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ABSTRACT 

Identification and classification of vegetation are the basis for grassland degradation monitoring, classification 

and quantification studies. Here, four deep learning models were used to classify the unmanned aerial vehicle 

(UAV) hyperspectral remote sensing images of desert grassland. VGG16 and ResNet18 achieved better image 

classification results for vegetation and bare soil, whereas three-dimensional (3D)-VGG16 and 3D-ResNet18, 

improved by 3D convolutional kernels, achieved better classification for vegetation, bare soil and small sample 

features in the images. The number of convolutional kernels, its size and batch size parameters of each model 

were optimised, and 3D-ResNet18-J had the best classification performance, with an overall classification 

accuracy of 97.74%. It achieved high precision and efficiency in classifying UAV hyperspectral remote sensing 

images of desert grassland. 

 

摘要 

对植被进行识别与分类是草原退化监测、分级和定量化研究的基础。通过四种深度学习模型对荒漠草原无人机

高光谱遥感图像进行分类，VGG16 和 ResNet18 对图像中的植被和裸土取得了较好的分类结果，而经过 3D 卷

积核改进的 3D-VGG16 和 3D-ResNet18 模型对图像中植被、裸土和小样本地物均取得了较好的分类潜力。对

各模型的卷积核数量、卷积核尺寸和 Batch size 参数优化，发现分类性能最佳的模型为 3D-ResNet18-J，总体

分类精度达到 97.74%。实现了对荒漠草原无人机高光谱遥感图像的高精度和高效率分类。 

 

INTRODUCTION 

 With the rapid development of computer hardware, computer vision and deep learning have made 

considerable progress (Khekare et al., 2022). Computer vision has been used in many applications, including 

object detection, target localisation, target detection and scene classification (Luca et al., 2022). Its 

misclassification rate for some datasets is lower than that of human eyes. (Xu et al., 2021). Subsequently, 

deep learning classification methods were gradually introduced into remote sensing image classification, and 

the early classification stage was mainly based on the spectral feature classification model of remote sensing 

data with less dimensionality. As the sensor performance improved and the data dimensionality increased 

substantially, researchers began to explore the classification model using spatial information features. 

Recently, inspired by video sequence target detection, classification models with joint spectral–spatial feature 

information were gradually developed for the analysis of high-dimensional remote sensing data (Zhang et al., 

2020). Three-dimensional (3D) convolution can extract spectral–spatial feature information simultaneously, 

which is a powerful tool for extracting detailed features. Deep learning models based on 3D convolution have 

been successfully applied to the feature classification of widely used remote sensing datasets such as Pavia 

University, Indian Pines and Botswana (Liang et al., 2021), while researchers have developed and optimised 

3D convolution models for the data characteristics and feature characteristics of widely used remote sensing 

datasets (Xiao et al., 2019). 
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 The remote sensing monitoring of grassland degradation is mainly based on vegetation community 

characteristics, cover, biomass and soil properties to identify the degradation degree (Zhou et al., 2019; 

Esteves de Oliveira et al., 2017), while the low-altitude remote sensing platform formed by “Unmanned aerial 

vehicle (UAV) + hyperspectral remote sensing” has the advantages of abundant data sources, wide coverage, 

time and effort saving and rapid and repeated deployment (Liu et al., 2018). The obtained hyperspectral 

images have rich spectral dimensional information and high spatial–spectral resolution, which makes them 

high-quality data sources for studying the composition of target features at a microscopic scale (Paoletti et al., 

2019). Presently, the following bottlenecks exist in grassland vegetation classification. For data acquisition, 

satellite data, UAV + camera, and UAV + multispectrometer are commonly used, and their spatial resolution 

is limited. For data classification methods, most of the features are classified by calculus operation, vegetation 

index operation, threshold difference calculations, etc. The desertified grassland land has high similarity among 

species groups and sparse and low vegetation. This high similarity among species groups, low vegetation 

sparseness and fragmented patchy distribution in desertified grassland makes identification and classification 

extremely difficult and requires high-quality data and classification methods. 

 The spatial resolution of the UAV hyperspectral remote sensing images collected in this research is 

up to the centimetre level, which is quantitatively different from the widely used remote sensing datasets, and 

the features are small, fragmented and sparse. Thus, we fully use the spectral–spatial characteristics of the 

data to further explore, establish and optimise the deep learning streamlined model applicable to the 

characteristics of the hyperspectral datasets of desert grassland features to realise the efficient, high precision 

and intelligent classification and statistics of desert grassland features. 

 

MATERIALS AND METHODS 

Data acquisition 

 The test area is located in Gegentara Grassland, Siziwang Banner, Ulanqab city (41.78°N, 111.88°E), 

and a MATRICE 600 PRO six-rotor UAV with a Gaiasky-mini-VN hyperspectral instrument was used to collect 

hyperspectral remote sensing images of the interior of the test area in hovering mode. The data were collected 

from July 27 to August 8 during the mushrooming period of forage grass in 2021. To ensure acquisition quality, 

clear, cloudless days with good light conditions and low wind conditions were selected for the measurement, 

and the acquisition time was from 10:00 to 14:00. A calibration was required every 10–20 min using a standard 

whiteboard to eliminate the influence of light intensity changes on the UAV hyperspectral images. The UAV 

was equipped with a hyperspectral instrument to measure the hyperspectral data of the canopy and the 

vegetation community in the test area at the height of 30 m perpendicular to the ground directly, and 2–3 

hyperspectral remote sensing images were collected at each hovering point. The ground survey included 

recording GPS information, vegetation species in the occupied area and the bare soil area to obtain accurate 

ground verification values. 

 

Data processing 

 The raw hyperspectral image data captured by Gaiasky -mini-VN were pre-processed in three steps. 

The first step is image quality evaluation, where the remote sensing images with the best image quality were 

selected by manually checking to remove overexposed, underexposed, bent and littered images. The second 

step is radiometric calibration, wherein the original DN values were converted into reflectance using the 

professional spectral software SpecView. The third step is smoothing and noise reduction, for which the 

classical Frobenius norm2 method was used to retain the complete spectral space information and achieve 

data dimensionality reduction (Wang et al., 2019). 

 

Ground truth value 

 To improve the calculation efficiency of the four-network model, the collected T1 images of the desert 

grassland were cropped to a size of 250 rows × 250 columns, with a total of 62,500 image elements to make 

a hyperspectral dataset, as shown in Figure 1a. The four grassland features in the dataset were labelled as 

vegetation, bare soil, shadow and others, as shown in Figure 1b. The colour coding and the number of samples 

are listed in Table 1. Among the labelled samples, 60% were randomly selected as training data, and 40% 

were test data to identify the features. 



Vol. 69, No. 1 / 2023  INMATEH - Agricultural Engineering 

 

494 

          

a. False colour composite                       b. Ground truth value 

Fig. 1 - T1 image false colour composite and the ground truth 

Table 1 

Colour coding and sample number of T1 images 

Class Colour coding Number of test samples Number of training samples Total 

Vegetation  10582 15874 26456 

Bare soil  14348 21524 35872 

Shadow  38 57 95 

Others  30 47 77 

Total 24998 37502 62500 

 

VGG16 Network model 

 Proposed by the Oxford Visual Geometry team, the VGG16 model is a classical neural network model. 

It is essentially a deep learning approach to improving image recognition and classification accuracy by 

minimising the loss function in the network by gradient descent and continuously optimising it after several 

iterations of training (Zhang et al., 2022). This model replaces the original 5 × 5 and 11 × 11 convolutional 

kernels in AlexNet with 3 × 3 convolutional kernels, and the study proves that the 3 × 3 convolutional kernels 

can reduce the computational complexity, effectively reduce the parameters and improve the training 

efficiency. The VGG model achieves good results in image classification and image localisation and can 

effectively extract deep features. In this study, the VGG16 convolutional neural network is built based on the 

VGG model proposed by Simonyan (Simonyan et al., 2014) using the Pytorch module, which has 22 layers, 

including 13 convolutional layers, five pooling layers, three fully connected layers, and one Softmax layer. The 

13 convolutional layers are divided into five convolutional blocks, and a pooling layer is placed after each 

convolutional block. The minimum number of cores for the convolutional layers is 32, and the maximum number 

is 1024. 

 

ResNet18 Network model 

 Proposed by engineers such as He of Microsoft (He et al., 2015), ResNet18 is a classical neural 

network model. This model introduces the idea of residual learning into the network structure, superimposes 

the input and output of the residual block (Residual Block) and sums them through the Skip Connection. This 

operation improves the efficiency of backpropagation, effectively solves the gradient disappearance and 

gradient explosion problems that occur in deep networks, accelerates neural network training and realises the 

use of a deep network structure to extract detailed features (Zhang et al., 2019). The ResNet18 convolutional 

neural network is built based on the ResNet model proposed by He et al. using the Pytorch module, which has 

21 layers, including 17 convolutional layers, two pooling layers, one fully connected layer, and one Softmax 

layer. The 17 convolutional layers are divided into one convolutional layer and eight residual blocks. Two 

convolutional layer operations are performed in each residual block and superimposed with the parameters 

before convolution, followed by activation into the next residual block using the activation function ReLU. The 

minimum number of convolutional layers is 32, and the maximum number is 1024 kernels. 
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3D model based on VGG16 and ResNet18 

 Based on the Pytorch module, the two-dimensional (2D) convolutional kernels of two typical deep 

learning models, VGG16 and ResNet18 (hereafter referred to as VGG and ResNet, respectively), were 

replaced by 3D convolutional kernels to build the 3D-VGG16 model and the 3D-ResNet18 model (hereafter 

referred to as the 3D-VGG model and the 3D-ResNet model, respectively). Because of the numerous 

parameters involved in the 3D convolutional operations, the models on a DELL Precision 7920 worksta tion 

were trained with the following main parameters: a Xeon Gold CPU containing 16 cores and 32 threads; an 

NVIDIA Quadro P4000 graphics card with 24 GB of video memory, containing 3840 CUDA cores; and 256 GB 

of RAM. 

 3D-VGG comprises 13 convolutional layers (convolutional cores are denoted as Conv1×1×1-X, 

Conv3×3×3-X, where X is the number of convolutional cores), three fully connected layers (denoted as Fc-x, 

where x is the fully connected layer level), and five pooling layers (denoted as Max Pooling). 3D-ResNet18 

comprises 17 convolutional layers (denoted as Conv3×3×3-X, Conv7×7×7-X, X being the number of 

convolutional kernels), one fully connected layer (denoted as Fc) and two pooling layers (denoted as Pooling). 

Two convolutional layer operations are performed in each residual block and superimposed with the 

parameters before convolution, followed by activation into the next residual block using the activation function 

ReLU. The 3D-VGG and 3D-ResNet18 deep learning models are structured as shown in Figure 2. 

   

a. 3D-VGG 

 

b. 3D-ResNet 

Fig. 2 - Structure diagram of the 3D-VGG and 3D-ResNet deep learning models 
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Evaluation indices 

 Overall classification accuracy (OA) and producer accuracy (PA) will be used to evaluate the 

classification accuracy. 

 (1) The OA refers to the ratio of the number of correctly classified pixels in a random sample to the 

total number of pixels in the sample, which can reflect the accuracy of hyperspectral remote sensing 

classification results more intuitively. The formula for OA is shown in equation (1). 

OA =
∑ 𝑥𝑖𝑖

𝑘
𝑖=1

𝑁
,                                                                              (1) 

Where: 

 N represents the number of sample pixels, k represents the number of categories, and xii represents 

the composition of class i of the classification result with respect to class i of the reference type data. 

 (2) The PA refers to the ratio of the number of pixels that correctly classify the entire image into a 

certain class to the total number of such real samples. The formula for PA is shown in equation (2). 

PA =
𝑃𝑖

𝑅𝑖

,                                                                               (2) 

Where: 

 Pi represents the number of samples whose type i is correctly classified in the classification result, and 

Ri represents the true value of the image element of type i. 

 

RESULTS AND DISCUSSION 

 The main parameters of the four deep learning models, such as the number of convolutional kernels, 

kernel size and batch size, were optimised, and the influence of each parameter on the 3D convolutional neural 

network model was analysed to further improve the accuracy and efficiency of the 3D convolutional neural 

network model for feature classification. 

Optimisation of the number of convolutional kernels 

 The classification performances are compared based on the VGG and 3D-VGG network models with 

three numbers of convolutional kernels, A, B and C. The corresponding numbers of convolutional kernels are 

shown in Table 2. The label Conv3×3(×3)-32 represents that 32 convolutional kernels of size 3 × 3 are in the 

Block_1 layer of VGG-A, 32 convolutional kernels of size 3 × 3 × 3 are in the Block_1 layer of 3D-VGG-A, and 

so on. The classification performance comparison is based on ResNet and 3D-ResNet network models with 

three convolutional kernels, A, B and C. The corresponding convolutional kernels are shown in Table 2. In this 

table, Conv7×7(×7)-32 represents that 32 convolutional kernels of size 7 × 7 are in the Block_1 layer of 

ResNet-A, 32 convolutional kernels of size 7 × 7 × 7 are in the Block_1 layer of 3D-ResNet-A, and so on. 

 
Table 2 

Number of different convolutional kernels for the four models 

Model Block_1 Block_2 Block_3 Block_4 Block_5 

VGG-A(3D-VGG-A) Conv3×3(×3)-32 Conv3×3(×3)-64 Conv3×3(×3)-128 Conv3×3(×3)-256 Conv3×3(×3)-256 

VGG-B(3D-VGG-B) Conv3×3(×3)-64 Conv3×3(×3)-128 Conv3×3(×3)-256 Conv3×3(×3)-512 Conv3×3(×3)-512 

VGG-C(3D-VGG-C) Conv3×3(×3)-128 Conv3×3(×3)-256 Conv3×3(×3)-512 Conv3×3(×3)-1024 Conv3×3(×3)-1024 

ResNet-A(3D-ResNet-

A) 

Conv7×7(×7)-32 Conv3×3(×3)-32 Conv3×3(×3)-64 Conv3×3(×3)-128 Conv3×3(×3)-256 

ResNet-B(3D-ResNet-

B) 

Conv7×7(×7)-64 Conv3×3(×3)-64 Conv3×3(×3)-128 Conv3×3(×3)-256 Conv3×3(×3)-512 

ResNet-C(3D-ResNet-

C) 

Conv7×7(×7)-128 Conv3×3(×3)-128 Conv3×3(×3)-256 Conv3×3(×3)-512 Conv3×3(×3)-1024 

 

 Figure 3 shows that the PA of the VGG model increases with the number of convolutional kernels. The 

increasing trend in diverse native vegetation and bare soil is more obvious, while the small sample features-
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shadow performs best in the VGG-B model. All three models cannot classify the small sample features-other, 

and the VGG-B model has the best OA. 

 The 3D-VGG-B model has the best OA at 96.98%, which is 0.52 percentage points better than that of 

the VGG-B model. 3D-ResNet has better classification performance than ResNet. The PA of the ResNet model 

increases with the number of convolutional kernels, while the increasing trend in diverse native vegetation and 

bare soil is smaller. The increasing trend in small sample features-other is more obvious, while the highest 

accuracy in small sample features-shadow is achieved by the ResNet-B model. The difference in the PA of 

diverse natives in the 3D-ResNet model is smaller. The best PA was obtained by the 3D-ResNet-B model. 

 The highest OA, 97.14%, was obtained by the 3D-ResNet-B model and was 2.02% higher than that of 

the ResNet-B model. 

 

Fig. 3 - Comparison of the classification performances of models with different numbers of convolutional 

kernels 

Convolutional kernel size optimisation 

 The three convolutional kernel sizes based on the VGG and 3D-VGG network models, identified as D, 

E and F, are compared in terms of classification performance. The corresponding number of convolutional 

kernels is shown in Table 3, and the label Conv3×3(×3)-64 represents that 64 convolutional kernels of size 3 

× 3 are in the Block_1 layer of VGG-D, 64 convolutional kernels of size 3 × 3 × 3 are in the Block_1 layer of 

3D-VGG-D, and so on. The classification performance comparison based on ResNet and 3D-ResNet network 

models with three convolutional kernel sizes, D, E, and F, and the corresponding number of convolutional 

kernels are shown in Table 3. Conv7×7(×7)-64 in this table represents that 64 convolutional kernels of size 7 

× 7 are in the Block_1 layer of ResNet-D, 64 convolutional kernels of size 7 × 7 × 7 are in the Block_1 layer of 

3D-ResNet-D, and so on. 

Table 3 

Convolutional kernel sizes for the four models 

Model Block_1 Block_2 Block_3 Block_4 Block_5 

VGG-D(3D-VGG-D) Conv3×3(×3)-64 Conv3×3(×3)-128 Conv3×3(×3)-256 Conv3×3(×3)-512 Conv3×3(×3)-512 

VGG-E(3D-VGG-E) Conv5×5(×5)-64 Conv5×5(×5)-128 Conv5×5(×5)-256 Conv5×5(×5)-512 Conv5×5(×5)-512 

VGG-F(3D-VGG-F) Conv7×7(×7)-64 Conv7×7(×7)-128 Conv7×7(×7)-256 Conv7×7(×7)-512 Conv7×7(×7)-512 

ResNet-D(3D-ResNet-D) Conv7×7(×7)-64 Conv3×3(×3)-64 Conv3×3(×3)-128 Conv3×3(×3)-256 Conv3×3(×3)-512 

ResNet-E(3D-ResNet-E) Conv7×7(×7)-64 Conv5×5(×5)-64 Conv5×5(×5)-128 Conv5×5(×5)-256 Conv5×5(×5)-512 

ResNet-F(3D-ResNet-F) Conv7×7(×7)-64 Conv7×7(×7)-64 Conv7×7(×7)-128 Conv7×7(×7)-256 Conv7×7(×7)-512 
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 The classification performance of the 3D-VGG model with different convolutional kernel sizes is better 

than that of the VGG model, and all models reach the best classification performance in the F model. The PA 

of the VGG model is positively correlated with the convolutional kernel size, among which the increasing trend 

in diverse native vegetation and bare soil and small sample features-shadow is more obvious. In contrast, all 

three models cannot classify small sample features-other, and the highest OA is that of the VGG-F model. The 

3D-VGG model has the highest OA at 97.29%, which is 0.51 percentage points higher than that of the VGG-

F model. The 3D-VGG model is positively correlated with the size of the convolutional kernel, and the 

increasing trend in the small sample features-other is the most obvious. 

 In terms of classification performance, the ResNet model outperformed the ResNet model, and both 

models reached their best classification performance in the F model. The PA of the ResNet model was 

positively correlated with the number of convolutional kernels and showed less increase for diverse features 

of vegetation and bare soil. In contrast, the PA of small sample features-other increased more, and the ResNet-

F model had the highest OA. The PA of the 3D-ResNet model is positively correlated with the number of 

convolutional kernels, smaller for two diverse natives and larger for two small sample features. 

 

 

Fig. 4 - Comparison of classification performances under different convolutional kernel sizes 

Batch size optimisation 

 The classification performances of different batch size models on the dataset were investigated for the 

batch sizes 32, 64, 128 and 256, identified as G, H, I and J, respectively. The corresponding names of the 

batch size models are shown in Table 4. 

Table 4 

Different batch sizes for the four models 

Batch Size 32 64 128 256 

VGG VGG-G VGG-H VGG-I VGG-J 

3D-VGG 3D-VGG-G 3D-VGG-H 3D-VGG-I 3D-VGG-J 

ResNet ResNet-G ResNet-H ResNet-I ResNet-J 

3D-ResNet 3D-ResNet-G 3D-ResNet-H 3D-ResNet-I 3D-ResNet-J 

 

 Figure. 5a shows that as the batch size gradually increases, the time to reach convergence and the 

overall classification accuracy show decreasing and increasing trends, respectively, for the VGG model, and 

the highest OA is obtained at a batch size of 128 (VGG-I). The 3D-VGG model with four batch sizes shows a 

decreasing trend in convergence time, and an increasing trend in OA as the batch size gradually increases. 

The highest OA was obtained at a batch size of 128 (3D-VGG-I). A comparison of the performances of the 

VGG and 3D-VGG models with four batch sizes shows that the VGG model converges sooner and has lower 

accuracy. The VGG-I model with the best classification accuracy of 96.85% converges in 115 min, while the 

3D-VGG-I model with the best classification accuracy of 97.38% converges in 371 min. 
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 As shown in Figure 5b, as the batch size gradually increases, the convergence times and overall 

accuracies of the four batch size ResNet models tend to decrease and increase, respectively, and the highest 

OA is obtained at a batch size of 256 (ResNet-J). The 3D-ResNet models with four batch sizes show a 

decreasing trend in convergence time and an increasing trend in OA with increasing batch size. The highest 

OA was obtained at a batch size of 256 (3D-ResNet -J). Comparing the performance of the ResNet and 3D-

ResNet models with four batch sizes, it is observed that the ResNet model converges faster and has lower 

accuracy. The ResNet-J model with the best accuracy of 95.64% converges in 34 min, while the 3D-ResNet-

J model with the best accuracy of 97.74% converges in 110 min. 

 

 

a. VGG and 3D-VGG                               b. ResNet and 3D-ResNet 

Fig. 5 - Classification performances of the four models with different batch sizes 

 

 

After optimisation, the visualisation results of the best classification effect of the four types of deep 

learning models are shown in Figure 6. 

 

         

a. VGG-I                    b. ResNet-J                  c. 3D-VGG-I                  d.3D-ResNet-J 

 

Fig. 6 - Classification visualisation results of the four models 

 

CONCLUSIONS 

The main conclusions of this study are as follows: 

(1) Optimising the model structure and the hyperparameters of the number of convolutional kernels, 

their size and batch size improves the accuracy of the 2D convolutional model substantially, indicating that the 

initial 2D model has a considerable improvement space for the feature extraction of small sized features in a 

dataset. The initial 3D model performs better than the 2D model at dataset feature extraction with less 

improvement space. 

(2) The study found that the 3D convolutional network model has better dataset classification 

performance than the 2D model. Compared with 2D convolution, which can only extract 2D spectral information 

in the dataset, 3D convolution can extract combined spectral–spatial information simultaneously, making full 

use of the data characteristics of hyperspectral datasets and showing good potential for the extraction of 

vegetation and other features. This potential exists because the 3D convolutional kernel can simultaneously 

extract spectral information of fine features in the three dimensions of the hyperspectral data than the 2D 

convolutional kernel that simultaneously extracts spectral information only in two dimensions. 
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(3) The model performance is gradually improved by optimising the model structure and 

hyperparameters, and the 3D-ResNet model with a deeper convolutional structure shows better performance. 

Its producer accuracy and OA are higher than those of the 3D-VGG model. The overall accuracy of the 

optimised 3D-ResNet-J model reaches up to 97.74%, which is 2–5% higher than the other ResNet models. It 

achieves high precision, efficiency and intelligent classification of features in the dataset, laying the foundation 

for fast, efficient and accurate statistics of different vegetation communities in desert grasslands based on UAV 

hyperspectral remote sensing. 
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