect (Luo et al., 2021). Figure 8 shows that ETo estimation using DNN with 

Tmean and RHmean as input data using 4 hidden layers (16-16-12-12) shows very good results. This is 

indicated by the trend associated with ETo-DNN, which is equal to the actual ETo. The ETo-DNN and actual 

ETo were relatively the same and coincided at 36, 60, and 156 hours respectively. The DNN using 4 hidden 

layers (16-16-12-12) with the ReLU activation function demonstrates a very good performance at epoch 1000 

with a (mean absolute error) MAE of 0.1412 and R2 of 0.7704 as shown in Figure 9. 

 
 

Fig. 9 - MAE and R2 of ETo Estimation Using DNN with Minimum Dataset Requirement 

 

 

The estimation of Kcb and Ke using DNN 

 From the initial stage to the late season stage, Tmean, RHmean, Kcb-FAO, and BRVI of peanut plants 

were recorded as input data to estimate Kcb and Ke. Kcb resulting from the BRVI transformation (Kcb-BRVI) 

and Ke-FAO calculated using equation 2 was used as a comparison against Kcb-DNN and Ke-DNN. The input 

and output data for the estimation of Kcb and Ke using DNN are presented in Figure 10 and Figure 11. 

 

 

 

Fig. 10 - Dataset to estimate Kcb and Ke using DNN  
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Fig. 11 - The trends of Kcb and Ke estimated using DNN 

 

 Figure 11 shows a very decent trend of Kcb and Ke as estimated using DNN with input data involving 

Tmean, RHmean, Kcb-FAO, and BRVI. Similar trends are identified between Kcb-DNN and Ke-DNN, and 

these trends coincide with those of Kcb-BRVI and Ke-FAO. Decent DNN performance was achieved at epoch 

2500 with MAE of 0.021 as well as R2 of 0.9496 and 0.999, respectively (Figure 12). Thus, the DNN model 

with 4 parameters in the input layer and 4 hidden layers (16-16-12-12) can be used to estimate Kcb and Ke. 

 
Fig. 12 - MAE and R2 of Kcb and Ke estimation using DNN  

 

 

 

CONCLUSIONS 

The estimation of ETo using DNN with minimum dataset requirements can achieve highly accurate 

output. In this study, the minimum dataset requirements were Tmean and RHmean recorded from January 8th, 

2022 to January 15th, 2022 (7 days) with 4 hours of data generation each day. This estimation has resulted in 

MAE of 0.1412 and R2 of 0.7704. The findings demonstrate that ETo-DNN can be used as the basis for 

determining water requirements of crops in future studies. Likewise, the estimation of Ke and Kcb using DNN 

with datasets including Tmean, RHmean, Kcb-FAO, and BRVI report satisfactory accuracy rate, with MAE of 

0.021 and R2 of 0.9596 and 0.999 respectively. This confirms that Kcb-DNN and Ke-DNN can serve as a 

reference in calculating ETc in peanut plant. 
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