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ABSTRACT  

The corn grain harvester serves as an example of complex farming machinery with a condition monitoring 

system that collects a lot of working condition data, making it challenging to identify the true change pattern 

due to the data coming from the equipment in various states. Firstly, the overall structure of the corn grain 

harvester is analysed, and the common causes and mechanisms of corn grain harvester failures are analysed, 

leading to the cutting table as the main research object; Secondly, the data is organized and pre-processed 

by collecting historical fault data as well as real-time fault information from corn grain harvesters. The 

processed data is trained using a self-coding network to extract internal features related to fault causes, based 

on feature fusion and prediction networks to construct a mapping between fault causes and fault phenomena; 

Finally, the future failure phenomena of the corn grain harvester are predicted according to different failure 

causes. The simulation analysis results show that the self-coding neural network fault prediction model can 

better predict the occurrence probability and types of faults, and provide data support for fault maintenance 

and decision making of agricultural machinery. 

 

摘要  

以玉米籽粒收获机为代表的复杂农机设备状态监测系统记录了大量的工作状态数据，由于数据来源于不同状态

的设备导致其真实变化规律难以发现造成了传统故障预测模型准确率较低，因此我们提出了一种基于自编码神

经网络的玉米籽粒收获机故障预测模型。首先分析了玉米籽粒收获机的整体结构，对玉米籽粒收获机故障的常

见成因与机理进行分析，引出割台为主要研究对象；其次通过收集玉米籽粒收获机的历史故障数据和实时故障

信息，对数据进行整理和预处理。将处理后的数据训练自编码网络，提取故障原因之间的内部特征。基于特征

融合和预测网络来构建故障原因与故障现象间的映射；最后根据不同故障原因预测未来玉米籽粒收获机的故障

现象。仿真分析结果表明，自编码神经网络故障预测模型能够更好的预测发生的故障概率及种类，为农业机械

的故障维修与决策提供数据支持。 

 

INTRODUCTION 

 Corn grain harvesters are very important equipment in the agricultural industry, and they are widely used 

in corn harvesting on farmland to help farmers improve harvesting efficiency. Research studies have shown 

that the direct factors inducing the failure of corn grain harvesters are mainly blockage due to excessive feeding 

and indirect factors mainly include the problem of parts damage due to aging of parts accumulated over time 

(Shi, 2022). With the advancement of various instrumentation technologies, more harvester failure data were 

obtained, and most Chinese machinery companies collected and collated the causes of corn grain harvester 

failures, and used the collected failure cause data to analyse and improve the reliability of corn grain harvester, 

which has important engineering practical application value for the failure rate of corn grain harvester. 

The approach to failure prediction has evolved rapidly over the last few decades. Firstly, the failure 

prediction techniques originated from the evolving aerospace systems. Initially, scholars used a series of 

dynamic equations as the mathematical theoretical basis to develop model-based prediction methods to 

reason about the mapping relationship between monitoring parameters and equipment failures, and this 

method of building an accurate model structure to simulate the pattern between parameter changes and 

equipment performance has many shortcomings.  
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Some scholars (Xu et al., 2011) studied the mechanical wear period of CNC machine tools according 

to the groove curve law, and then established a mathematical model of non-flush Poisson process. Some 

scholars (Liu et al., 2015) obtained the mileage data corresponding to the moment of failure through the whole 

vehicle durability test, and based on the stochastic process theory, the mathematical model of the failure 

process of the test vehicle was established with a non-simultaneous Poisson process for reliability evaluation. 

By analysing the law of equipment failure occurrence and building the corresponding mathematical or physical 

model to deeply describe the equipment failure evolution mechanism model is more complex and poorly 

generalized, and it needs to consider the characteristics of different systems and perform task specificity in 

practical application, which is not universally applicable. In view of the drawbacks of poor generalization and 

small applicability of the analytical model, researchers have incorporated expert experience and fuzzy logic 

into fault prediction to form a knowledge-based prediction method, and some scholars (Liu, 2023) designed 

an expert system based on a diagnostic rule reasoner and constructed an experimental environment with the 

help of AMESim (Advanced Modeling Environment for performing Simulation of engineering systems) 

hardware to simulate various faults of the robotic arm by injecting different fault signals. The experimental data 

analysis proves that the designed fault diagnosis expert system can efficiently and accurately detect the faults 

of the robotic arm. The study improves the generalization of the analytical model by introducing the expert 

system and fuzzy logic reasoning, which can characterize the equipment fault severity and forecast the 

possible fault situations in time, and has a greater reference value for the state inference classification of the 

corn grain harvester in this paper, but the expert system is a rule base constructed by static knowledge, which 

has certain limitations and cannot express the failure process in time scale. 

With the progress of communication technology, a large amount of industrial data can be uploaded to 

the platform database in time. For example, the corn grain harvester condition monitoring system records a 

great deal of working condition data, including machine operation status, sensor data, temperature vibration 

pressure, etc. (Lian et al., 2022). Researchers have continuously modified the model by analysing the data 

and have proposed a data-driven approach based on it. Initially, signals such as equipment currents and 

vibrations were converted to the frequency domain range by introducing Fourier transforms to extract the 

features associated with faults in them and map them to the maintenance and repair of equipment. The 

development of communication technology laid the foundation for the later development of artificial intelligence. 

In order to minimize downtime maintenance time through artificial intelligence learning algorithm 

research for fault prediction and feature extraction technology development has brought a new idea. Some 

scholars (Gu et al., 2022) proposed a fault diagnosis method of mining excavator engine based on an improved 

fruit fly optimization algorithm (IFOA) optimized RotGBM. RotGBM is generated by combining Rotation Forest 

and Light Gradient Boosting Machine (LightGBM), and a new fault diagnosis model is constructed and applied 

the method to mining excavator engine fault diagnosis with good fault diagnosis effect. Some scholars (Zhao 

et al., 2021) Zhao Hu, (2021). Fault prediction of key components of wind turbine based on BP neural net. 

Power System Engineering, Vol. 37, No. 2, 21-22.used back propagation (BP) neural network fault prediction 

model to predict the operating parameters of key components of wind turbines, and has good fault prediction 

effect on gear box bearing temperature. Some scholars (Zhou et al., 2015) used the learning method of support 

vector machine (SVM) to model the gas line failure of gas circuit and verified it with large sample data. 

Compared with the traditional way of human calculation to deal with faults, the deep learning model can give 

full play to the advantages of computer arithmetic, through a large amount of data training, gradually reduce 

the model prediction error, and continuously optimize the prediction results.  

In this paper, a fault prediction of corn grain harvester is proposed. The model is a nonlinear mapping 

between the historical fault cause data and the fault phenomena of corn grain harvester established by self-

coding neural network. The model is designed to accurately predict the type of corn kernel harvester failure 

based on the given fault data. At the same time, the data of failure cause of corn grain harvester were self-

coded and analysed, and the internal relationship between the fault cause and maize harvester was obtained. 

 

MATERIALS AND METHODS 

Structure and fault analysis of corn seed harvester 

As shown in the Fig. 1, the corn grain harvester consists of a cutting table, a lift, a detaching drum, a 

seed recovery device, an engine, a cab, and a grain bin. The harvesting process includes picking, threshing, 

separating, scavenging and conveying (Li, 2016). When the corn seed harvester is at work, the corn plant is 

separated from the stalks by cutting the ears through the cutting platform, and the lifters carry the ears into the 

detaching drum and finally send them to the grain bin (Li, 2014). 
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Fig. 1 – Structure of the whole machine of corn grain harvest  
1. Cutting platform; 2. Lifting conveyor; 3. Threshing and separation apparatus with axial flow;  

4. Grain recovery device; 5. Engine; 6. Cab; 7. Grain bin; 
 

The corn grain harvester cutting table has the role to complete the cutting of corn stalks, clamping 
and conveying the cob, picking the cob, force feeding the stalk to the chopping mechanism, feeding power 
to the conveying unit, and providing a mounting platform for the conveying unit, chopping unit, and 
throwing unit. The structure of the corn grain harvester cutting table is shown in Fig.  2 which mainly 
includes the grain splitter, the spike picking unit, the conveying churn, the cutting table frame, and related 
transmission parts and lifting cylinders. The spike picking unit is the main working part of the cutting table, 
as shown in Fig. 3. 

 

Fig. 2 – Cutting table structure diagram 
1. Divider; 2. First unit body; 3. Second unit body; 4. Third unit body; 5. Cutting table rotation;  

6. Conveyor churn; 7. Cutter frame; 8. Cutting table structure diagram 
 

 

Fig. 3 – Unit structure 
1. Spike tine box; 2. Spike rack; 3. Sprocket chain; 4. Tensioning sprocket; 5. Tiller chain driven wheel; 

 6. Stem pulling roller clearance adjustment handle; 7. Stem pulling roller; 8. Spike plate; 9. Cutting knife  
 
 

The working process of the cutting table is that the corn plants are first divided by the grain splitter, 

and under the combined action of a set of paddle chains, the corn plants in front of the machine are guided 

to the stalk pulling rollers, fed into the working gap between the two stalk pulling r ollers, and the ears are 

picked under the pulling force of the stalk pulling rollers and the blockage of the picking plate, and the 

ears are conveyed by the paddle chains, which pass the ears to the conveying churn and into the elevator. 

The rest of the picked ears of stems are drawn down for crushing. 
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There are many types of corn grain harvester failures, and the cutting platform is a fault -prone part 

of the corn grain harvester, the causes of failure are relatively complex, and the failure rate of the cut ting 

platform accounts for a high percentage of the whole machine failure. The common failure of the cutter 

includes blockage of cutter parts, broken and aged parts, etc. (Zhou, 2021). The main reason for the 

above-mentioned failure of the cutter is the improper operation of the employees, which makes the feeding 

volume too large. The continuous high-intensity work of corn grain harvester makes the parts accelerate 

deformation and aging, making the harvest quality worse. Other failure mechanisms include inappropriate 

tension of the chain causing jumping or too tight making the chain and chain teeth wear seriously. The 

mismatch between the speed of the working parts and the forward speed of the machine can also cause 

a reduction in harvesting quality, blockage of the cutting table parts and excessive breaking of the corn 

kernels. 

Therefore, this paper takes the corn grain harvester cutting table as the main fault research object, 

and predicts and classifies its faults. 

 
Methodology Overview 

The proposed method framework as shown in Fig. 4, which combines the selection of the fault 

phenomena of the corn seed harvester and the expected achievement of the fault prediction, is used to 

partition the difficult to learn by machine recognition data matrix into training and test segments, and the 

training data are used to train the self-coding neural network model to build a multi-scale fault prediction 

network (Xu at al., 2020). The test dataset was validated; a fully connected layer with SoftMax classifier 

was used thereby establishing a mapping of fault data to corn seed harvester faults. 

 

The collected data is normalized into [0,1] 

according to each dimension, and the data is 

divided into training and test segments

The pre-trained self-coding network with 

different fault causes without labels extracts 

the deep fault cause features

The intermediate fault cause features are 

connected in series to obtain multi-scale 

features

The self-coding failure prediction network is 

trained using the training set, and then 

validated using the test set

The confusion matrix is used to evaluate the 

prediction performance of the model, and the 

prediction performance of various models is 

compared

Fault feature extraction

Failure prediction

The collected data is matrixed, the cause of 

the fault is used as the input data, and the 

fault symptom is used as the output data

 
Fig. 4 - Technical route 
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Self-coding Network-based fault prediction of corn grain harvester 

The research object of this paper is the corn grain harvester , through the field investigation of 

Shandong Dongfeng Agricultural Machinery Co., Ltd., combined with the historical fault database of the 

harvester obtained by some scholars (Yang et al., 2022) through data mining. Take this as the object of 

study, because the corn grain harvester is a large and complex mechanical equipment , the technician 

cannot collect all the status information, and the failure causes of the corn grain harvester are varied, this 

paper selects some fault causes and phenomena of the header for research, through the collection of a 

large number of historical faults in the corn grain harvester, the cause and symptom data determine the 

data types of the input and output, as shown in Table 1. 

Table 1  

Failure matrix 

Sequence 1 Cause of fault (input data) Sequence 2 Fault phenomenon (output data) 

1 Excessive tool clearance 1 Cutter winding 

2 Too small tool clearance 2 Harvest chain winding 

3 The cutting platform rack is too high 3 Clogged rollers 

4 The cutting platform rack is too low 4 Bridge blockage 

5 The rolling speed is too high 5 Uneven chopping length 

6 The rolling speed is too low 6 Stalk guide groove pulling roller is 
entangled by the plant 

7 The chain tension is not appropriate 7 The churn clutch is disengaged, and 
the churn is not rotating 

8 Chain deformation or wear 8 Stem churn conveyor is clogged 

9 The speed of the working parts does 
not match the forward speed of the 
machine 

9 Stem leaves accumulate in front of 
the stem churn 

10 Unstable lifting speed of working parts 10 Corn grain broken too much 

11 Cutting table row spacing and crop row 
spacing are not in line 

  

12 Large feeding volume   

13 Belt slippage   

14 Tool breakage   

15 Parts aging   

16 Loose parts   

17 Crop collapse   

18 Debris winding around the stem puller   

19 Fields weeds are unusually high   

20 Improper driving operation by staff   

 
 As can be seen from Table 1, this paper uses 20 failure causes as input data and the resulting 10 

failure phenomena as output data for the failure prediction of corn grain harvesters. In order to make the 

failure causes and failure phenomena data recognized by the computer, this paper constructs a matrix; 

the failure causes are input in a 1×20 matrix and output in a 1×10 matrix.  

Pre-processing of database data, the collected historical fault information as well as database data 

are pre-processed, including the removal of outliers, normalization processing, feature dimensionality 

reduction, etc., to reduce the interference of noise to the model. For example, the size of the fe ed is 

scored by experts, the rest of the data are processed uniformly, and finally the data of each dimension 

collected is normalized, and the expression formula of normalization is: 

𝑥𝑛
， =

𝑥𝑛−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                     (1) 
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For example: 𝑥 = [𝑥1, 𝑥2, ⋯ 𝑥𝑛 ] for corn harvester feeding amount of the data collection; After 𝑥 for 

normalization of data; 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 for corn harvester is one of the biggest feed rate and minimum feed 
rate. 
 

Self-coding neural network 

Autoencoder (AE) is a deep learning technique for learning the hidden representation of data for data 

generation and dimensionality reduction (Wang et al., 2022). The Autoencoder network consists of an encoder 

and decoder that learns the hidden representation by minimizing the input-output error (Yu et al., 2020). The 

encoder encodes the input data into a hidden representation and the decoder decodes the hidden 

representation into the output data. 

Assuming the input data {𝐴(1), 𝐴(2), ⋯ 𝐴(𝑛)}, 𝐴(𝑖)𝜖𝑅𝑛,  the self-coding network is trained unsupervised so 

that the encoding and decoding process makes the input data 𝐴(𝑖) and the output data  𝐵(𝑖) as identical as 

possible. A three-layer self-coding network structure contains an input layer, an implicit layer and an output 

layer as shown in Fig 5. The goal of the learning of the network is to approximate a constant function so that 

𝐴(𝑖) = 𝐵(𝑖). The corresponding coding and decoding process equation is expressed as: 

ℎ = 𝑓𝑐(𝐴) = 𝑆(𝑊𝑐𝐴 + 𝑑𝑐)                                                          (2) 

 

ℎ = 𝑓𝑏(𝐴) = 𝑆(𝑊𝑏𝐴 + 𝑑𝑏)                                                   (3) 

 

𝐵 = 𝑓𝑒(𝐴) = 𝑆(𝑊𝑒𝐴 + 𝑑𝑒)                                                    (4) 

 

𝑆(𝑡) =
1

1+exp (−𝑡)
                                                                (5) 

Including 𝑓𝑐、𝑓𝑏、𝑓𝑒    respectively encoding layer, hidden layer and decoding.  

𝑆 (𝑡) as the Sigmoid activation function; 𝑊 is the connection weight matrix; 𝑑 is biased. 

 

A1

A2

A3

h1

h2

B1

B2

B3

Encoder Decoder
 

Fig. 5 - Three-layer autoencoding networks  
 
 

In order to make the input data 𝐴(𝑖) and the output data 𝐵(𝑖) as identical as possible the cross-entropy 

error function is used to reconstruct the error 𝐿(𝑥, 𝑦) function (Yan et al., 2023) expressed as: 

 

𝐿(𝑥, 𝑦) = −
1

𝑛
∑ [𝑥𝑖 ln 𝑦𝑖 + (1 − 𝑥𝑖) ln(1 − 𝑦𝑖)]𝑛

𝑖=1 +
𝑚

2
∑ ∑ ∑ (𝑊𝑖𝑗

𝑘)
2𝑠𝑙+1

𝑖=1
𝑠𝑙

𝑗=1
𝑛𝑘
𝑘=1                 (6) 

 

In the formula, 
𝑚

2
∑ ∑ ∑ (𝑊𝑖𝑗

𝑘)
2𝑠𝑙+1

𝑖=1
𝑠𝑙

𝑗=1
𝑛𝑘
𝑘=1  is a regular item, 𝑚 as the attenuation coefficient of weight, each 

node weights between neurons for 𝑊𝑖𝑗
𝑘. By reducing the weight, overfitting is prevented when extracting deep 

features from self-coding. 

The data selected in this paper have certain correlation, but the input data correlation features are not 

obvious. By using the fault causes as the input data for training, the deep feature relationships between the 

fault causes are extracted. The structure of multi-layer self-coding network contains several layers such as 

coding layer, feature transformation layer, and decoding layer. In this network, each layer consists of multiple 

neurons that are connected to each other to form a fully connected layer. Each neuron in the fully connected 

layer is connected to all neurons in the previous layer, and each neuron has a corresponding weight. These 

weights are used to convert the input data of the previous layer into the output data of the next layer. In this 

network, the Sigmoid activation function is used to map the output data of the fully connected layer to a range 

between 0 and 1 to produce probability distributions (Lin et al., 2016).  
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These probability distributions can be used to represent the correlation between different features, thus 

helping the network for feature extraction and dimensionality reduction. As shown in Fig. 5, this paper uses a 

multilayer self-coding network. Input layer: for the dataset  𝑥 = [𝑥1, 𝑥2, ⋯ 𝑥𝑛] with n combined features, two 

coding layers are used for feature extraction and dimensionality reduction to obtain the dataset �̅� =

[�̅�1, �̅�2, ⋯ �̅�𝑛]. Feature exchange layer: deep feature mapping is extracted by feature transformation of the 

feature exchange layer data. Decoding layer: two decoding layers change the data into the resolution of the 

original signal. The network parameters are shown in Table 2. 

In this paper, the two-layer coding layers and the two-layer decoding layers are used, and the network 

settings of each layer are shown in the Fig. 6.  

 

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Encoder Decoder  
Fig. 6 - Basic structure of DAE 

 
Among them, the two-layer coding layer performs feature extraction and dimensionality reduction on the 

data. The two-layer decoding layer reduces the original data type. In this paper, a total of 20 types of input 

data are taken, containing both 20 types of neurons. The input signal type differences are used to train the 

self-coding network using error functions so as to reconstruct the input signal to extract multi-scale features. 

The purpose of the self-coding network is to reconstruct the fault cause data to extract multi-scale features 

between fault causes. The self-coding network is trained by cross-entropy error function, considering that the 

input data are greatly influenced by the collection process and errors are unavoidable, making the network 

performance reduced. The self-coding network uses increasing noise perturbation to enhance the robustness 

of the network. 

Table 2 

Network parameter settings 

One floor two floors three floors four floors five floors 

{20,10} {10,4} {4,4} {4,10} {10,20} 

 

Maize grain harvester fault prediction network 

The internal feature relationships between the 20 causes of failure were obtained by the above feature 

extraction of the input data using a self-coding network but the phenomena of corn grain harvester failure could 

not be predicted. Next, the mapping between the causes of corn grain harvester failure and the phenomena 

of failure was established through fault prediction based on a self-coding neural network. 

 

Intermediate features Fully connected Fault symptoms
concatenation Softmax classifier

 
 

Fig. 7 - Prediction networks of Corn grain harvester 

 
 

The maize seed harvester fault prediction network diagram is shown in Fig 7, for the constructed maize 

seed harvester fault prediction network firstly extracts the intermediate features of the cause of the maize seed 

harvester fault using a self-coding network, secondly concatenates the intermediate features to get the multi-

scale features then uses a fully connected layer and a SoftMax classifier to get the phenomenon of the fault 

and the corresponding probability. 
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The 20 fault data outputs in the input table of the corn seed harvester fault prediction network are 10 

fault phenomena, namely, cutter winding, harvest chain winding, clogged rollers, bridge blockage, uneven 

chopping length, stalk guide chute pulling stalk roller tangled by plant, disengaged churn clutch, churn not 

rotating, stalk churn conveyor clogged, stem leaves accumulate in front of the stem churn, and corn grain is 

broken too much. The coding and decoding layers of the fault prediction network use a self-coding network, 

and the fully connected part is trained using classification loss. 

 

Simulation experiment 

In order to verify the accuracy of self-coding neural network for fault prediction of corn grain harvester 

the corn grain harvester was tested in simulation experiments, the corn grain harvester was used as the test 

object for simulation experiments, the test platform was MatlabR2022a simulation software, and the method 

of fault prediction involved in this paper was input into the simulation software. A total of 500 sets of data were 

collected in this paper of which 450 sets were used as the training set and the remaining 50 sets were used 

as the test set. The historical failure data of the existing corn grain harvester was collected through research 

and data mining techniques to build a database. After normalizing the data, a self-coding network is used to 

mine the internal characteristics of the cause of the failure of the corn grain harvester, and a failure prediction 

network is used to predict the failure phenomena caused by the cause of the failure. 

Establishing a confusion matrix and verifying the performance of corn grain harvester failure 

prediction by confusion matrix (Wang et al., 2021). 

Table 3 

Confusion matrix 

Confusion Matrix 
True Value 

Positive Negative 

Predicted value 
Positive TP FP 

Negative FN TN 

 

 

Each column in Table 3 indicates the predicted category, and the numbers of data in each column 

indicates the number of data predicted to belong to that category. Each row indicates the real category to 

which the data belongs, and the numbers of data in each row indicates the number of instances of data in that 

category. The value in each column indicates the number of instances of the actual data predicted to belong 

to that category. TP, TN, FP, and FN in the table are the first-level base indicators of the confusion matrix with 

the following concepts: TP is the probability that a positive category is predicted to be positive; FP is the 

probability that a negative category is predicted to be positive; FN is the probability that a positive category is 

predicted to be negative; TN is the probability that a negative category is predicted to be negative. The formula 

and meaning of the confusion matrix are shown in Table 4. 

 
Table 4 

Equations and significance of confusion matrix 

Abbreviation Formula  Implication 

Recall 𝑅 =
𝑇𝑃

|𝑇𝑃 + 𝐹𝑁|
 

Model predicted positive class weights in all results 
where positive class is positive. 

Precision 𝑃 =
𝑇𝑃

|𝑇𝑃 + 𝐹𝑃|
 

Weight of model prediction positive class among all 
results with positive model prediction class 

F1 score 𝐹 = 2
𝑃𝑅

𝑅 + 𝑃
 

Coordinated average of model accuracy and recall, 
which reflects the stability of the model 

Fowlkes-Mallows index 𝐹𝑀 = √
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The geometric mean of the correct results of the 
classification samples, which can evaluate the 
overall classification performance of the algorithm. 
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RESULTS 

Analysis of fault prediction results 

 In this paper, the final prediction of failure was made by comparing the probability of occurrence of the 

10 conditions, i.e., cutter winding, harvest chain winding, clogged rollers, bridge blockage, uneven chopping 

length, stalk guide chute pulling stalk roller tangled by plant, disengaged churn clutch, churn not rotating, stalk 

churn conveyor clogged, stem leaves accumulate in front of the stem churn, and corn grain is broken too much. 
Fig. 8 shows the prediction results obtained by testing data from two different scenarios using the algorithm in 

this paper. 

 Fig. 8a shows that the probability of occurrence of the 10 fault phenomena for the given operating state 

of the fault cause condition is 2.7%, 28.17%, 48%, 12.33%, 3.54%, 1.9%, 2.03%, 0.32%, 0.14%, and 0.87%, 

respectively, which indicates that the probability of corn seed harvester cutter winding is the highest in the 

current state. Therefore, the output of the fault prediction is corn seed harvester cutter winding. Compared to 

the actual situation, the predicted results match the actual occurrence of the fault. Fig. 8b shows that the 

probability of occurrence of the 10 fault phenomena for the fault cause conditions of the given operating 

condition is 49.94%, 8.14%, 7.93%, 30.06%, 1.25%, 0.15%, 0.49%, 1.04%, 0.32%, and 0.68%, respectively, 

which indicates that the probability of bridge blockage and cutter winding of the corn seed harvester in the 

current condition is the highest. Therefore, the output of the fault prediction is that the corn seed harvester has 

overbridge blockage and cutter tangle. Compared with the actual situation, the predicted results match with 

the actual occurrence of faults. This shows that the prediction results of the self-coding neural network are 

consistent with the actual situation. 

 

 
Fig. 8 - Output results of fault phenomenon networks with different data 

a-Failure phenomenon network output; b-Failure phenomenon network output; 

 
 

Algorithm comparison 

To verify the effectiveness of the self-coding neural network algorithm, the algorithm was compared with 

the traditional self-coding network support vector machine classification, sparse self-coding, and Bayesian 

classification algorithms, using the same training data and test data in order to ensure the accuracy of the 

experiment. The prediction accuracy of the four models is shown in Table 5. From the table, it can be seen 

that the correct prediction of corn seed harvester faults by the self-coding neural network outperformed the 

other fault prediction models. Thus, it shows that the prediction results of the self-coding neural network have 

a greater improvement using multi-scale feature representation can improve the prediction accuracy of the 

network. 

Table 5 

Identification results of different models 

Model  Accuracy rate F  FM 

Self-coding network 0.8668 0.8364 0.8472 

Support vector machine 0.8507 0.8035 0.7963 

Sparse self-coding network 0.9032 0.9079 0.9107 

Bayesian classification algorithm 0.8319 0.8632 0.8768 

Self-coding neural network 0.9384 0.9476 0.9197 
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CONCLUSIONS 

 In this paper, the cause of the fault is matrices, so that the computer can recognize and learn fault data 

better. Through a self-programmed network, the relationship between the fault causes can be understood, 

which can lead to a single failure phenomenon or multiple faults, so as to better explore the relationship 

between failure phenomena fault causes and failure phenomena, and to a certain extent predict the failure of 

corn grain harvester. 

The shortcoming of this paper is that the limited data cannot predict the occurrence of malfunction to 

some extent, which provides new ideas for failure prediction, relevant references for the health management 

and maintenance of agricultural machinery, and new ideas for the development of corn grain harvester 

reliability. 

A fault prediction model of corn grain harvester based on self-coding neural network is designed and 

simulation experiments are performed. Experimental results show that the error is less than a certain amount 

in different iterations of the test. Experimental results show that the proposed fault prediction model can not 

only improve the accuracy of prediction, but also reduce the time of fault repair and provide data support for 

the fault repair and reliability of agricultural machinery. 
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