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ABSTRACT  

Aiming at the problems of low precision, strong subjectivity, and continuous measurement in the current 

measurement methods of corn phenotypic traits, a method of measuring corn phenotypic traits with high 

precision, low cost, easy carrying and continuous measurement was proposed. Firstly, the three-dimensional 

scanning device Kinect 2.0 is used to collect corn information and process and reconstruct the collected point 

cloud. Then, the stem and leaf point clouds were segmented by straight-through filtering, ellipse fitting and 

region growth segmentation. Finally, the phenotypic parameters of corn were obtained by triangulation and 

plane fitting for the segmented corn leaves, and the accuracy was analyzed. The results showed that the 

accuracy of corn plant height was 97.622 %, the average relative error of stem long axis was 9.46 %, the 

average relative error of stem short axis was 11.17 %, and the accuracy of leaf area was 95.577 %. Studies 

have shown that this method provides a new method for continuous measurement of phenotypic traits in corn. 

 

摘要 

针对目前玉米表型性状测量方法存在精度低，主观性强，不能连续性测量等问题，提出一种精确度高、耗费少、

便携且可连续性测量的玉米表型性状测量方法。首先，采用三维扫描设备Kinect 2.0 采集玉米信息并对采集后的

点云进行处理和三维重建。然后，利用直通滤波、椭圆拟合、区域增长分割方法分割出玉米茎秆叶片等数据。

最后，对分割后的玉米叶片等利用三角面片化以及平面拟合等方法获取玉米植株表型参数并对其进行精度分析。

结果表明：算法测量株高精确度为 97.622%，茎秆长轴的平均测量相对误差为 9.46%，茎秆短轴平均测量相对误

差为 11.17%，叶片面积精确度为 95.577%。研究表明，本文方法为玉米的表型性状测量提供一种连续性测量新

方法。 

 

INTRODUCTION 

Corn is an important food crop and an important source of feed. Accurate acquisition of phenotypic 

traits such as plant height, stem diameter, leaf perimeter and area in the process of corn growth is of great 

significance for understanding crop growth, yield estimation, disease resistance detection and breeding (Zila 

Jia et al, 2019). Traditional crop phenotypic traits are mainly measured manually. This method is inefficient, 

has no uniform measurement standard, and cannot continuously measure crops (Yingbo Song, 2015; Jay S., 

2015). With the development of industry, researchers began to apply image processing and machine vision 

for crop phenotype detection. Hui quantified and evaluated the canopy structure of plant populations in two 

and three dimensions using multi-view stereo (MVS) techniques, and monitored plant growth and 

development from seedling to fruiting stage. (Hui et al, 2018). He et al. built a set of multi-view stereo imaging 

system, collected 360°image data of strawberry fruit, carried out three-dimensional reconstruction, and 

extracted character parameters (He et al, 2017). Aksoy constructed an imaging system using a robotic arm 

and cameras to monitor different tobacco plants, measuring their growth parameters and leaf growth rates 

(Aksoy E.E. et al, 2015).  
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Based on the structured light scanner, Li obtained the three-dimensional point cloud of cotton, 

reconstructed the three-dimensional model, and measured the phenotypic traits (Yaochen Li, 2019). Qian Wu 

realized the recognition and segmentation of overlapping fruits by using color features and three-dimensional 

geometric features through Kinect v2, which provided an important reference for the research on robotic fruit 

picking (Qian Wu, 2022). WU used Kinect v2 sensor to obtain multi-view images of rice, and carried out 

three-dimensional reconstruction of rice plants by contour projection and inverse projection methods (WU D, 

2020). Jie Ding proposed a modeling method for rotationally symmetric objects based on Kinect. For 

rotationally symmetric objects with weak structures, the model can be obtained by rotating fitting boundary 

(Jie Ding, 2019). 

At present, the instruments and technologies for crop 3D reconstruction based on point cloud include 

Lidar, multi-eye stereo camera, TOF (Time of flight) camera, etc. Kinectv2 sensor is widely used in information 

agriculture because it has the function of real-time synchronous acquisition of depth information and color 

information, and has the advantages of good precision, low cost and good compatibility. Measurements based 

on two-dimensional images are often inaccurate due to occlusion between plants and are not suitable for 

measuring morphological parameters such as leaf area. Due to the special shape of corn, general trait 

measurement method is not applicable to it. Therefore, this paper proposes a three-dimensional 

reconstruction method based on Kinect 2.0 and a phenotypic parameter extraction method based on ellipse 

fitting for corn. Through experimental verification, the method proposed in this study can extract crop 

phenotypic parameters non-destructively and accurately, which is of great significance for understanding crop 

growth status, crop detection, yield estimation, disease resistance detection and breeding. 

 

MATERIALS AND METHODS 

Experimental Materials and Data Acquisition  

The hardware measurement system for corn collection is mainly composed of six parts: control host, 

Kinect 2.0, tripod, disc and controller. The turntable system is shown in Fig. 1. Capturing the corn plant point 

cloud scene with Kinect is shown in Fig. 2. 

 

 

 
Based on the Windows 10 operating system, this study used the turntable method to scan the corn 

information. Within the effective range of Kinect v2 (0.5m ~ 5.0m) (Jin Zhou, 2013), the closer the distance is, 

the higher the accuracy will be. Therefore, under the premise of meeting the use conditions, it should be as 

close to the corn as possible. The rotation angle was 36°, and the rotation was 9 times to obtain all the 

information of the corn plant. Based on Kinect 2.0, the color information and depth information of corn plant 

are obtained and converted into color image and depth image. The depth coordinate space (512 × 424) and 

color coordinate space (1920 × 1080) of Kinect are registered by using the principle of coordinate system 

conversion and converted into 3D color point cloud. Fig. 3 is the obtained color depth map.  

 

Fig. 2 - Acquisition of corn point cloud data 

1-Collection objects; 2-Disc; 3-Kinect 2.0; 

4-Control host; 5-Tripod 

Fig. 1 - Schematic diagram of measurement composition 

1-Stepper motor; 2-Disc; 3-Control host; 4-Driver;  

5-Arduino control board; 6-Switching power supply 
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(a）0° (b）36° (c）72° (d）108° (e）144° 

     

(f）180° (g）216° (h）252° (i）288° (j）324° 

Fig. 3 - Color depth map obtained from ten directions 

 

Three-dimensional reconstruction of corn 

(1) Point cloud data noise reduction 
Due to the uneven surface of corn leaves and the presence of small villi, the reflection of light will be 

affected to produce noise points. Noise points will affect the accuracy of 3D reconstruction (Gang Liu et al, 

2022; Song Bi et al, 2021). The obtained corn background point cloud is removed by direct filtering (Archibald 

R. et al, 2019). For the noise points around the point cloud model, this study uses a statistical filtering method 

to remove them. The idea of statistical filtering is to traverse all point clouds in the point cloud model, and 

judge whether the point needs to be deleted by the average distance from all points to their neighborhood 

points. The ten directional point clouds after statistical filtering are shown in Fig. 4. From Fig. 4, it can be seen 

that the noise points around the target point cloud after statistical filtering are deleted, which improves the 

accuracy of the point cloud model. 

 

 

(a）0° (b）36° (c）72° (d）108° (e）144° 

 

(f）180° (g）216° (h）252° (i）288° (j）324° 

Fig. 4 - Ten direction point clouds after statistical filtering 
 

(2) Point cloud matching and simplification 

The local point cloud registration is carried out by manual registration for coarse registration and 

Iterative Closest Point (ICP) algorithm for fine registration. Before manual coarse registration of point clouds, 

two adjacent point cloud sets are selected, and four distant feature points are selected from the two point 

cloud sets for coarse registration.  
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At this time, the two point cloud sets roughly coincide. In order to reduce the error and improve the 

registration accuracy, the ICP algorithm is used to perform fine registration. The ICP algorithm finds the 

corresponding points of two matching point clouds by iteration or search. The Euclidean distance is used as 

the objective function to iterate continuously, and the rotation matrix and translation matrix of the point cloud 

are obtained to minimize the error function of the registration point cloud, the point cloud matching of corn is 

shown in Fig. 5. 

The point cloud data after matching is redundant, and too much point cloud data will affect the 

processing speed and the accuracy of phenotype parameter extraction. Commonly used point cloud 

simplification methods include curvature-based simplification, random sampling simplification, and bounding 

box method. The point cloud data after matching is streamlined based on the above method, and the results 

are shown in Fig. 6. Fig. 6(a) shows the results of curvature-based simplification, with a simplification rate of 

30%. The simplified point cloud and the leaf boundary information are seriously lost, and the distribution of 

leaf point cloud is uneven, which affects the accuracy of the subsequent triangular mesh generation of corn 

leaves. Fig. 6(b) shows the results of random sampling simplification. The simplification rate is 30%, and there 

is loss of corn leaf boundary point cloud. Fig. 6(c) shows the simplification of corn plant based on bounding 

box method, and the simplification spacing is 0.0078. After simplification, the point cloud feature of corn 

retains the feature information of leaf vein and leaf edge, and the point cloud distribution is relative ly uniform, 

which is convenient for leaf triangular surface to calculate leaf area. 

 

 

 

 

 

 

 

 

 

 

Fig. 5 - Effect diagram of point clouds registration Fig. 6 - Effect diagram of Point cloud simplification 

(a)Curvature-based simplification (b) Random sampling simplification 

(c）Bounding box method 

In summary, the simplification of corn plants based on bounding box method can retain more 

phenotypic characteristics when the number of point clouds is similar, and the point cloud distribution is 

uniform, which is convenient for subsequent leaf triangular patching. Therefore, this study selected bounding 

box method for corn plant point cloud simplification. 

Segmentation of corn point clouds 

During data acquisition, the Kinect 2.0 uses its own inherent coordinate system to generate 

three-dimensional point clouds. The principal component direction of the model is inconsistent with the 

direction of the three-dimensional coordinate axis. Therefore, before the point cloud processing, the point 

cloud centroid is rotated to the coordinate origin position, so that the corn stalk is along the z-axis direction. 

Based on the z-axis information, the target point cloud is divided into corn plants and flower pot, and the 

segmentation effect is shown in Fig. 7 (a). 

(1) Ellipse fitting of corn stalk 

In this paper, six-point clouds are selected for ellipse fitting based on the least square method, and all 

point clouds are traversed to calculate the distance between the point cloud data and the fitting ellipse. When 

the distance is less than the set threshold, the point is considered to be a standard point. When the distance 

between all point clouds and the fitting ellipse is calculated, the number of standard points is counted. Repeat 

the above process until the remaining point cloud is less than six.  

(a) 

(b) 

(c) 
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Compare the number of point clouds satisfied after each fit. The fitting when the number of point 

clouds is the largest is the optimal ellipse fitting, and the optimal ellipse fitting parameters are obtained. 

According to the fitting ellipse, the point cloud of the corn plant point cloud inside the ellipse is extracted, and 

the segmentation effect is shown in Fig. 7(b). 

 

  

 

  

(a)Removal of flowerpot point cloud  (b) Stem extraction of point cloud 

Fig. 7 - Segmentation of Corn point cloud 

 

(2) Region growing segmentation algorithm 

Before the leaf segmentation, the topological relationship of the point cloud is established to search 

the point cloud, and the point with the smallest curvature is selected as the initial point. Several neighborhood 

points of the initial point are calculated, and whether these neighborhood points can meet the established 

growth rules is judged. If the growth rules are met, the search point is classified into the region and used as a 

new sub-seed point. If only the angle between the seed point and the normal vector of the neighborhood point 

is within the set threshold range, the neighborhood point is only classified into the same region. Traverse all 

point clouds and repeat the previous step to continuously add new seed points until no new seed points 

appear. Repeat the above operation process until all point clouds are divided. The principle of region growing 

segmentation algorithm is shown in Fig. 8. The segmentation results are represented by different colors, and 

different colors represent different classes. The segmentation effect is shown in Fig. 9. 

 

Point cloud 

growing 

patches

neighborh

ood points

growth direction

Z

O

Y

X

    
Fig. 8 - Schematic diagram of region growing 

segmentation algorithm 
Fig. 9 - Corn point clouds after leaf segmentation 

 

Extraction and accuracy analysis of corn phenotypic parameters 

(1) Height measurement of corn 

The direction of corn stover after coordinate transformation is along the Z-axis. For the corn point cloud 

after removing the pot, traverse all the points to get the height of the corn plant, namely the Z-coordinate 

distance between the highest point and the lowest point of the corn plant. The schematic diagram of corn 

height extraction is shown in Fig. 10. 

(2) Measurement of corn stalk 

The stalk diameter of corn can be represented by a fitted elliptic feature, as shown in Fig. 11. The stalk 

diameter of corn can be calculated according to the long axis and the short axis.  
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The long and short axes of the fitting ellipse are as follows: 
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Where: 

Xc and Yc are the X and Y coordinates of the ellipse center; 

L and S are the long half axis and short half axis of ellipse respectively; 

A, B, C are parameters of fitting elliptic equation. 

 

 

(3) Measurement of leaf circumference and area of corn 

Since the obtained three-dimensional point cloud is scattered points, it cannot display the surface 

information of the crop directly obtained. Therefore, it is necessary to triangulate the point cloud greedy 

projection. The threshold of triangular patching is set as follows: the maximum plane angle is 45°, and the 

maximum angle and minimum angle of each triangle are 10° and 150° respectively. The point cloud of corn 

leaves is triangularized as shown in Fig. 12(a), and the effect is shown in Fig. 12(b). 

 

  

      (a) Leaf point cloud                              (b) Triangulation of leaf point clouds  
Fig. 12 - Greedy Projection Triangulation 

 

The three-dimensional point clouds of the blade are transformed into triangular patches with 

topological relations by greedy projection triangulation algorithm (Hui Chen et al., 2021). The corn leaf model 

is composed of several small triangles. Each triangle contains the original three-dimensional point cloud 

information. The side length of the three sides of the triangle is calculated by the vertex coordinates of the 

triangle, and then the triangle area can be calculated by Helen formula. The area of each triangle is calculated 

by traversing all triangles in the corn leaf model, and then the area of all triangles is summed to get the corn 

leaf area.  

Fig. 10 - Height measurement of corn   Fig. 11 - Schematic diagram of corn stalk  
        diameter extraction 

L 

S 

H 
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Helen's formula and the area sum formula are as follows: 

i i i i i i i i
S p p a p b p c= − − −( )( )( )                             (3) 

 
n

i=1 i
S = S                                          (4) 

Where: 

S is corn leaf area;  

Si is the area of the ith small triangle;  

pi is half of the area of the i th triangle;  

ai, bi, ci are the length of three sides of the triangle; 

n is the total number of patches; 

i is the number of face index. 

 

The artificial measurement of corn leaves is to cut the corn leaves with scissors, spread the leaves 

and place them on the whiteboard. At the same time, a black circle with a diameter of 1 cm is placed on the 

whiteboard, and a camera is used to shoot in the vertical direction of the whiteboard to obtain images 

containing corn leaves and circles. Based on the image processing module in Matlab, the circumference and 

area of corn leaves are calculated, as shown in Fig. 13. 

 

(a) Triangulation of three-dimensional leaves                 (b) Binarization of leaf point cloud   

Fig. 13 - Treatment of leaves 

 

Retrieve all triangles to find the corn leaf boundary triangle that has two sides with other triangles triangle, 

they do not share with other triangles side length is added, the result is the blade circumference. The 

boundary triangles are red and yellow triangles in the corn boundary triangles as in Fig. 14, and the boundary 

triangles are not co-edges with other triangles such as d1, d2, d3, d4 in Fig. 15. 

 

RESULTS 

The effective detection range of Kinect v2 is 0.5~4.5 m, the vertical direction Angle is 60 degrees, and 

the detection range is within 3.5 to achieve a good effect. At this time, the maximum object collected is 4 

meters, which fully meets the information collection requirements of corn in each growth period. The accuracy 

of the measurement of the phenotypic parameters of the point cloud 3D model is evaluated by comparing the 

phenotypic parameters measured by manual measurement and the parameters measured by the algorithm 

measurement. The accuracy is evaluated based on the determination coefficient (R2
), root mean square error 

(RMSE) and mean absolute percentage error (MAPE).  

d
1   

d
2    

d
3   

d
4
 

S1 S2 S3 S4 

Fig. 14 - Example diagram of boundary triangle          Fig. 15 - Diagram of side length 
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These formulas are as follows:    

 

n

i i2 i=1

n n2 2

i ii=1 i=1

(X - X)(Y - Y)
R =

(X - X) (Y - Y)



 
                        (5)  

Where: 

n is the leaf number of corn plant;  

Xi is a manual measurement of phenotypic parameters; 

X is the average value of phenotypic parameters measured manually;  

Yi is the phenotypic parameter of 3D model; 

Y is the average of phenotypic parameters of three-dimensional model. 

 

n
ai mi

i=0 mi

x - x1
MAPE = 100%

n x
                          （6） 

 
n 2

ai mii=0

1
RMSE = (x - x )

n
                             （7） 

Where: 

MAPE is the average absolute percentage error; RMSE is the root mean square error; 

n is the number of corn plant samples;  

xai is algorithm measurement data;  

xmi is manual measurement data. 

 

 
Fig. 16 - Scatter plot of comparison between 

manual measurement and algorithm 
measurement of corn plant height 

 Fig. 17 - Scatter diagram of comparison 
between manual measurement and algorithm 

measurement of corn leaf area 

   

Table 1 
 Comparison between manual measurement and algorithm measurement of corn stalk diameter 

Number Long axis Short axis 

 Manual 

measure- 

ment / mm 

Algorithmic 

measurement / 

mm 

Measure- 

ment error 

/ mm 

Relative 

error / % 

Manual 

measure- 

ment / mm 

Algorithmic 

measure- 

ment / mm 

Measure- 

ment error / 

mm 

Relative 

error /  

% 

1 24.96 23.03 1.93 7.73 21.56 22.02 0.46 2.13 

2 33.84 34.44 0.60 1.78 26.59 22.17 4.42 16.62 

3 33.26 32.51 0.75 2.25 26.11 27.63 1.52 5.82 

4 35.73 38.36 2.63 7.36 30.49 29.05 1.44 4.72 

5 41.45 44.17 2.72 6.56 31.16 27.23 3.86 12.39 

6 32.03 35.65 3.62 11.30 25.01 22.04 2.97 11.88 

7 33.71 30.76 2.95 8.75 28.67 22.44 6.23 21.73 

8 28.16 29.53 1.37 4.87 25.61 21.38 4.23 16.52 
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Table 1 
(continuation) 

Number Long axis Short axis 

 Manual 

measure- 
ment / mm 

Algorithmic 

measurement / 
mm 

Measure- 

ment error 
/ mm 

Relative 

error / % 

Manual 

measure- 
ment / mm 

Algorithmic 

measure- 
ment / mm 

Measure- 

ment error / 
mm 

Relative 

error /  
% 

9 32.01 25.67 6.34 19.81 25.98 20.36 5.62 21.63 

10 33.48 41.59 8.11 24.22 23.26 25.55 2.29 9.85 

11 28.66 26.22 2.44 8.51 21.63 16.71 4.92 22.75 

12 32.82 43.66 10.84 33.03 27.49 26.26 1.23 4.47 

13 34.97 37.53 2.56 7.32 25.57 22.37 3.20 12.51 

14 38.62 38.33 0.29 0.75 27.41 29.18 1.77 6.46 

15 30.25 31.50 1.25 4.13 26.21 24.39 1.82 6.94 

16 31.43 33.20 1.77 5.63 23.64 27.51 3.87 16.37 

17 29.91 30.17 0.26 0.87 24.34 23.17 1.17 4.81 

18 25.41 30.84 5.43 21.37 22.64 21.78 0.86 3.80 

19 29.82 28.87 0.95 3.19 24.46 20.85 3.61 14.76 

20 35.19 31.74 3.45 9.80 23.38 25.06 1.68 7.19 

Average 
value 

32.29 33.39 3.01 9.46 25.56 23.86 2.86 11.17 

 

The algorithm and manual measurement of corn plant height are shown in Fig. 16. The determination 

coefficient is 0.966, the average absolute percentage error is 2.378%, the root mean square error is 2.765 cm, 

and the accuracy of the algorithm for measuring plant height is 97.622%. The results show that the plant 

height measurement method has high accuracy, and the algorithm measurement value has good consistency 

with the manual measurement value. The accuracy of corn leaf area is shown in Fig. 17. The determination 

coefficient of corn leaf area is 0.993, the average absolute percentage error is 4.423%, the root mean square 

error is 11.927cm2, and the accuracy of the algorithm for measuring plant height is 95.577%. The analysis 

results show that the algorithm measurement results are in good agreement with the two-dimensional 

experimental measurement results, which indicates that the algorithm measurement method of corn leaves 

can accurately measure the perimeter and area of corn leaves. The comparison between manual 

measurement and algorithm measurement of corn stem diameter is shown in Table 1. The average 

measurement error of the long axis of corn stem diameter is 3.01 mm, and the average measurement relative 

error is 9.46%. The average measurement error of the short axis of corn stem diameter is 2.86 mm, and the 

average measurement relative error is 11.17%. The results show that the stem extraction and measurement 

methods proposed in this study have high accuracy and can meet the needs of use. 

 

CONCLUSIONS 

Based on the existing machine vision research, this paper proposes a new method of 

three-dimensional model reconstruction and feature segmentation for corn. Based on Kinect 2.0 combined 

with turntable method, corn plants are scanned to obtain corn point cloud. In the three-dimensional 

reconstruction of corn plants with complete information after manual rough registration and ICP fine 

registration, the reconstruction method improves the operation speed and measurement accuracy. The ellipse 

fitting and region growing segmentation algorithm for corn shape features are used to segment the 

characteristics of flower pot, stem and leaf. This method has high efficiency, high precision, no damage and 

continuous measurement. The corn plant model and the segmented corn leaves are measured. The 

measurement accuracy of the corn plant height algorithm is 97.622%. The average relative errors of corn 

stem length and short axis were 10.27% and 12.71% respectively. The measurement accuracy of corn leaf 

area algorithm is 95.577%. Experimental results showed that this method could extract crop phenotype 

parameters nondestructively and accurately. In the future, Kinect sensor is considered to be placed on a 

three-wheeled cart to directly collect corn information in the field. This study is of great significance for 

understanding crop growth status, crop detection, yield estimation and disease resistance detection. 
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