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Abstract  Öz 

In this study, the modeling of First Order Plus Time Delay (FOPTD) 
dynamics by using adaptive infinite impulse response (IIR) filter based 
on Gradient Descent (GD) method, which is frequently used in machine 
learning applications, has been investigated by the help of the input-
output data in the time domain. The First Order Time Delay (FOPTD) 
dynamic system models are the most basic system model that is used in 
the modeling of control systems. In the study, the IIR filter coefficients 
are optimized online by using the GD method for convergence of the IIR 
filter response to the FOPTD dynamic system model response for the 
same input signal. The distance of the IIR filter output to the output of 
the FOPTD dynamic system for the same input is expressed by the 
instant square error function and, recursive GD solutions of this function 
are used to minimize output mismatches between FOPTD system model 
and the proposed adaptive IIR filter. Thus, the convergence of the IIR 
filter to the input-output dynamics of a FOPTD dynamic system is 
provided in the time domain by performing recursive filter coefficient 
solutions that are obtained by the GD method. An application of the 
adaptive IIR filter solutions in the online modeling of FOPTD systems 
was carried out in MATLAB-Simulink environment. In the developed 
simulation environment, the collected signals from the inputs and 
outputs of the FOPTD dynamic system were used to online optimize the 
IIR filter coefficients in the GD optimization block. In this simulation 
environment, the convergence performance of the IIR filter response for 
the time delay system dynamics of the FOPTD plant model is 
investigated for different time delay values. 

 Bu çalışmada makine öğrenmesi uygulamalarında sıklıkla kullanılan ve 
popüler bir nümerik optimizasyon yöntemi olan Gradyan İniş (GD) 
yöntemine dayalı adaptif sonsuz impuls cevabı (IIR) filtresi ile Birinci 
Mertebe Zaman Gecikmeli (FOPTD) sistem dinamiğinin zaman 
bölgesinde giriş-çıkış verisi yardımı ile modellemesi incelenmiştir. 
FOPTD dinamik sistem modelleri kontrol sitemlerinin modellemesinde 
kullanılan en temel sistem modelidir. Çalışmada, IIR filtre katsayıları, 
aynı giriş işareti için IIR filtre cevabının FOPTD dinamik sistem 
modelinin cevabına yakınsaması için GD yöntemi ile online optimize 
edilmiştir. Aynı giriş için IIR filtre çıkışının, FOPTD dinamik sistemin 
çıkışına uzaklığı anlık karesel hata fonksiyonu ile ifade edilmiş ve bu 
fonksiyonun özyinelemeli gradyan iniş çözümleri FOPTD sistem cevabı 
ile tasarlanan adaptif IIR filtre cevabı arasındaki çıkış uyumsuzluğunu 
minimize etmek için kullanılmıştır. Böylece, zaman bölgesinde IIR 
filtrenin bir FOPTD dinamik sistemin giriş-çıkış dinamiğine yakınsaması 
GD yöntemi ile elde edilen özyinelemeli filtre katsayı çözümleri ile 

sağlanmıştır. Adaptif IIR filtre çözümlerinin FOPTD sistemlerin online 
modellemesinde uygulaması MATLAB-Simulink ortamında 
gerçekleştirilmiş. Geliştirilen simülasyon ortamında FOPTD dinamik 
sistemin giriş ve çıkışlarından alınan işaretler, GD optimizasyon 
bloğunda IIR filtre katsayılarının online olarak optimize edilmesinde 
kullanılmış. Bu simülasyon ortamında IIR filtre cevabının FOPTD plant 
modelinin zaman gecikmeli sistem dinamiğine yakınsama performansı 
farklı zaman gecikme değerleri için incelenmiştir. 

Keywords: System modeling, Nonlinear optimization, Gradient 
descent method, Adaptive IIR Filter, Dynamic system. 

 Anahtar kelimeler: Sistem modelleme, Doğrusal olmayan 
optimizasyon, Gradyan iniş yöntemi, Adaptif IIR filtre, Dinamik 
sistem. 

1 Introduction 

Optimization methods have an important place in solving the 
engineering problem [1]. System modeling has become one of 
the main areas of system engineering where optimization 
methods have been frequently used. Specifically, to represent 
the real system response, the model parameters have been 
widely optimized to minimize the square error [2]. 
Mathematical modeling of real systems is a crucial step for 
system analysis and design. Therefore, nowadays, 
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mathematical modeling is needed in many fields such as data 
analysis [3], machine learning [4], dynamic system modeling 
[5], control system design [6]. 

The GD method is the widely preferred nonlinear optimization 
technique [7]. The reason is that the GD method provides easily 
applicable iterative numerical solutions for parameter 
optimization problems, and this feature has increased its use in 
solving engineering problems over time. For example, artificial 
neural networks and its backpropagation training algorithm 
benefits from GD method in optimization of weight and bias 
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coefficients, and artificial neural networks applied in the 
solution of pattern recognition problem [8], control 
applications [9] and big data [10]. The GD method was also 
improved for specific applications.; for instance, a self-adaptive 
gradient descent search algorithm was proposed for training of 
fully-connected neural networks [11]. In the field of system 
modeling; GD method found applications:  In order to minimize 
the sum of square difference errors in the process of 
constructing a parallel RC equivalent circuit model for 
modeling dielectric materials, [12] and an adaptive online 
parameter identification method with GD optimization has 
been used for an adaptive online parameter identification in 
finite-control-set model predictive control of a grid connected 
converter [13]. GD method was also used in the field of adaptive 
filter design to determine the optimal coefficients of an 
adaptive IIR filter for signal processing and filtering [14], [15] 
and GD can improve the convergence performance of the 
Wiener spline adaptive filter [16]. 

Compared to other application domains, application of GD 
algorithm in control systems seem to be relatively limited. 
However, direct gradient descent control is a developing topic 
as a branch of intelligent control. The GD algorithm has been 
directly used as an optimal controller and tracking control of 
general nonlinear systems via direct gradient descent control 
has been discussed [17]. The performance of the control 
method has been demonstrated in control simulations. In 
another study, continuous time gradient descent has been used 
as MIT rule and a fractional order adjustment rule was 
suggested for fractional order systems [18]. In the study 
conducted in 2017, a model free adaptive control scheme that 
includes two GD optimizer processes, one for plant response 
prediction and the other for optimal control law, was suggested 
and its control performance was investigated for an 
experimental rotor control system [19]. This adaptive control 
scheme contributes to the direct GD control and reduces need 
for the plant modeling. This control scheme has been 
implemented for the adaptive control of first-order stable time-
delay systems and performance improvements of this adaptive 
GD control method was shown [20]. In the study, it is assumed 
the inner-model, which expresses the instantaneous input-
output relationship with a time-varying finite impulse response 
(FIR) filter, and adaptive gradient descent control law were 
obtained according to the FIR filter response assumption. In a 
thesis study conducted in 2020, the gradient descent method 
and its adaptive control applications were examined [21]. 
Several recent studies addressed several gradient-based 
control solutions [19], [22]-[23]. In a study, to increase control 
efficiency, gradient descent algorithms and loss models were 
used to adjust the maximum efficiency angle for different 
operating conditions in vector controlled permanent magnet 
synchronous motors [22]. In another study, an application of 
the adaptive gradient descent control scheme was performed 
for adaptive control of nonlinear stable system models [23]. In 
the study, gradient descent optimizers are used for adaptive 
control of the nonlinear system by considering a higher order 
polynomial assumption of the instantaneous input-output 
relationships of the controlled system. 

The main reasons for the limited applications of the GD method 
in control systems are the difficulties of real-time identification 
and optimization of the dynamic system response, which is 
mathematically modeled with differential equations, and the 
necessity to guarantee the system stability and robust settling 
point control performance of the control systems. In this 

regard, stability conditions based on Lyapunov stability have 
been investigated [24]. There is a need to improve the stability 
conditions of the GD optimization method. For this reason, 
although the use of the GD method as a controller in the direct 
control of processes has not been considered reliable yet, due 
to system stability concerns, however the GD method can find 
utilization in real-time model identification [12]-[14],[25] and 
contribute to the adaptive control systems. Investigation of this 
potential of the GD method is a motivation for the current study. 
Main advantages of the GD optimization for online or real-time 
system modeling are that its coefficient update solutions are 
quite simple and yet effective to numerically solve nonlinear 
optimization problems. The GD algorithm has low 
computational complexity that makes the GD optimization 
suitable for real-time and embedded system applications.   

This study investigates online IIR filter identification to 
represent FOPTD system dynamics, which is widely used in 
control systems design. An adaptive IIR filter with GD 
optimization was used for the online discrete time modeling of 
FOPTD systems from the input-output signals sampled from 
FOPTD systems. Performance of the adaptive IIR filter for 
modeling the FOPTD systems was reported. Thus, a real-time 
discrete time IIR filter model of the plant can be obtained with 
the input and output data from the controlled plant, and this IIR 
model of plant response will be used in the real-time adaptation 
of the controller in future works. The main problem, addressed 
in this article, is to what extent the dynamic system with a time 
delay can be represented by an adaptive IIR filter response. To 
investigate this point, the simulation of FOPTD systems with 
different time delays was carried out in the MATLAB Simulink 
environment, and the adaptive IIR filter model was optimized 
online with the input-output data obtained from the FOPTD 
system models within the simulation. The adaptive IIR filter 
response can converge to the response of FOPTD systems 
online throughout the simulation. Thus, the online modeling 
performance of the adaptive IIR filter was evaluated for 
different time-delay of first order dynamic systems in the 
simulation environment.  

There have been studies in the literature on adaptive FIR and 
IIR filter designs based on GD optimization methods [14]-[15], 
[26]. In this study, in line with the approaches developed in 
previous studies [14]-[15], recursive IIR filter coefficient 
solutions were derived based on the GD method for discrete 
time model generation from input and output signals of FOPTD 
systems in the simulation environment. In particular, the 
effects of time delays on modeling performance of adaptive IIR 
filters are examined in this work, and potential of the adaptive 
IIR filter to model FOPTD plant responses are discussed for 
possible applications in intelligent control. This work was 
carried out within the scope of a thesis study [21] and the 
results of these investigations were discussed in this article. 

2 Fundamentals and theoretical background 

2.1 First order plus time delay system models 

First order, time delay system models are linear models with 
delayed response. FOPTD models can represent the most basic 
dynamic response of a capacitive system and they are used for 
empirical description of many dynamic processes in control. 
First order dynamic system models can be expressed in the 
form of first order, constant coefficient, linear ordinary 
differential equations. Hence, FOPTD models are in the 
category of the linear time invariant models. Accordingly, their 
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time responses can be delayed in time as much as time delay 
parameter of the model. They are commonly expressed as 
transfer function models in s-domain.  

The transfer function of FOPTD system (𝐺(𝑠)) is commonly 
expressed as follows: 

𝐺(𝑠) =
𝐾𝐷𝐶

𝜏𝑠+1
𝑒−𝐿𝑠, (1) 

Where the parameter  𝐾𝐷𝐶   is 𝐷𝐶 gain, 𝜏 is the time constant, 𝐿 
is the time delay of FOPTD system model. The parameter 𝑠 
represents the complex variable in Laplace transform. 

2.2 Gradient descent method  

The GD method is a gradient-based nonlinear optimization 
method. The GD optimization follows the gradient of a given 
differentiable objective function and the GD provides a 
recursive numerical parameter update solution that iteratively 
advances the solution towards its local minimum by following 
the gradient of the objective function. The basic numerical GD 
method is written as [7]. 

𝑥𝑖[𝑛 + 1] = 𝑥𝑖[𝑛] − 𝛾𝑖

𝜕𝐸

𝜕𝑥𝑖
 (2) 

The objective function 𝐸 appearing in the equation is a 
differentiable objective function, and the coefficient 𝛾𝑖  is the 
learning step for 𝑖. update of parameters. Commonly, in 
regression modeling problems, the error function 𝐸 is taken as 
the square of the instant error and minimized [12],[14]. 

𝐸 =
1

2
𝑒2, (3) 

Where the 𝑒 is the instant error value and it is usually expressed 
as the difference between the actual value (𝑑) and the 
calculated value (𝑦). 

𝑒 = 𝑑 − 𝑦 (4) 

GD solutions with parameter updates for a single error value 
are called stochastic GD solutions in machine learning [7]. 

Variants of the GD method have been used in machine learning  
[7]: Momentum, adagrad, adadelta etc. Convergence conditions 
are important for the practical applications of the GD method 
[7],[24],[27]. 

Continuous time optimization gains importance in control 
applications and gradient descent dynamics is expressed as 
[18]-[19]: 

𝑑𝑥

𝑑𝑡
= −𝜂𝑖

𝜕𝐸

𝜕𝑥
 (5) 

where, the parameter 𝜂𝑖  is the learning coefficient. When this 
equation is solved in discrete time, the numerical GD 
formulation (equation (2)) is obtained. Let's show this: To solve 
this equation according to Euler's method, the forward 
difference equation with the discrete time index  𝑛 is used as 
follows:[24], [28] 

𝑑𝑥𝑖

𝑑𝑡
=̃−

𝑥𝑖[𝑛 + 1] − 𝑥𝑖[𝑛]
𝛥𝑡

 (6) 

If equation (6) is used in equation (5) and arranged, one obtains 

𝑥𝑖[𝑛 + 1] = 𝑥𝑖[𝑛] − 𝛥𝑡𝜂𝑖

𝜕𝐸

𝜕𝑥𝑖
 (7) 

The learning step 𝛾𝑖  parameter can be written as 𝛾𝑖 = 𝛥𝑡𝜂𝑖  so 
that one obtains equation (2). The learning step adjusts the size 
of the step in the gradient direction [29]. 

2.3 Infinite impulse response filters  

IIR filters model a discrete-time linear time-invariant system 
that implements feedback from output. It recursively uses the 
past data from its own output in addition to the input. They are 
also known as feedback filters because of involving feedback 
from its output to its input. Due to these feedback features, it 
can find use in modeling system dynamics [30]. 

IIR filters are expressed in the discrete time domain with 
difference equations as[14]  

𝑦[𝑛] = − ∑ 𝑎𝑖

𝐿

𝑖=1

𝑦[𝑛 − 𝑖] + ∑ 𝑏𝑗

𝑀

𝑗=0

𝑥[𝑛 − 𝑗] (8) 

The coefficients of adaptive IIR filters are optimally determined 
so that the IIR filter converges to a desired filter response. The 
GD method has been used to determine the optimal IIR 
coefficients [14]. This method is summarized as follows:  

The filter coefficient vectors 𝜃 and the vector 𝑋(𝑛) are defined 
by  

𝜃 = [𝑎1𝑎2 . .  𝑎𝐿 𝑏0𝑏1 . .  𝑏𝑀] (9) 

𝑋(𝑛) = [𝑦(𝑛 − 1)𝑦(𝑛 − 2) . . . . 𝑦(𝑛 − 𝐿) 𝑥(𝑛 − 1) 
                                                𝑥(𝑛 − 2) . . . . 𝑥(𝑛 − 𝑀) ] 

(10) 

and the filter output is expressed as  

𝑦(𝑛) = 𝜃(𝑛)𝑇𝑋(𝑛) (11) 

For the error function 𝐸 =
1

2
𝑒2 =

1

2
(𝑑 − 𝑦)2, the filter 

coefficient updates are written according to the GD method as 

𝜃(𝑛 + 1) = 𝜃(𝑛) + 𝛾(𝑑 − 𝑦)𝛻𝜃𝑦(𝑛) (12) 

where, the gradient operation 𝛻𝜃𝑦(𝑛) is calculated as 

𝛻𝜃𝑦(𝑛) = 𝑋(𝑛) + ∑ 𝑎𝑖

𝐿

𝑖=1

𝛻𝜃𝑦(𝑛) (13) 

In the next sections, this method is analyzed and implemented 
in the MATLAB/Simulink 2015 environment for dynamic 
system modeling for control systems [31]. Tests were 
conducted on a laptop with an Intel Core i5-CX0026NT 
processor and 8 GB of RAM. 

3 Method 

In this section, the GD method is applied for tuning coefficients 
of the adaptive IIR filter model that is implemented to online 
approximate to the response of FOPTD systems in discrete 
time. Let the input of a FOPTD dynamic system model be 
denoted by 𝑢[𝑛] and the output by 𝑑[𝑛]. In order for the IIR 
filter function expressed in equation 5 to fully represent a 
FOPTD system, the difference of the two system outputs is 
expected to decrease zero value in time. 

When the following condition is met, the IIR filter output 𝑦[𝑛] 
converges to the dynamic system output 𝑑[𝑛] in case of the 
same 𝑢[𝑛] input. 
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𝑙𝑖𝑚
𝑛→∞

(𝑑[𝑛] − 𝑦[𝑛]) → 0 (14) 

In order to implement this condition iteratively, the objective 
function can be expressed in the form of equation (3) as 

𝐸𝑚 =
1

2
(𝑑[𝑛] − 𝑦[𝑛])2 = 

1

2
(𝑑[𝑛] + ∑ 𝑎𝑖

𝐿

𝑖=1

𝑦[𝑛 − 𝑖] − ∑ 𝑏𝑗

𝑀

𝑗=0

𝑢[𝑛 − 𝑗])2 

(15) 

In order for converge of the filter response to the FOPTD system 
response, the 𝑎𝑖  and 𝑏𝑗  coefficients are calculated to minimize 

the modeling error by using the GD method. Since the FOPTD 
system is a continuous time system, gradient descent dynamics 
(equation 5) is considered in this system structure, and discrete 
time coefficient update equations are derived by discretizing 
the gradient descent dynamics. Thus, an iterative solution of the 
coefficients of the discrete time IIR filter, which can converge to 
the continuous time FOPTD system response, is obtained. When 
applying continuous time GD dynamics for  𝑎𝑖  coefficients, one 
obtains [21]. 

𝑑𝑎𝑖

𝑑𝑡
= −𝛾𝑎

𝜕𝐸𝑚

𝜕𝑎𝑖
 (16) 

The sensitivity derivative can be written in the discrete form as 

𝜕𝐸𝑚

𝜕𝑎𝑖[𝑛]
= 𝑦[𝑛 − 𝑖](𝑑[𝑛] + 

(17) 

∑ 𝑎𝑖[𝑛]

𝐿

𝑖=1

𝑦[𝑛 − 𝑖] − ∑ 𝑏𝑗[𝑛]

𝑀

𝑗=0

𝑢[𝑛 − 𝑗]) 

If the GD dynamics is applied for the 𝑏𝑗  coefficient, one obtains  

[21]. 

𝑑𝑏𝑗

𝑑𝑡
= −𝛾𝑏

𝜕𝐸𝑚

𝜕𝑏𝑗
 (18) 

The sensitivity derivative can be written in discrete form as 

𝜕𝐸𝑚

𝜕𝑏𝑗[𝑛]
= −𝑢[𝑛 − 𝑗](𝑑[𝑛] + 

(19) 

∑ 𝑎𝑖[𝑛]

𝐿

𝑖=1

𝑦[𝑛 − 𝑖] − ∑ 𝑏𝑗

𝑀

𝑗=0

[𝑛]𝑢[𝑛 − 𝑗]) 

When equations (17) and (19) are used in equations (16) and 
(18), respectively, they can be rearranged as [21] 

𝑑𝑎𝑖

𝑑𝑡
= −𝛾𝑎𝑦[𝑛 − 𝑖](𝑑[𝑛] + 

(20) 

∑ 𝑎𝑖[𝑛]

𝐿

𝑖=1

𝑦[𝑛 − 𝑖] − ∑ 𝑏𝑗[𝑛]

𝑀

𝑗=0

𝑢[𝑛 − 𝑗]) 

𝑑𝑏𝑗

𝑑𝑡
= 𝛾𝑏𝑢[𝑛 − 𝑖]((𝑑[𝑛] + 

(21) 

∑ 𝑎𝑖

𝐿

𝑖=1

[𝑛]𝑦[𝑛 − 𝑖] − ∑ 𝑏𝑗

𝑀

𝑗=0

[𝑛]𝑢[𝑛 − 𝑗]) 

The derivative terms in this equation can be discretized in the 
form of the forward difference [24]. 

𝑑𝑎𝑖

𝑑𝑡
≅

𝑎𝑖[𝑛 + 1] − 𝑎𝑖[𝑛]

𝛥𝑡
 (22) 

𝑑𝑏𝑗

𝑑𝑡
≅

𝑏𝑗[𝑛 + 1] − 𝑏𝑗[𝑛]

𝛥𝑡
 (23) 

Thus, the coefficients 𝑎𝑖  and 𝑏𝑗  are sampled with 𝑡 = 𝑛𝛥𝑡, and 

discrete time 𝑎𝑖[𝑛] and 𝑏𝑗[𝑛] solutions are obtained. 

If equations (22) and (23) are substituted in equations (20) and 
(21), respectively, the numerical GD solutions for filter 
coefficient update are expressed as 

𝑎𝑖[𝑛 + 1] = 𝑎𝑖[𝑛] − 𝜆𝑎𝑦[𝑛 − 𝑖](𝑑[𝑛] + 

(24) 
∑ 𝑎𝑖

𝐿

𝑖=1

[𝑛]𝑦[𝑛 − 𝑖] − ∑ 𝑏𝑗[𝑛]

𝑀

𝑗=0

𝑢[𝑛 − 𝑗]) 

 
𝑏𝑗[𝑛 + 1] = 𝑏𝑗[𝑛] + 𝜆𝑏𝑢[𝑛 − 𝑖](𝑑[𝑛] + 

(25) 
∑ 𝑎𝑖[𝑛]

𝐿

𝑖=1

𝑦[𝑛 − 𝑖] − ∑ 𝑏𝑗[𝑛]

𝑀

𝑗=0

𝑢[𝑛 − 𝑗]) 

 

Where learning coefficients can be obtained as 𝜆𝑎 = 𝛥𝑡𝛾𝑎  and 
𝜆𝑏 = 𝛥𝑡𝛾𝑏 [21]. These update equations are used in Simulink 
simulation.  

4 Numerical work 

4.1  Simulations for square wave input 

In this section, the adaptive IIR filter solution is used to 
converge response of the FOPTD system dynamics that is 
expressed by equation (1). For this purpose, the system 
diagram in Figure 1 is designed in the MATLAB/Simulink 
environment [31]. The developed Simulink simulation model is 
presented in Figure 2. 

 

Figure 1. Block diagram of the system developed for dynamic 
system modeling [21]. 

In general, IIR filters can represent dynamic systems [30]. 
However, the time delay component 𝑒−𝐿𝑠 in FOPTD system 
models causes delaying the system response in time, and this 
effect becomes a factor that can negatively affect the modeling 
performance of discrete time IIR filter functions to represent 
FOPTD system. 

In this study, how the increase of time delay parameter affects 
the modeling performance of the adaptive IIR filter with GD 
optimization are investigated. In order to observe effects of the 
time delay on the convergence performance of the proposed IIR 
filter, multiple simulations for FOPTD system functions in  
Table 1 were performed, and the results were evaluated. 
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Figure 2. Simulink simulation environment developed for FOPTD system modeling [21]. 

Table 1. FOPTD system models with different time delays used in the tests. 

FOPTD System Functions Time Delay
 

𝐺0(𝑠) =
1

3𝑠 + 1
𝑒0

 
0 sec (Without Delay)

 
𝐺1(𝑠) =

1

3𝑠 + 1
𝑒−1

 
1 sec

 

𝐺10(𝑠) =
1

3𝑠 + 1
𝑒−10

 
10 sec

 
𝐺20(𝑠) =

1

3𝑠 + 1
𝑒−20

 
20 sec

 
 

The square wave input is applied to inputs of 𝐺0(𝑠), 𝐺1(𝑠), 
𝐺10(𝑠) and 𝐺20(𝑠) separately. For the square wave input, and 
the convergence of proposed adaptive IIR filter solutions to 
these models was shown by comparing outputs of the IIR filters 
and FOPTD in figures. In these figures, obtained filter outputs 
𝑦0, 𝑦1, 𝑦10 and 𝑦20  are presented with FOPTD system outputs 
𝑑0, 𝑑1, 𝑑10 and 𝑑20. The subscripts represent the time delay.  

Figure 3 shows the simulation results that demonstrate the 
online modeling of 𝐺0(𝑠) response via adaptive IIR filter in case 
of square wave input. In the figure, the convergence of adaptive 
filter output 𝑦0 to FOPTD system output 𝑑0 is shown.  
Figure 3(b) presents a comparison of system responses in the 
interval of 0-90 seconds at the beginning of the simulation. At 
the second rising edge, it is seen that the filter output starts to 

converge to the dynamic system output. Figure 3(c) shows the 
results for the 400-480 seconds interval towards the end of the 
simulation. Here, it is clearly seen that the difference between 
the adaptive filter response and the 𝐺0(𝑠) system response 
considerably decreases compared to the initial period, and the 
filter response converges to response of the 𝐺0(𝑠) model. In 
Figure 4, the evolution of 𝐸𝑚0 modeling error (square error) 
with time is given. It is seen that the model error 𝐸𝑚0 decreases 
with time and confirms the convergence of the system response 
as seen in Figure 3. 
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(a) 

 

(b) 

 

(c) 

Figure 3. Adaptive IIR filter output and G0(s) function output 
for square wave input signal. (a): Full simulation result.  

(b): close-up view in the range of 0-90 sec. (c): close-up view 
in the range of 400-480 sec. 

 

Figure 4. Temporal evolution of model error for function 
G0(s). 

Figure 5 shows the online modeling simulation results of the 
adaptive IIR filter for 𝐺1(𝑠) model response. Here, the dynamic 
system model 𝐺1(𝑠) has a time delay of 1 second. Figure 5(b) 
shows convergence of adaptive filter output 𝑦1 to 𝐺1(𝑠) model 
output 𝑑1 in the 0-90 seconds interval of the simulation time. 
When Figure 5(b) and (c) are compared, it is seen that the IIR 
filter output can coverage to output of FOPTD model 𝐺1(𝑠) 
between 350-500 seconds. This is because the adaptive IIR 
filter coefficients were not optimal at the beginning of the 
simulation, and towards the end of the simulation, the GD 
method optimizes the filter coefficients, and the filter response 
can converge to the dynamic system response.  

 

(a) 

 

(b) 

 

(c) 

Figure 5. Adaptive IIR filter output and G1(s) function output 
for square wave input signal. (a): Full simulation result.  

(b): Close view in the range of 0-120 sec. (c): close-up view in 
the range of 350-500 sec. 

The decrease of the model error in Figure 6 supports this 
observation. This result showed that the adaptive filter 
response began to adapt over time to the dynamic system 
response of 𝐺1(𝑠) that has a time delay of 1 second. 

Figure 7 shows the simulation results for online modeling of 
FOPTD dynamic system 𝐺10(𝑠) via adaptive IIR filter model 
response for square wave input. The dynamic system model  
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𝐺10(𝑠) has a 10 seconds time delay. Figures reveal that 
increasing time delay makes it difficult for the adaptive filter's 
response to converge to the dynamic system response. By 
comparing Figure 7(b) and (c), it can be observed that the 
differences between 𝑦10 and 𝑑10 in the 0-120 seconds interval 
is more than differences in the 380-500 seconds interval. 

 

Figure 6. Temporal evolution of model error for function 
G1(s). 

 

(a) 

 

(b) 

 

(c) 

Figure 7. Adaptive IIR filter output and G10(s) function output 
for square wave input signal. (a): Full simulation result.  

(b): Close view in the range of 0-120 sec. (c): Close-up view in 
the range of 380-500 sec. 

The negative effect of the increasing time delay is observed as 
the adaptive filter prefers to converge to the rising edge and the 
filter response at the falling edge moves away from the dynamic 
system response. This situation explains the increase in the 
model error parameters as time delay increases in Table 2. 

Table 2. MAE, MSE and MRE performances. 

FOPTD System Functions MAE MSE MRE 

𝐺0(𝑠)
 

0.003
7 

0.0004 0.0794 

𝐺1(𝑠)
 

0.009
2 

0.0016 29.464 

𝐺10(𝑠) 0.070
9 

0.0158 338.89 

𝐺20(𝑠) 0.139
9 

0.0319 689.49 

The decrease of the model error in Figure 8 indicates that the 
adaptive filter output 𝑦10 can still approximate to the dynamic 
system output 𝑑10  in time.  

 

Figure 8. Temporal evolution of model error for function 
G10(s). 

Figure 9 shows the simulation results of online modeling of the 
𝐺20(𝑠) response via the adaptive IIR filter response for square 
wave input.  

  

(a) (b) 
 

 

 
 

(c) 

Figure 9. Adaptive IIR filter output and G20(s) function output 
for square wave input signal. (a): Full simulation result.  

(b): Close view in the range of 0-140 sec. (c): Close-up view in 
the range of 380-500 sec. 
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The time delay of the model 𝐺20(𝑠) is 20 seconds. Increasing 
time delay makes it difficult for the adaptive filter response to 
converge to the dynamic system response. It is clear that 
increasing time delay causes the filter response to diverge from 
the dynamic system response at the falling edges. However, in 
Figure 10, the decrease of the model error with time shows that 
the IIR filter response can converge to the system response. 

 

Figure 10. Temporal evolution of model error for function 
G20(s). 

In Table 2, the convergence performance of the adaptive IIR 
filter response to the FOPTD system response with different 
time delays of 𝐺0(𝑠), 𝐺1(𝑠), 𝐺10(𝑠) and 𝐺20(𝑠) is presented. 
Three different error performance measures were used. 

Mean Absolute Error (MAE) performance measure is written 
as, 

𝑀𝐴𝐸 =
1

𝑝
∑|𝑑𝐿[𝑛] − 𝑦𝐿[𝑛]|

𝑝

𝑛=1

 (27) 

Mean Square Error (MSE) performance measure is written as, 

𝑀𝑆𝐸 =
1

𝑝
∑(𝑑𝐿[𝑛] − 𝑦𝐿[𝑛])2

𝑝

𝑛=1

 (28) 

Mean Relative Error (MRE) performance measure is written as, 

𝑀𝑅𝐸 =
1

𝑝
∑

|𝑑𝐿[𝑛] − 𝑦𝐿[𝑛]|

𝑑𝐿[𝑛]

𝑝

𝑛=1

 (29) 

Where the 𝑦𝐿 denotes output of the adaptive IIR filter and the 
𝑑𝐿   denotes FOPTD system. Subscript L is the time delay of the 
FOPTD system. 

4.2 Simulations for sinusoidal wave input 

In this section, the simulation model in Figure 2 is used to 
perform a simulation for a sine wave signal with amplitude 1 
and frequency 0.0333. The FOPTD system function seen in 
Table 3 is implemented in this simulation for modeling with the 
IIR filter and the results were evaluated.  

Table 3. FOPTD system model with 3 s time delay. 

FOPTD System Function Time Delay
 

𝐺3(𝑠) =
2

𝑠 + 1
𝑒−3𝑠

 
3 sec

 

For this purpose, the model 𝐺3(𝑠) is simulated for sine wave 
input and convergence of the adaptive IIR filter solutions is 

provided. The filter output 𝑦3 and FOPTD system output 𝑑3 are 
compared. The subscript expresses the time delay of 3 sec. 

Figure 11 shows the online modeling simulation results of 
𝐺3(𝑠) dynamic system model response and adaptive IIR filter 
response for sine wave input. The dynamic system model 𝐺3(𝑠) 
has a time delay of 3 s. When Figure 11(b) and (c) are 
compared, it is observed that the convergence performance is 
very close to each other in the results obtained between 0-350 
seconds and 1150-1500 seconds of the simulation.  

 

(a) 

 

(b) 

 

(c) 

Figure 11. Adaptive IIR filter output and G3(s) function output 
for square wave input signal. (a): Full simulation result.  

(b): Close-up view in the range of 0-350 sec. (c): Close-up view 
in the range of 1150-1500 sec. 

The main reason for this is that the filter converges to the 
sinusoidal wave quite quickly and continues with this 
performance throughout the simulation. The small and periodic 
value of the model error in Figure 12 supports this conclusion. 
In the figure, it is seen that the instant error value decreases 
very quickly at the beginning and stays within a convergence 
interval [-0.06, 0.06] in the following periods. Since the square 
wave is a broadband signal, its convergence could take more 
time compared to the single frequency sinusoidal wave input. 
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Figure 12. Temporal evolution of model error for function 
G3(s). 

5 Conclusion 

In this study, the convergence performance of the proposed GD 
based adaptive IIR filters to the FOPTD dynamic system 
response was investigated. The convergence of the adaptive IIR 
filter response to the response of dynamic systems with GD 
optimization will be beneficial in online system identification 
for intelligent control applications. Two main problems have 
been studied here. Investigation of convergence performance of 
the proposed IIR filter on continuous time dynamic system 
response and examining the effects of time delay 𝒆−𝑳𝒔 
component of dynamic systems on modeling performance of 
adaptive IIR filter with GD optimizer. In the simulation studies, 
it has been observed that the discrete-time IIR filters can 
converge to the response of dynamic systems recursively 
(iteratively) with the help of GD optimization for very-low time 
delays. When the simulations were evaluated, the performance 
indices in the test with 1 second time delay were 𝑀𝐴𝐸 =
0.0092, 𝑀𝑆𝐸 = 0.0016 and 𝑀𝑅𝐸 = 29.464, while the 
performance indices in the test with 20 seconds time delay 
were found to be 𝑀𝐴𝐸 = 0.1399, 𝑀𝑆𝐸 = 0.0319 and 𝑀𝑅𝐸 =
689.49 . In the test without time delay, 𝑀𝐴𝐸 = 0.0037, 𝑀𝑆𝐸 =
0.0004 and 𝑀𝑅𝐸 = 0.0797. It has been observed that the 
increase in the time delay of the FOPTD dynamic system rapidly 
decreases the modeling performance of the adaptive IIR filter. 
In future studies, it will be beneficial for intelligent control 
applications to find solutions for more successful 
representation of time delay with the help of discrete IIR filters. 
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