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ABSTRACT  

Soluble solid content (SSC) is a major quality index of kiwifruits. Visible near-infrared (Vis/NIR) hyperspectral 

imaging with the genetic algorithm (GA) was adopted in this study to realize the non-destructive prediction of 

kiwifruit SSC. A laboratory Vis/NIR hyperspectral imaging system was established to collect the 

hyperspectral imaging of 120 kiwifruit samples at a range of 400–1100 nm. The average reflectance spectral 

data of the region of interest of the kiwifruit hyperspectral imaging were obtained after different preprocessing 

method, namely, Savitzky–Golay smoothing (SG), multiplicative scatter correction (MSC), and their 

combination method. The prediction models of partial least squares regression, multiple linear regression, 

and least squares support vector machine (LS-SVM) were built for determining kiwifruit SSC by using the 

average reflectance spectral data and effective feature wavelength variables selected by GA, respectively. 

The results show that SG+MSC is the best preprocessing method. The precisions of the prediction models 

built using the effective feature wavelength variables selected by GA are higher than that established using 

full average reflectance spectral data. The GA-LS-SVM prediction model has a best performance with 

correlation coefficient for prediction (R=0.932) and standard error of prediction (SEP=0.536° Bx) for 

predicting kiwifruit SSC. The prediction accuracy has been improved by 5.6% compared with that of the 

prediction models established by using the full-band reflectance spectral data. This study provides an 

effective method for non-destructive detection of kiwifruit SSC. 

 

摘要  

可溶性固形物含量是猕猴桃的主要品质指标。本研究采用可见/近红外高光谱成像结合遗传算法实现猕猴桃可
溶性固形物含量的无损检测。构建了可见/近红外高光谱成像系统，采集了 120个猕猴桃样品 400-1100 nm的
高光谱图像。获取猕猴桃高光谱图像感兴趣区域平均反射光谱，采用 Savitzky-Golay平滑、散射校正及其组合
预处理方法对其进行预处理。分别利用全波段反射光谱和遗传算法选取的有效特征波长光谱建立猕猴桃可溶性
固形物含量的偏最小二乘回归、多元线性回归和最小二乘支持向量机预测模型。结果表明，Savitzky-Golay 组
合散射校正是最好的预处理方法。利用遗传算法选择有效特征波长建立的预测模型精度高于全波段反射光谱建
立的预测模型。GA-LS-SVM 预测模型预测猕猴桃可溶性固形物含量的相关系数 (R=0.932)和标准误差
(SEP=0.536°Bx)最好，相对于全波段反射光谱建立的预测模型，预测精度提高了 5.6%。本研究为无损检测猕
猴桃可溶性固形物含量提供了有效的方法。 

 

INTRODUCTION 

A fruit with rich nutritional value is one of the most popular and favourite agricultural products 

worldwide. Kiwifruit, which contains a lot of vitamins, minerals, sugar, and other nutrients, has become a 

global agricultural commodity (Berardinelli et al., 2019). It is loved by many consumers and called as the 

“fruit king”. Nowadays, consumers pay more attention to the internal quality of fruits (Eunhee et al., 2018). 

Soluble solid content (SSC) is a major internal quality attribute index of a fruit. It is an important factor in the 

timing of fruit ripening and harvesting (Umer et al., 2020). It also determines the taste or quality of the 

kiwifruit and affects the price and consumers’ purchasing intention (Xu et al., 2020). Moreover, SSC affects 

the commercial value and market competitiveness of fruits (Jiang et al., 2019).  
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Predicting fruit SSC has an important reference value for the evaluation of a fruit harvest time, quality, 

and grading sale. The conventional measurements using a refractometer are reliable and objective. 

However, they are laborious, destructive, time-consuming and require experience. They cannot meet the 

demands for non-destructive and online real-time detection of fruits. Moreover, the requirement of 

consumers and the market such as non-destructive, rapid and easy operating cannot be met. Consequently, 

a rapid, nondestructive, and easy-to-operate evaluation method is required for evaluating fruit SSC. 

Hyperspectral imaging is a relatively emerging tool that can provide spectral data information and spatial 

information from the examined object (Rosalba et al., 2017). Its detection principle is based on the interaction 

of the light with the examined object. The reaction strength of various objects to light at different wavelengths 

variable varies. The spectrum variation in each object is determined by its microstructure and chemical 

composition; thus, the SSC can be reflected by the intensity change in the relevant wavelength of examined 

object using chemometric methods (Zhang et al., 2020). An examined object image obtained from a 

hyperspectral imaging system can be taken as a three-dimensional spectral data matrix (Santosh et al., 

2016). In recent years, hyperspectral imaging has been broadly recognized as an emerging technology for 

rapidly and non-destructively assessing the attributes, quality, and safety of fruits (Ebrahiema et al., 2018). Li 

et al. (2018) used short-wave and long-wave near-infrared hyperspectral imaging technologies coupled with 

an improved watershed segmentation algorithm to detect early bruises on peaches rapidly and 

nondestructively. The results showed that short-wave NIR hyperspectral imaging model was highly suitable 

for detecting early bruises on peaches. Its detection results indicated that 96.5% of the bad peaches and 

97.5% of the good peaches were accurately detected from all the test peaches. Reddy R. et al. (2021) used 

hyperspectral imaging and multivariate statistics to assess the SSC and flesh firmness of fresh cherry fruits 

nondestructively by developing a partial least squares regression (PLSR) model and Gaussian process 

regression (GPR) model. The test dataset results highlighted that GPR model can be used to detect SSC 

and firmness of cherry with correlation coefficients ( R ) of 0.88 and 0.60, respectively, and root mean 

standard errors (RMSE) of prediction of 0.43% and 0.38, respectively. Thus, hyperspectral imaging can be 

considered as a reliable and robust technology for estimating cherry fruit quality attributes. However, the 

GPR models showed low certainty with a prediction interval coverage probability of 0.90–0.97. Ma et al. 

(2021) built a NIR hyperspectral imaging detection system combined with a sample rotation holder to scan 

the whole kiwifruit surfaces and acquire the hyperspectral imaging with key wavelengths within the 1002–

2300 nm range. Then, they constructed SSC calibration models via PLSR analysis. The results showed that 

the coefficient of determination ( 2

cvR ) and RMSE of the cross-validation set were 0.74 and 0.7%, respectively. 

However, Ma et al. (2021) only established a PLSR model. Moreover, the robustness and stability of the 

model is unknown.  

These aforementioned studies showed that Vis-NIR hyperspectral imaging technology can predict the 

SSC and other qualities of different fruits, such as peach, plum, cherry, and kiwifruit. Those studies 

established prediction models mainly using the full wavelength spectrum data. The studies on the influence 

of different prediction model, different preprocessing methods and variable selection method on the 

prediction accuracy are few. Moreover, studies on the non-destructive prediction of kiwifruit SSC via Vis/NIR 

hyperspectral imaging with variable selection method are also fewer. The stability and accuracy of a SSC 

prediction model greatly affect its practical application and cost. Therefore, the stability and accuracy of the 

prediction model must be improved. 

In the previous research process, the authors have explored the feasibility of using visible near 

infrared spectroscopy to detect the SSC of kiwifruit, and achieved good results. In this study, the authors 

further studied the feasibility of using hyperspectral imaging technology for non-destructive detection of 

kiwifruit SSC on the basis of the previous studies. Some experimental methods referred to the previous 

research process (Ma, 2021). 

The present study aimed to establish the approach of using Vis/NIR hyperspectral imaging combined 

with GA for the non-destructive prediction of kiwifruit SSC. Moreover, the influences of different spectral 

preprocessing methods, full wavelength variables, effective feature wavelength variables selected by GA, 

and the accuracy of different prediction models were studied. The best spectral preprocessing method and 

best prediction model for kiwifruit SSC were also determined. This study provides an effective method for 

non-destructive detection of fruit quality. 
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MATERIALS AND METHODS 

Vis/NIR hyperspectral imaging system 

A Vis/NIR hyperspectral imaging system in the wavelength range of 400–1100 nm was built and used 

to collect the hyperspectral imaging of the kiwifruit samples in the process of experiment. The schematic 

diagram of the Vis/NIR hyperspectral imaging system is shown in Fig. 1. The Vis/NIR hyperspectral imaging 

system comprised a charge coupled device camera, hyperspectral spectrograph, halogen lamp, a sample 

holder, DC power, power cable, a computer, data cable, and frame. 

 
 

Fig. 1 - Schematic diagram of the Vis/NIR hyperspectral imaging system  
 

Kiwifruit samples 

One hundred and twenty fresh kiwifruit samples at the same maturity stage were collected from a 

kiwifruit orchard. All the samples were transferred to the optical testing laboratory room in a freshness 

preservation box, and stored under cold conditions at °0 3 C− . The experiment was completed in four days. 

Every time before the experiment, the cold-stored samples were removed to room temperature conditions 

( °22 2 C ) for approximately 8 h to reduce collection data variations caused by different temperature of 

kiwifruits. First, the hyperspectral imaging of each fruit sample was acquired by the Vis/NIR hyperspectral 

imaging system, then, the SSC values of each fruit sample were measured by the digital refractometer. 

 

Vis/NIR hyperspectral imaging acquisition 

Figure 2 shows a scene of the Vis/NIR hyperspectral system. The Vis/NIR hyperspectral imaging of 

each kiwifruit sample was acquired using the Vis/NIR hyperspectral imaging system. The experimental 

kiwifruit samples were placed on the sample tray for scanning and the hyperspectral imaging was collected. 

Each sample was scanned two times from the upper surface and bottom surface, and two Vin/NIR 

hyperspectral images were collected for each sample. The mean of two images was taken as the final 

imaging data. Before scanning, the parameters of exposure time, scanning speed and lens focusing distance 

were set. The raw Vis/NIR hyperspectral imaging was corrected by using the white reference image and dark 

reference image before each measurement to reduce the influences of external interference and dark current 

noise. The dark reference image was acquired by recording the Vis/NIR hyperspectral image after the lens 

was covered with black cap, whereas, the white reference image was acquired by collecting the Vis/NIR 

hyperspectral image of a white background plate. 

The final calibrated Vis/NIR hyperspectral image of sample was calculated based on the following 

formula: 

 

0 d

w d

l l

c l l
l

−

−
=                                                                      (1) 

 

where: lc means the calibrated Vis/NIR hyperspectral image, l0 indicates the raw Vis/NIR hyperspectral 

image, lw represents the white reference images, and ld denotes the dark reference images.  

 
Spectral profile extraction 

The calibrated Vis/NIR hyperspectral images of the samples were further analysed using the ENVI 5.3 

software. The scanned region of kiwifruit was selected as the region of interest (ROI). The spectral profile 

was extracted from the ROI of each sample Vis/NIR hyperspectral image. The spectral profile extraction 

process is shown in Fig. 3.  
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The mean intensity of all pixels of each kiwifruit sample in the ROI was calculated and regarded as the 

full average reflectance spectrum for further constructing prediction model and wavelength variable selection. 

 

                                 

 
Fig. 2 - The scene of the Vis/NIR hyperspectral 

imaging system. 

 
Fig. 3 - ROI selection and spectral profile extraction 

 

 

Kiwifruit SSC real value 

The SSC real value of each kiwifruit sample was measured after the Vis/NIR hyperspectral image 

collection. First, the kiwifruit sample was peeled and cut into flesh slices in its upper surface and bottom 

surface, respectively. Second, the flesh slices were squeezed into juice using a fruit juicer (HY-160, Joyoung, 

China). Then, the SSC of each kiwifruit sample was tested using a digital Brix refractometer (PR-101; 

ATAGO Co., Ltd., Japan). The average of the SSC real values of the upper and bottom scanned surface was 

regarded as the real value of kiwifruit SSC. 

 

Data analysis and model establishment  

Data preprocessing and model establishment methods 

On the one hand, the kiwifruit is similar sphere. Its surface curvature affects the absorption and 

reflection of light. On the other hand, there are a lot of fluffs on the surface of kiwifruit. Scattering occurs 

when light hits the surface of kiwifruit. These affect the quality of the spectral data. The raw spectra of 

samples should be pretreated to improve their qualities. There are many kinds of spectral preprocessing 

methods. The spectra of samples were pretreated by Savitzky–Golay smoothing (SG) and multiple scattering 

correction (MSC) to eliminate noise interference and reduce analysis error. The detailed explanation and 

instruction of the SG algorithm can be found in literature (Chen et al., 2011), whereas that of the MSC 

algorithm can be found in literature (Tom et al., 2009). The prediction models of the SSC were developed by 

PLSR, MLR, and the least squares support vector machine (LS-SVM). Prediction model was optimized 

based on the optimal method to improve predictive ability by eliminating the useless information and 

redundant variables in the raw spectral data by using an effective variable selection algorithm. GA was used 

to decide optimized feature wavelength variables. Finally, the best pretreatment method and the best 

prediction model were determined.  

Around 1975, the PLSR was proposed by Herman Wold to build complicated model. It is a widely used 

to solve the problem of multivariate linear regression. PLSR can be thought of relating two data matrices, X 

(predictors; i.e., spectrum of kiwifruits in this study) and Y (response; i.e., SSC in this study), through a linear 

multivariate model. In the present study, PLSR analysis method was used to build a prediction model for 

detecting kiwifruit SSC. The latent variables (LVs) were considered as an important parameter in establishing 

a PLSR model. They were considered potential eigenvectors of the raw spectra. LVs can compress the raw 

spectral data and reduce the dimensionality. The LVs were taken as the input variables of PLSR and 

simplified the PLSR model. The reasonable number of LVs helps avoid underfitting or overfitting the model. 

In general, full cross-validation is used to determine the reasonable number of LVs by using the root-mean-

square error of cross-validation in establishing a PLSR model (Li et al., 2019; Nturambirwe et al., 2019). 

MLR is a well-known statistical analysis method (Hamid et al., 2012) that attempts to develop the 

relationship between an output variable with two or more input variables by fitting a linear regression 

equation. 
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The equation of MLR model is: 

i i i j i j i
y a a x a x a x e0 1 ,1 2 ,2 ,...= + + + + +                                   (2) 

where:  

yi is the output variable, a0 is a constant, is an input variable, a
j
 is the regression coefficient vector, and 

e
i  is a random measurement error. 

Support vector machine (SVM) is an effective analysis tool for classification problem. However, the 

training problem of SVM model is a complex and thorny problem. Suykens and Vandewalle proposed a 

modified and simplified SVM algorithm called LS-SVM. LS-SVM can simplify the training process and 

improve the convergence rate of regression equation. Therefore, LS-SVM has been widely used to solve 

complex regression and classification problem and achieved acceptable results (Xu et al., 2015). 

Establishing prediction model with LS-SVM belongs to a regression problem. In order to solve the regression 

problems with LS-SVM, suppose T=(xi, yj) is the training set, and m is the sample number, where 

i=1,2,3,…,m; xi is the independent variable, and yj is the dependent variable. The prediction regression 

problem of LS-SVM can be described as follows: 

21 1
2 2

1

min ( , , )

. [ ( ) ] 1 , 1,...,
{

m
T

i

i
T

i i i

J w a w w

s ty w x b i m

  

 

=

= +

+ = − =


                                 (3) 

where:  

w is the weight vector, a is a partial vector, y is the penalty parameter used in adjusting the proportion 

of empirical risk and the confidence interval of LS-SVM 
i  is the slack variable for xi. 

The LS-SVM parameters and proper kernel function are two important factors that influence the 

performance of LS-SVM. Therefore, the parameters and proper kernel function should be determined before 

using LS-SVM. The frequently used kernel functions include radial basis function (RBF), polynomial kernel, 

and linear kernel in LS-SVM. RBF is a nonlinear function that can simplify the training process and deal with 

the nonlinear relationships between input variables and output variables. RBF was selected as the kernel 

function of LS-SVM in present study. The parameter 
2  and the penalty parameter   of the RBF kernel 

function are two key parameters that should be determined. They affect prediction ability and prediction 

accuracy of LS-SVM. In this study, the   and 
2  were determined by using K-fold cross-validation method. 

 

GA (genetic algorithm) 

GA is one of the most popular methods for selecting effective features. GA can be regarded as 

computer simulations of evolutionary process from biological systems. It is able to find an optimal solution in 

dealing with the search problems and suitable for solving nonlinear complex optimization problems. GA 

starts with an initial population. Then, a new population is generated by crossover and mutation operations 

with the selected chromosomes of current population. The population and chromosomes are generated or 

chosen in term of their fitness at each stage. The selection of initial population, fitness function, 

chromosome, crossover rate and mutation rate are important steps in GA. The number of initial population is 

determined according to the training set and the number of extracted features. A new population is 

generated from the current population by chromosome selection, crossover, and mutation. A detailed 

description and computer program explanation of the GA can be found in Literature (Leardi et al., 1998). GA 

has been widely used to select the feature variable and develop predictions. In present study, the GA was 

used to select the effective feature wavelength variables and develop prediction models. 

 

Model performance criteria 

The performance of prediction model was assessed based on calculating the differences between the 

real measured value and predicted value of kiwifruit SSC by the correlation coefficient and the standard 

error. The correlation coefficient of calibration set (RC), the standard error of calibration (SEC), the correlation 

coefficient of prediction set (RP), and the standard error of prediction (SEP) were defined as shown in 

Equations (4)–(7). The four indices were used to assess the performance of the prediction models. 
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where: 
i

y


 is the predicted value of the ith kiwifruit sample, yi is the real value of the ith kiwifruit sample, ym is 

the average value of the calibration or prediction set, nC is the number of samples in the calibration set, and 

is the number of samples in the prediction set. In general, a good prediction model should have high values 

nP of RC and RP, low values of SEC and SEP. In present study, the processing and analysis of all data were 

done by using MATLAB R2013 software (The Mathworks, Inc., USA). 

 

RESULTS AND DISCUSSION 

Spectral analysis of sample and SSC real values 

The outliers of the samples’ spectra and SSC measured values affect the accuracy and robustness of 

the prediction model. In order to improve the stability and precision of the prediction model, Mahalanobis 

distance outlier detection algorithm was used to eliminate the outliers of the samples’ spectra and SSC 

measured values (Christophe et al., 2018). Six outlier SSC value samples were determined and removed 

from 120 samples. The average reflectance spectra in the ROI of the hyperspectral image of the 114 kiwifruit 

samples are shown in Fig. 4 (a).  

    

(a) Raw Average reflectance spectra                             (b) Spectra pretreated by SG 

    

(c) Spectra pretreated by MSC                             (d) Spectra pretreated by SG+MSC 

Fig. 4 – Raw average reflectance spectra and pretreated spectra of all kiwifruit samples 
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The reflection spectral curves of the samples had high similarity; the overall trends of the spectral 

curves were basically the same. Obvious absorption peaks existed at 713, 746, and 870 nm, which were 

principally due to C–H stretch third overtone and fourth overtone; they were mainly associated with the 

carbohydrate absorption bands in the kiwifruit (Hu et al., 2017). The average reflection spectra exhibited 

obvious baseline drift and scattering. Therefore, pretreatment methods of SG, MSC, and SG+MSC were 

used to pretreat the average reflection spectra. The pretreatment spectra shown in Figs. 4(b) – 4(d) had no 

baseline drift and scattering.  

One hundred and fourteen samples were randomly divided into two sets, namely, the calibration set 

and the prediction set. The calibration set was used to construct the prediction model, and the prediction set 

was used to verify the accuracy and robustness of established prediction model. All kiwifruit samples were 

randomly divided into the calibration set and prediction set according to the ratio of 3:1 by using Kenard-

Stone algorithm. The calibration set has 86 kiwifruit samples and the prediction set has 28 kiwifruit samples. 

Table 1 summarizes the SSC measured values of kiwifruits in the calibration set and the prediction set. 

Measures of SSC ranged from 8.3 to 13.8 °Bx  in the calibration set, and from 7.9 to 13.5 °Bx  in the 

prediction set. The mean values of SSC in the calibration set and the prediction set were 10.5 °Bx and 

10.4 °Bx , respectively. The SDs of SSC in the calibration and prediction sets were 1.23, 1.21, respectively. 

This shows the sample division was reasonable.  

 

Prediction models built using full average reflectance spectrum 

Before establishing prediction model, the full average reflectance spectra of samples in calibration and 

prediction sets were pretreated using the SG, MSC, and SG+MSC methods. Then, they were taken as the 

input variables to establish the prediction models of kiwifruit SSC. The kiwifruit SSC prediction models of 

PLSR, MLR, and LS-SVM were built based on the full average reflectance spectra, respectively. Table 2 

shows the results of the prediction. The performance of the three prediction models pretreated with SG+MSC 

was better than that pretreated with SG or MSC only. Therefore, SG+MSC was taken as the pretreatment 

method for establishing the prediction models. The accuracy of the LS-SVM prediction model was the best in 

the three prediction models, with RC = 0.893, SEC = 0.621, RP = 0.882, and SEP = 0.752. Moreover, the 

performance of PLSR model was better than that of the MLR model. However, on the whole, the 

performances of the three prediction models were relatively low. The key reason may be that the full average 

reflectance spectra contain a lot of redundant, useless wavelength information, thereby reducing the 

prediction accuracy of the model. Thus, some measures should be taken to eliminate useless wavelength 

information. Moreover, effective feature wavelength variables should be picked out from the full average 

reflectance spectra to establish the prediction models and improve their prediction precision. 
 

Prediction models established using effective wavelength variables 

In order to optimize and simplify the prediction model and improve the prediction precision, the GA 

method was used to select the effective feature wavelength variables from the full average reflectance 

spectra of kiwifruit samples. The selected effective feature wavelength variables by GA were used as input 

variables to build the PLSR, MLR, and LS-SVM prediction model of SSC. GA parameters were set in term of 

the number of the spectral domains. The size of population and chromosome of GA was set to 30. Moreover, 

the probabilities of cross-over and mutation were set to 50% and 1%. The number of run times of GA was set 

to 100 for every model. At every run time, the initial chromosome population was generated randomly. The 

GA was randomly run five times to select the effective feature wavelength variables for every prediction 

model. Fig. 5 shows one of the five times variable selection processes. The wavelengths above the dotted 

line were selected feature variables by GA.  

Overall, the GA-selected variables were mainly concentrated at the wavelengths of 420, 520, 600, 

715, 750, and 870 nm. Moreover, the useless information and the number of variables for establishing the 

prediction model were greatly reduced. Fig. 6 illustrates the distribution of the effective feature wavelength 

variables picked out by GA at 400–1100 nm. The selected variables were used to establish the GA–PLSR, 

GA–MLR, and GA–LS-SVM prediction models of SSC. The results of the three different kind prediction 

models of SSC are shown in table 3. The results prove that the prediction precisions of the models 

established using the effective feature wavelength variables were better than those of the models 

established with the full-average reflectance spectra (Table 2).  

The prediction accuracies of GA–LS-SVM are the best with RC = 0.948, SEC = 0.403, RP = 0.931, and 

SEP = 0.536 (Fig. 7).  
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 Fig. 5 - Frequencies of the variables selected by GA Fig. 6 - Distribution of the GA-selected effective 
wavelength variables 

 

The prediction accuracy has been improved by 5.6% compared with the LS-SVM model established 

by using the full-band reflectance spectra. These results also proved that GA is an effective method for 

extracting effective feature wavelength variables and improving the prediction accuracy of the model.  

Table 1 

Statistics of the SSC real values  

Set Amount of sample Maximum Minimum Mean SD 

Calibration set 86 13.8 8.3 10.5 1.23 

Prediction set 28 13.5 7.9 10.4 1.21 

Table 2 

Prediction SSC values of different preprocessing methods and models 

Preprocessing 
method 

PLSR MLR LS-SVM 

Rc SEC Rp SEP Rc SEC Rp SEP Rc SEC Rp SEP 

SG 0.846 0.702 0.844 0.783 0.837 0.715 0.834 0.872 0.855 0.662 0.835 0.876 

MSC 0.865 0.633 0.822 0.818 0.866 0.675 0.845 0.783 0.877 0.648 0.799 0.920 

SG +MSC 0.886 0.602 0.855 0.764 0.872 0.670 0.869 0.736 0.893 0.621 0.882 0.752 

 

Table 3 

Prediction results of GA–PLSR, GA–MLR, and GA–LS-SVM models 

Run 
Times 

GA–PLSR GA–MLR GA–LS-SVM 

cR  SEC pR  SEP cR  SEC pR  SEP cR  SEC pR  SEP 

1 0.913 0.488 0.911 0.606 0.905 0.539 0.895 0.641 0.913 0.495 0.890 0.633 

2 0.912 0.499 0.912 0.596 0.917 0.498 0.902 0.738 0.919 0.504 0.917 0.566 

3 0.925 0.473 0.915 0.565 0.912 0.521 0.892 0.662 0.920 0.515 0.918 0.635 

4 0.916 0.485 0.909 0.703 0.906 0.570 0.886 0.715 0.927 0.439 0.911 0.547 

5 0.916 0.498 0.914 0.681 0.920 0.505 0.894 0.674 0.948 0.403 0.931 0.536 

 

 

(a) Calibration set                                     (b) Prediction set  

Fig. 7 - Prediction SSC using GA–LS-SVM model by Vis/NIR hyperspectral imaging
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CONCLUSIONS 

GA-LS-VM prediction model based on Vis/NIR hyperspectral imaging was successfully utilized for 

non-destructive detection SSC of kiwifruit. The different preprocessing methods and prediction models were 

studied. GA was applied to select the effective feature wavelength variables to improve the precision of the 

prediction model. The conclusions are as follows: 

(1) The GA is an effective method for selecting effective feature wavelength variables. The Vis/NIR 

hyperspectral imaging with GA can non-destructively determine the SSC of kiwifruits. 

(2) The SG+MSC is the best pretreatment method among SG, MSC and SG+MSC in improving 

spectral quality. 

(3) The precisions of the prediction models established with the effective feature wavelength variables 

selected are higher than that established with full wavelength variables. GA-LS-SVM is the best prediction 

model of kiwifruit SSC among PLSR, MLR, and LS-SVM. It shows a better accuracy with RC = 0.948, SEC = 

0.403 °Bx , RP = 0.931, and SEP = 0.536 °Bx .  

This study offers a non-destructive and rapid method of predicting kiwifruit SSC using Vis/NIR 

hyperspectral imaging with GA. However, this detection technique also has certain limitations, for example, it 

may need to construct different prediction models or modify the models for different varieties of fruit. When 

fruit farmers apply this technology, the prediction results may have errors due to the influence of temperature 

environment, and the prediction model needs to be constantly revised. In future studies, prediction models 

for different varieties and different internal quality indicators of kiwifruit should be further established, and 

detection methods should be further promoted and applied through cooperation with farms and factories. 
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