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Abstract  Öz 

Moth Flame Optimization is a nature-inspired meta-heuristic algorithm 
for constantly solving real-world problems. In this study, a modified 
version of MFO called binary Enhanced MFO Desert Bush (binEMFO-DB) 
algorithm is proposed to solve uncapacitated facility location problems. 
The proposed algorithm includes three modifications: i) chaotic map-
based population initialization, ii) random flame selection, and iii) 
desert bush strategy. The performance of the proposed binEMFO-DB 
algorithm was tested on 15 different UFL problems from the OR-Library 
and Taguchi orthogonal array design was used for parameter analysis. 
The average, gap and hit values of the results obtained by the 
algorithms were used as performance metrics. The performance of 
binEMFO-DB is compared with the performance of state-of-the-art 
algorithms. The results show that the proposed binEMFO-DB has a 
successful and competitive performance in the test environment. 

 Güve Alevi Optimizasyonu, sürekli gerçek dünya problemlerini çözmek 
için doğadan ilham alan bir meta-sezgisel algoritmadır. Bu çalışmada, 
kapasitesiz tesis yerleşim problemlerini çözmek için ikili Enhanced MFO 
Desert Bush (binEMFO-DB) algoritması olarak adlandırılan MFO'nun 
değiştirilmiş bir versiyonu önerilmiştir. Önerilen algoritma üç değişiklik 
içermektedir: i) kaotik harita tabanlı popülasyon başlatma, ii) rastgele 
alev seçimi ve iii) çöl çalısı stratejisi. Önerilen binEMFO-DB 
algoritmasının performansı, OR-Library'den alınan 15 farklı UFL 
problemi üzerinde test edilmiş ve parametre analizi için Taguchi 
ortogonal dizi tasarımı kullanılmıştır. Algoritmalar ile elde edilen 
sonuçların ortalama, boşluk ve isabet değerleri performans metriği 
olarak kullanılmıştır. binEMFO-DB'nin performansı, son teknoloji 
algoritmaların performanslarıyla karşılaştırılmıştır. Elde edilen 
sonuçlar, önerilen binEMFO-DB'nin test ortamında başarılı ve rekabetçi 
bir performansa sahip olduğunu göstermektedir. 

Keywords: Moth flame optimization, Uncapacitated facility location 
problem, Binary optimization, Desert bush, Transfer functions, 
Taguchi. 

 Anahtar kelimeler: Güve alevi optimizasyonu, Kapasitesiz tesis 
yerleşim problemi, İkili optimizasyon, Çöl çalısı, Transfer 
fonksiyonları, Taguchi. 

1 Introduction 

In the last 20 years, the use of metaheuristic algorithms has 
become increasingly common for optimization problems that 
cannot be solved by classical mathematical approaches or that 
take a long time to solve. Metaheuristic algorithms attract the 
attention of researchers because they can be easily adapted to 
different optimization problems. And these algorithms obtain 
near-optimal results regardless of the number of objective 
functions (such as single-objective and multi-objective) and 
decision variable structure (continuous, unconstrained, 
constrained, discrete, and binary) [1].  

In binary optimization problems (BOPs), the decision variables 
can take one of the two values represented by 0 and 1. For 
example, in power systems, 0 represents the "off" state, 1 the 
"on" state [2]; in binary image processing, while 0 means black 
color, 1 means white color [3]. Many real-world issues, 
especially classification and clustering problems, cell 
formation, network optimization, unit commitment, knapsack 
problems, compression-related problems, seat scheduling are 
considered as BOPs [4],[5]. In this study, the solution of 
uncapacitated facility location problems (UFLPs) – one of the 
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binary optimization problems-with metaheuristic algorithms 
will be emphasized.  

In UFLP there are customers and facilities and it is decided 
which facilities should be open and which should be closed in 
order to provide the most cost-effective service to customers in 
different locations (at least one facility must be open). 
Assuming there is a total of n facilities, the facilities can exist in 
2n-1 different states. 

Since the complexity of the problem increases as the number of 
facilities accrue, UFLP is considered as an NP-Hard problem [6]. 
While traditional methods such as, branch-and-bound, 
lagrangian techniques, relaxation methods, reduction schemes, 
and integer programming suggested in the literature are 
successful in solving low-dimensional problems, they do not 
perform well in high-dimensional problems [7],[8]. For this 
reason, researchers have turned to metaheuristic algorithms 
that can guarantee near-optimal results, can easily adapt to 
different types of problems and reach solutions in a reasonable 
time with having a simple structure [6]. Most of metaheuristic 
algorithms, such as particle swarm optimization (PSO) [9], grey 
wolf optimizer (GWO) [10], artificial bee colony (ABC) [11], 
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artificial algae algorithm (AAA) [12] provide solutions to 
optimization problems have continuous search space in their 
basic versions. For this reason, these algorithms need to be 
adapted to binary problems by using techniques such as the 
following [4]: 

• Transfer Functions: Kennedy and Eberhart [13] in 
1997 has provided the conversion of continuous 
variables to binary values via the sigmoid function. 
After this study, new transfer functions that convert 
continuous variables into binary values have been 
proposed by different researchers [14],[15], 

• Angle modulation: This technique was first used in the 
field of signal processing. In this method, four real-
valued parameters are converted to binary values 
using the sine and cosine function [16], 

• Genetic operators: Crossover operators such as single 
point, n-point, uniform, discrete, simulated binary etc. 
[17] are commonly used in evolutionary algorithm. 
Most of these operators can be adapted to solve 
continuous [11], discrete [18] and binary problems 
[19], 

• Logical operators: In metaheuristic algorithms, logical 
operators and, or, xor and not can be used to generate 
candidate solutions. If the search space is binary, 
logical operators can be used directly [1],[6]; if the 
search space is continuous, a strategy such as transfer 
functions should be used first to convert the solutions 
to the binary values [7], 

• Measure of dissimilarity: These are the metrics used 
to calculate the dissimilarity of two arrays in binary 
structure. Jaccard’s and Dice’s similarities [7]; 
Euclidean, Hamming, Manhattan metrics [20] etc. are 
commonly used as dissimilarity metrics of 
measurement. 

Heuristic methods [21] and Quantum-inspired bits [22] are also 
used for binarization. 

Of the methods listed above, transfer functions, angle 
modulation, heuristic methods can be used to convert 
continuous space to binary space. Other methods are widely 
used to increase the variety of solutions already transferred to 
binary space. In this study, transfer functions are used to apply 
MFO, which is a continuous algorithm, to UFL, which is a binary 
problem. However, different modifications have been applied 
to increase the performance of the algorithm. The performance 
of the proposed algorithm has been compared with the 
performance of different algorithms presented in the literature. 

The remainder of the paper is organized as follows: In Section 
2, a literature review is given for metaheuristic-based 
approaches proposed to solve BOPs. In Section 2.1, main 
motivation and contribution of the study is accentuated. UFLP 
problems are described in Section 3. In Section 4, the original 
MFO and the proposed approach are described in detail. In 
Section 5, parameter analysis, experimental studies and 
comparison results are given. Finally, Section 6 contains 
conclusions and discussions. 

2 Literature review 

A large number of various metaheuristic algorithms from past 
to present that have been successful in solving UFL problems 
are mentioned. While some of these algorithms are created by 
initializing the position values directly with binary coding, 

some of them are created by converting the continuous position 
values into binary with methods called transfer functions. Both 
methods are widely used in the literature. In the continuation 
of this section, some prominent metaheuristic algorithms are 
introduced and their suggested variants for solving binary 
problems are briefly mentioned. 

2.1 Binary PSO variants 

PSO [8] was proposed in 1995 inspiring by the foraging 
behavior of bird and fish flocks and is one of the most reputable 
metaheuristic algorithms. In 1997, the first attempt to 
binarization of the PSO was made by researchers Kennedy and 
Eberhart who proposed the algorithm. In this binary PSO 
(BPSO) [12], real variables were easily converted to binary 
values using the sigmoid function. It has been observed that the 
exploration capability of the BPSO is insufficient in high 
dimensional problems. To overcome this problem, a new 
algorithm has been proposed by Khanesar et al. [23] that 
changes the velocity vector in PSO. Lin et al. [24] proposed a 
binary PSO approach that extracts high utility item sets. Yuan et 
al. proposed IBPSO [2] algorithm and solve with this algorithm 
unit commitment problems. Main difference of the IBPSO from 
basic PSO is that population initialized and updated in binary 
space. Other researchers that suggested PSO variants to solve 
BOPs can be mentioned as follows: Beheshti et al [14], 
Nezamabadi-pour et al. [25], Guner and Sevkli [26] and Saha et 
al. [27]. 

2.2 Binary ABC variants 

ABC [28] is a metaheuristic algorithm developed by Karaboga 
in 2005, inspired by the foraging behavior of honey bees. 
Kashan proposed the DisABC [29] algorithm, which initialized 
directly with binary values and uses Jaccard's similarity for 
position update and used the UFLPs set for performance 
testing. Kiran and Gunduz proposed binABC [30] which used 
XOR logical operator for position update and tested this 
algorithm on UFLPs. Similarly, Kiran proposed a new 
stigmergic behavior-based ABC algorithm [31] and done its 
performance assessment on CEC 2015 functions and UFLPs. Jia 
et al. proposed bitwise based ABC, shortly bitABC [32] and 
tested it on a continuous benchmark set. Ozturk proposed a 
new binary ABC named GB-ABC [19] using genetic operators 
and done performance assessment on a dynamic image dataset 
and knapsack problems.  

2.3 Binary DE variants 

Differential evolution (DE) [33] is a well-known evolutionary 
based algorithm proposed by Storn and Price in 1997. Pampara 
proposed angle modulated DE (AMDE) [16]-a binary variant of 
DE using angle modulation technique-and tested the 
performance of the AMDE on classical benchmark functions. 
Engelbrecht and Pampara [34] proposed two different binary 
DE approaches: of these binDE, borrows the concept of binPSO, 
while normDE uses normalization strategy in continuous 
spaces between lower and upper bound. If the normalized value 
lower than 0.5, it set to 0, otherwise it set to 1. Su and Yang 
suggested a quantum-based DE (QDE) [35] algorithm. Chen et 
al. suggested BLDE algorithm [21] which is learning from 
already explored solutions and tested the algorithm on 
knapsack problems. He et al. suggested binary DE (BDE) [36] 
and addressed the BDE as feature selector on 6 different UCI 
datasets. Deng et al. [37] proposed another DE variant by using 
a mapping operator and s operator to solve knapsack problems. 
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Other DE variants for BOPs can be referred as follows: Yang 
[38], Wang et al. [39], Kashan et al. [40]. 

2.4 Binary GSA variants 

Gravitational search algorithm, GSA for short [41] is suggested 
in 2009 by Rashedi et al. Main motivation of the GSA is that 
mass interactions and Newtonian law of gravity. Scientists 
recommending the GSA also suggested binary GSA (BGSA) [42] 
in 2010 by using transfer functions. Nezamabadi-pour 
proposed a binary quantum-inspired GSA (BQIGSA) [22] and 
used combinatorial 0–1 knapsack problems to measure the 
performance of the algorithm. Khanesar and Branson 
suggested XOR based binary GSA (XOR-BGSA) [43] and used 
knapsack dataset for performance evaluation. 

2.5 Other variants 

Other metaheuristic approaches recommended to solve BOPs 
can be given as follows: Aslan et al. [6] proposed 2 different 
variants of basic Jaya algorithm [44]: i) XOR-based Jaya 
algorithm (JayaX), ii) local search mechanism added version of 
JayaX (JayaX-LSM). Proposed approaches compared on 
CEC2015 functions and UFLPs and it was seen that JayaX-LSM 
outperformed than JayaX. Cinar and Kiran [45] modified the 
basic tree-seed algorithm (TSA) [46] in three different 
approaches: i) logic gate based (LogicTSA), ii) similarity 
measurement based TSA (SimTSA), iii) Hybrid variant 
(SimLogicTSA). These 3 approaches were handled on UFLP suit 
and SimLogicTSA obtained better results than compared 
techniques. Hakli and Ortacay proposed an improved scatter 
search algorithm (scatter search-ensemble crossover, SS-EC) 
[47] and compared this techniques against other techniques 
founded in the literature. Bas and Ulker proposed BinSSA [7] by 
modifiying basic SSA [48] with transfer functions, similarity 
measures and logic gates. In [49], a crossover operator added 
variant of the BinSSA was run on the feature selection problems 
and obtained successful results. In [50], S-shaped and V-shaped 
four different binary variants of the SSA were proposed and this 
variants were run on continuous benchmark tasks. Korkmaz et 
al. proposed a binary initialized AAA method [51], binAAA for 
short, and compared this technique to recently proposed other 
algorithms on UFLPs. Cinar proposed a binary Archimedes 
optimization algorithm [52] by using 17 different transfer 
functions. Karakoyun and Ozkis proposed a binary variant of 
the TSA with enhanced local search module on CAP and M* 
problems  [53]. 

2.6 Main motivation and contribution of the study  

As can be seen from the literature review, many metaheuristic 
algorithms have been suggested for the solution of BOPs and 
this effort is still ongoing by many researchers today. Although 
this situation has been criticized by some scientists [54], 
proposing of new techniques is highly necessary according to 
the No Free Lunch (NFL) theorem [55]. According to the NFL 
theorem, the high performance of any algorithm on a class of 
problem is balanced by its performance on another class. That 
is, no algorithm can guarantee to find the optimal solution for 
all problem types. This issue encourages researchers in the 
matter of recommending new techniques that produce better 
results than already proposed algorithms to different types of 
problems. With this motivation, in this study a recently 
proposed metaheuristic algorithm, moth flame optimization 
(MFO), is handled and a novel method suggested to solve BOPs. 

The MFO was recommended by Mirjalili [56] in 2015, inspired 
by a navigation technique that real moths use to navigate at 

night. The MFO has been used by researchers [57] to solve 
various optimization problems due to its simplicity, flexibility 
and easy adaptability. These can be summarized as 
classification [58], image processing [59], medical [60], power 
energy [61], inverse problem and parameter estimation [62],  
[63], scheduling [64], engineering design [65], and economic 
[66]. In addition, multi-objective [67]-[69], binary [70] and 
hybrid [71]-[79] variants of the MFO is available in the 
literature. While MFO is a widely used type of optimizer, there 
is only one MFO variant recommended for solving BOPs, as far 
as we can find.  

The main contribution of this study is that some performance 
improvement modifications are made on the original MFO 
algorithm and the binary Enhanced MFO Desert Bush 
(binEMFO-DB) algorithm is suggested. The details about the 
proposed algorithm are presented in section 3.2. The binEMFO-
DB algorithm was run on the UFLPs taken from OR-Library [80] 
and the obtained results were compared with the results of 
similar studies in the literature. The experimental results show 
that the proposed algorithm is generally successful on UFLP 
and has better scores when compared with the performance of 
the other algorithms. 

3 Problem definition: uncapacitated facility 
location problem (UFLP) 

UFLP is one of the main and hard binary problems faced in real 
life. The problem basically consists of the facilities providing 
service and the customers receiving service from these 
facilities. The location of the facilities and the cost of the service 
to be provided to the customers from these facilities determine 
the total cost. The main purpose in solving the problem is to 
determine the optimum facility location that will minimize the 
total cost. Assume that n is the total number of facilities 
(consisting of opened or closed facilities), the number of 
possible solutions for the location of the facilities is 2n. 
However, considering that at least one facility must be open in 
the UFL problem, the number of these solutions becomes 2n-1. 
It is clearly seen that the number of facilities (n) directly affects 
the complexity of the problem. Besides, the installation cost of 
the facilities causes the problem to be included in the NP-Hard 
problem class [81]-[84]. 

In the UFL problem, while the total potential facility locations 
are known, it is not known which of these facilities will be open. 
A constant installation cost is required for each facility. Besides, 
there is also a transportation fee between the customers and 
the facility, and each customer is associated with the facility 
that is easiest to reach (least cost). The main objective of the 
UFLP is to minimizing the overall cost that consists of installing 
the facilities and supplying customers from the facilities 
[84]-[86]. Assume that 𝐹𝑇  is the set of the all facilities; the 
purpose is to determine a subset (𝐹𝑠𝑢𝑏) of facilities that 
minimize the total cost. Equation (1) shows the total cost where 
𝐹𝑠𝑢𝑏 ⊆ 𝐹𝑇 . 

𝑓(𝐹𝑠𝑢𝑏) =  ∑ 𝑓𝑖

𝑖𝜖𝐹𝑠𝑢𝑏

+  ∑ min{𝑐𝑖𝑗

𝑗𝜖𝑃

| 𝑖𝜖𝐹𝑠𝑢𝑏} (1) 

Where 𝑓𝑖  is the cost of an open facility, 𝑐𝑖𝑗 is the cost between 

𝑖𝑡ℎ  facility and 𝑗𝑡ℎ customer and 𝑃 is set of the customers. In 
UFLP, a solution (x) is presented with a binary vector 
(𝑥 ∈ {0, 1}𝑞 , where q is number of potential facilities) which 
𝑥𝑖 = 1 or 𝑥𝑖 = 0 if 𝑖𝑡ℎ  facility is open or close, respectively. The 
notation 𝐹𝑠𝑢𝑏1 = 𝐹𝑠𝑢𝑏1(𝑥) = {𝑖 ∈ 𝐹𝑠𝑢𝑏: 𝑥𝑖 = 1} is used to 
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represent the open facilities in solution x. Then the fitness 
function of the UFLP can be expressed mathematically as follow 
[84]: 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑ 𝑓𝑖

𝑖𝜖𝐹𝑠𝑢𝑏
1 (𝑥)

+ ∑ min{𝑐𝑖𝑗

𝑗𝜖𝑃

| 𝑖𝜖𝐹𝑠𝑢𝑏
1 (𝑥) | 𝑥 

∈  {0, 1}𝑞  − {0}} 

(2) 

OR-Library [80] is a useful resource that presents to the 
researchers a large data set for the UFLP. The properties of 15 
different problems taken from the OR-Library are given in 
Table 1. 

Table 1. The properties of the OR-Library problems 

Problem Type Dimension Optimum Cost 

Cap71 

Small 

16 x 50 932615.750 
Cap72 16 x 50 97779.400 
Cap73 16 x 50 1010641.450 
Cap74 16 x 50 1034976.975 

Cap101 

Medium 

25 x 50 796648.438 
Cap102 25 x 50 854704.200 
Cap103 25 x 50 893782.113 
Cap104 25 x 50 928941.750 

Cap131 

Large 

50 x 50 793439.563 
Cap132 50 x 50 851495.325 
Cap133 50 x 50 893076.713 
Cap134 50 x 50 928941.750 

CapA 
Huge 

100 x 1000 17156454.478 
CapB 100 x 1000 12979071.580 
CapC 100 x 1000 11505594.330 

When categorized according to their dimensions, it is seen that 
there are 4 different problem types. While Cap71-74 problems 
are in the small problem type with 16 facilities and 50 
customers, Cap101-104 problems constitute the medium 
problem type with 25 facilities and 50 customers. Cap131-134 
is included in the big problem type with 50 facilities and 50 
customers. Finally, CapA, CapB and CapC problems provide a 
very large problem type with 100 facilities and 1000 customers. 

4 Moth flame optimization (MFO) algorithms  

In this section, the basic MFO algorithm, binary MFO algorithm 
and the proposed binEMFO-DB algorithm were presented with 
details. 

4.1 Basic MFO algorithm 

The MFO [56] algorithm which is proposed by Mirjalili is 
inspired by the nocturnal flight strategy of moths. Moths have a 
flying mechanism which uses the moon light with a stable angle. 
The mechanism that they use for navigation is called as 
transverse orientation. This strategy provides an effective and 
comfort travelling in a long straight distance. On the other hand, 
the moths are affected from artificial lights and try to act similar 
with having an angle with this artificial light. 

The flying of the moths by keeping a constant angle between 
them and the light causes a spiral movement. Figure 1 shows 
the spiral flying of the moths around the light. It can be 
observed that the transverse orientation strategy is effective 
only for the far lights like moonlight [56]-[58],[87],[88]. 

According to the Figure 1 it can be seen that the moths 
eventually close towards the light source. The MFO algorithm 
was mathematically developed by modeling the behavior of 
moths with the light source. Like other metaheuristic 

algorithms, the MFO is also an iterative and population-based 
algorithm. The algorithm basically consists of moths and 
flames.  

 

Figure 1. Spiral flying of moths around the light 

While each moth in the population represents a possible 
solution, each variable that constitutes the position of the moth 
represents one dimension of the problem. As mentioned before 
the MFO is population based. Let’s assume that 𝑁 is the 
population size and 𝐷 is the dimension of the problem then the 
population of the moths can be represented with a matrix as 
follow: 

𝑀 =  [

𝑚11 ⋯ 𝑚1𝐷

⋮ ⋱ ⋮
𝑚𝑁1 ⋯ 𝑚𝑁𝐷

] (3) 

Where 𝑀 is the population of the moths there is an array of the 
fitness values that related with the positions. The array of the 
fitness values (𝑂𝑀) can be represented as follow: 

𝑂𝑀 =  [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑁

] (4) 

The moths in population are required an updating process to 
improve their position. In updating process each moth needs a 
reference flame that is unique. With the location update of the 
moths by feeding from different flames, it is aimed to avoid the 
local optima and to make an effective search at the global level. 
The position of the flames has the same size as the moths and is 
represented similarly as follow: 

𝐹 =  [
𝑓11 ⋯ 𝑓1𝐷

⋮ ⋱ ⋮
𝑓𝑁1 ⋯ 𝑓𝑁𝐷

] (5) 

There is also an array of fitness values for these flames 
represented as follow: 

𝑂𝐹 =  [

𝑂𝐹1

𝑂𝐹2

⋮
𝑂𝐹𝑁

] (6) 

It should not be forgotten that moths and flames are the same 
in terms of presentation and structure. The difference between 
them is the way they are treated within the population. The 
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moths update their positions for each iteration, while the 
flames are array of the best positions ever found. On the other 
hand, moths are assisted by a flame as a reference point during 
the position update process [56]. The mathematical model of 
the position update that inspired by Figure 1 is given in Eq. (7). 

𝑀𝑖 =  𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ cos(2𝜋𝑡) + 𝐹𝑗 (7) 

𝐷𝑖 =  |𝐹𝑗 − 𝑀𝑖| (8) 

Where 𝑀𝑖 = (𝑚𝑖1, 𝑚𝑖2, … 𝑚𝑖𝐷) and 𝐹𝑗 = (𝑓𝑖1, 𝑓𝑖2, … 𝑓𝑖𝐷) are the 

positions of the 𝑖𝑡ℎ  moth and 𝑗𝑡ℎ flame respectively, 𝐷𝑖 is the 
distance between 𝑖𝑡ℎ  moth and related 𝑗𝑡ℎ flame that calculated 
by Eq. (8), 𝑡 is a number generated randomly in [-1, 1] and 
generated by Eq. (9) and 𝑏 is a constant value to determine the 
form of the logarithmic spiral. 

𝑡 = (𝑎 − 1) ∗ 𝑟𝑎𝑛𝑑 + 1 

𝑎 =  −1 + 𝑘 ∗ (−
1

𝐾
) 

(9) 

where 𝑘 is the current iteration number, and 𝐾 is the maximum 
iteration number. 

To have a better position updating process, the number of the 
flames is decreased for each iteration by using Eq. (10) as 
follow: 

𝑓𝑙𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 =  𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑘 ∗
𝑁 − 𝑘

𝐾
) (10) 

where 𝑘 is the current iteration number, 𝐾 is the maximum 
iteration number and 𝑁 is the maximum flame number that is 
equal to population size at the beginning of the algorithm.  

The MFO algorithm has a similar processing mechanism as 
other metaheuristic algorithms. The parameters of the 
algorithm must be set in first step.  Then a random population 
is generated within the boundary of the solution space. For each 
moth (position) in population, fitness values are calculated and 
the flames are assigned. The main loop of algorithm is started.  

1. Set parameters of the algorithm 
2. Generate first population randomly within solution space 
3. while termination criterion is not met do 
4.      Update flame_number using Eq. (10) 
5.      Calculate fitness values of the each moth in population 
6.      if first iteration then 
7.           Sort the population according to the fitness values from 

best to worst 
8.           Assign the flames with the whole population 
9.      else 
10.      Merge the population and flames 
11.      Sort the merged solutions from best to worst 
12.      Select flame_number best solution and assign to flames 
13.      end if 
14.      foreach moth in Population with i ≤ N do 
15.           Generate t value using Eq. (9) 
16.           if i < flame_number  then 
17.                Update the position of the ith moth with ith flame using 

Eq. (7) 
18.           else 
19.                Update the position of the ith moth wit flame_numberth 

flame using Eq. (7) 
20.           end if 
21.      end foreach 
22. end while 

23. return best solution as output 

Algorithm 1. The main steps of the MFO algorithm 

In this loop, for each moth the position update procedure 
works, the number of the flames is updated and best position is 
saved for each iteration step. The loop continues until the 
termination criterion is met [56], [57]. Algorithm 1 shows the 
main steps of the MFO algorithm. 

4.2 Binary MFO algorithm 

The basic MFO algorithm is proposed to solve continues 
optimization problems. However, in binary optimization 
problems such as UFLP, a binary solution structure is needed to 
calculate the objective function and to handle the problem. The 
position update strategy of continuous algorithms is not 
suitable for binary optimization problems. Therefore, using a 
private transfer function to convert from continuous form to 
binary form is an appropriate approach to solving the problem. 
The main purpose of a transfer function is to convert each 
dimension of a continuous solution into binary values (0 or 1). 
Transfer functions are generally classified into two topics as S-
shaped and V-shaped according to the shape of the transfer 
function [15], [89]. Table 2 shows four S-shaped and four V-
shaped transfer functions used in this study. 

Table 2. Transfer functions: S-shaped and V-shaped. 

S-shaped V-shaped 

S1: 
1

1 +  𝑒−2𝑥 V1: |erf (
√𝜋

2
𝑥)| 

S2: 
1

1 + 𝑒−𝑥  V2: |tanh (𝑥)| 

S3: 
1

1 + 𝑒
−𝑥
2

 V3: |
𝑥

√1 +  𝑥2
| 

S4: 
1

1 + 𝑒
−𝑥
3

 V4: |
2

𝜋
arctan (

𝜋

2
𝑥)| 

Since the MFO is a continuous algorithm, the transfers functions 
are given in Table 2 were used to achieve a binary MFO. In 
binary MFO, the moths generate and update their position in 
continuous form. However, before calculate the value of the 
objective function, a transfer function is used to generate the 
binary solution and then objective function is called. 

4.3 Proposed algorithm 

In this paper, an enhanced binary MFO algorithm is proposed 
with some modifications to improve the performance. In this 
section, the modifications are presented in sub sections and the 
proposed binary MFO algorithm explained with details. 

4.3.1 Modifications 

After converting the basic MFO algorithm to binary by using 
transfer functions, three modifications were applied to improve 
the performance of the algorithm. 

4.3.1.1 Chaotic map-based initialization 

In population-based optimization algorithms, first population 
initialization is a very important and critical process. The 
distribution of members in the population in the solution space 
directly affects the convergence of the algorithm and the quality 
of the solution it will obtain. Unless a specific method is 
specified, optimization algorithms randomly generate the first 
population. The success of the algorithm is compromised if the 
initial population cannot be effectively distributed in the 
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solution space. In order to eliminate this problem, researchers 
have suggested and used different approaches. Recently, 
randomly generated parameters of optimization algorithms 
have started to be obtained with chaotic maps. The initial 
population can also be included in these parameters. 
Researchers stated that the values generated by chaotic maps 
have a more balanced distribution than randomly generated 
values and use the search space more effectively [90] – [92]. In 
this study, chaotic maps with different characteristics were 
tested and the map suitable for the problem was selected and 
used. Details on the selection of the chaotic map are given in 
Section 5.1. 

4.3.1.2 Flame selection strategy 

In the MFO algorithm, each moth chooses a flame as a reference 
and updates its position with Eq. (7). In the basic MFO 
algorithm, how the flame (that used as a reference) is 
determined is given in lines 16-20 in Algorithm 1. Initially, the 
moths in the population match the flame of the same index in 
the flame array, respectively. However, in each iteration step, 
the number of flames decreases and the flames that moths will 
reference are limited. As the iteration progresses, since the 
number of flames is less than the number of moths, all the 
moths with an index number greater than the number of flames 
refer to the last flame in the flame array. This situation causes 
the moths in the population to tend to a specific position. To 
avoid this situation, a new flame selection strategy has been 
proposed. In this proposed strategy, moths with an index 
greater than the number of flames is ensured to refer to a 
randomly selected flame from the flame array instead of the 
flame in the last index. With this change, it is aimed to add 
diversity to the moths during the position update process. 
Flame selection of the basic MFO algorithm and the proposed 
strategy are shown in Figure 2(a) and Figure 2(b), respectively. 

 

Figure 2. Flame selection. (a): Basic MFO. (b): Proposed 
strategy. 

4.3.1.3 Desert bush 

Desert bush, known as the resurrection plant, is a plant species 
famous for its longevity in arid desert environments. Adapted 
to the desert environment, desert bush can survive for years 
without water, in which case it dries up until it retains only 3% 
of its mass. When living conditions get too harsh, the plant's 
survival mechanism allows it to gradually dry out, turning its 
leaves brown and curling. It gives the plant a ball appearance 
and all its metabolic functions are minimized. When the 
drought situation increases, its roots are freed from the land 

and become a free drum plant drifting on dry ground under the 
influence of the blowing winds. No matter how dry or damaged 
it is, thanks to the special biological structure of its leaves, the 
plant retains its ability to absorb water and open itself even 
years after it dies. The desert bush reproduces by spores; it 
does not contain seeds or flowers in its structure. The plant, 
which drifts freely in an arid environment, opens its twisted 
branches when exposed to a humid environment, allowing the 
spores to spill, so that the spilled spores are revived in a humid 
environment [93], [94]. Figure (3) shows the life cycle of a 
desert bush. 

As can be seen from Figure (3), a desert bush that encapsulates 
itself in bad conditions, resurrects when it finds a suitable 
environment. This feature of the desert bush has been 
mathematically modeled and applied to the proposed 
algorithm as a new strategy. In the proposed strategy, it is 
aimed to achieve resurgence if the positions of members in the 
population do not improve by a specified number of iterations 
and there is no improvement in the global best position. In the 
modeling, the global best position is selected as the reference 
point (desert bush), and members (spores) in the population 
are repositioned according to this point. Algorithm 2 shows the 
position update of a member according to the modelled desert 
bush strategy. 

 

Figure 3. Life cycle of a desert bush. 

function [newSol] = DesertBush(gBest, moth, lb, ub) 
    sr = 0.02;     
    newSol = gBest; 
    for i=1:size(gBest,2)   //size(gBest,2) = dimension 
        if rand < 0.5     //Choose if current dimension will change 
or not 
            // To decide the direction of the step 
            if rand<0.5   //A negative step 
                lb_i = lb; 
                ub_i = gBest(1,i); 
                sSize = -(ub_i - lb_i)*sr; 
            else   //A positive step 
                ub_i = ub; 
                lb_i = gBest(1,i); 
                sSize = (ub_i - lb_i)*sr; 
            end 
            xNew = gBest(1,i) + sSize;   //Add negative or positive 
step size 
            newSol(1,i) = xNew; 
        else 
            newSol(1,i) = moth(1,i); 
        end 
    end 
end 

Algorithm 2. The code of the modelled desert bush strategy 

According to Algorithm 2, the member's position is first 
synchronized to the global best position. A loop is then started 
to determine the value of each dimension. For the current 
dimension, firstly, it is determined whether there will be a 
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change or not with a selection. If there will be a change, a 
selection is made again about which direction it will be. 
According to the selection made, the step size is determined and 
the position change of the dimension is performed. Here, sr is a 
constant variable that limits the step size. 

4.3.2 The proposed binEMFO-DB algorithm 

The MFO [54] that is proposed by Mirjalili is a continuous 
algorithm. In this study, the MFO algorithm was applied to solve 
the UFL problem. However, since UFLP is a binary problem, it is 
not possible to directly apply the basic MFO algorithm. For this 
reason, firstly, the MFO algorithm is binarized by using transfer 
functions. Then, some modifications were used to increase the 
success of the binary MFO algorithm on UFLP. The pseudo code 
of the proposed algorithm, named binEMFO-DB, is given in 
Algorithm 3. 

The first step of the proposed algorithm is parameter settings. 
The parameters which are generated in parameter analyses 
process are set and algorithm starts. Then, first population is 
generated in boundaries by using chaotic map, instead of a 
random population and for entire population objective function 
is called and fitness values are generated. The main loop is  

1. Set parameters of the algorithm 
2. Generate first population within solution space by using 

chaotic map 
3. Generate binary position by using transfer function 
4. Calculate fitness values of the members in population  
5. while termination criterion is not met do 
6.      Update flame_number using Eq. (10) 
7.      Calculate fitness values of the each moth in population 
8.      if first iteration then 
9.           Sort the population according to the fitness values from 

best to worst 
10.           Assign the flames with the whole population 
11.      else 
12.      Merge the population and flames 
13.      Sort the merged solutions from best to worst 
14.      Select flame_number best solution and assign to flames 
15.      end if 
16.      foreach moth in Population with i ≤ N do 
17.           Generate t value using Eq. (9) 
18.           if i < flame_number  then 
19.                Update the position of the ith moth with ith flame 

using Eq. (7) 
20.           else 
21.                Choose a random flame as reference flame 
22.                Update the position of the ith moth with random 

selected flame using Eq. (7) 
23.           end if 
24.           Generate binary position of the moth by using transfer 

function 
25.           Calculate fitness value of the moth 
26.      end foreach 
27.      Update global best position 
28.      //Control Desert Bush strategy 
29.      if global best has better position 
30.           Reset DBCounter //DBCounter = 0 
31.      else 
32.           Increase DBCounter //DBCounter ++ 
33.           if DBCounter >= dbMax //dbMax: Maximum fail number 
34.                Apply Desert Bush strategy given with Algorithm 2 
35.                Reset DBCounter 
36.           end if 
37.      end if 
38.  end while 

39. return best solution as output 

Algorithm 3. The pseudo code of the binEMFO-DB algorithm 

started, in which members update their positions. In this loop, 
different from the basic MFO, a new selection strategy was 
applied in flame selection. In this selection strategy given 
between lines 18-23 of Algorithm 3, it is aimed to prevent the 
population from being directed to a specific flame and to 
provide diversity as a solution to the algorithm. In addition, 
desert bush strategy has been applied to the basic MFO 
algorithm. With this strategy, it is aimed to give the population 
resurgence when it cannot generate better positions. When the 
termination criterion is met and the loop is completed, the best 
position found is given as the solution and the algorithm is 
finished. 

5 Experimental study 

In this section, the parameter analyses process and the 
experimental results obtained were presented comparatively. 

5.1 Parameter analyses 

Here, the analysis made on the selection of the transfer function 
to use MFO as a binary algorithm and the analysis made to 
obtain the optimum values of the specific parameters of the 
proposed algorithm were presented. 

5.1.1 Transfer function analyses for binary MFO 

In order to apply the MFO algorithm developed for the solution 
of continuous problems to a binary problem, continuous values 
need to be converted into binary. Transfer functions are 
generally used for this process. It was desired to obtain the best 
results by applying eight different transfer functions given in 
Table 2. The algorithm was applied with 30 runs for each 
transfer function. As a success criterion, the hit value obtained 
from the total runs was used. Hit is the case of finding the 
optimum value of the problem studied. 

According to the results in Table 3, the binary MFO algorithm 
achieved a total of 300 hits with the S3 transfer function as a 
result of 450 runs (problem number × run number). Therefore, 
the basic binary MFO algorithm was run with the S3 transfer 
function and the obtained results were used in comparisons. 

Table 3. Transfer functions analyses for binary MFO by using 
hit values. 

P/TF S1 S2 S3 S4 V1 V2 V3 V4 

Cap71 30 30 30 30 26 26 30 30 

Cap72 30 30 30 30 20 19 30 30 

Cap73 30 30 30 30 15 12 30 30 

Cap74 30 30 30 30 21 18 27 30 

Cap101 29 29 30 30 6 8 17 27 

Cap102 29 30 30 30 9 10 14 17 

Cap103 27 25 29 27 11 9 15 22 

Cap104 29 30 30 30 13 19 20 23 

Cap131 5 13 16 7 2 1 0 0 

Cap132 11 14 10 2 2 0 0 0 

Cap133 6 6 12 3 1 2 1 0 

Cap134 19 23 23 16 5 3 2 0 

CapA 1 2 0 0 0 0 0 0 

CapB 0 0 0 0 0 0 0 0 

CapC 0 0 0 0 0 0 0 0 

Total Hit 276 292 300 265 131 127 186 209 

5.1.2 Parameter analyses of the proposed method 

As mentioned in previous sections, the proposed method has 
some modifications. Based on these modifications some specific 
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parameters should be determined. The selection of the transfer 
function, the determination of the chaotic map from which the 
initial population will be generated, and the maximum number 
of fail for the applying of the desert bush strategy are the special 
parameters that the algorithm needs to be optimized. However, 
population size is also considered as a general parameter that 
needs to be optimized. Table 4 shows the information about the 
parameters that should be optimized. 

Table 4. Specific parameters of the proposed algorithm. 

Description Sign Values 
Transfer function tf [1 2 3 4 5 6 7 8] 

Chaotic map cm [1 2 3 4 5 6 7 8] 
Maximum fail 

number for 
desert bush 

strategy 

dbMax [5 10 15 20 25 30 35 40] 

Population size N [30 40 50 60 70 80 90 100] 

The values of the transfer function parameter consist of the 
options given in Table 2. The list of the chaotic maps was given 
below in Table 5. The potential values selected for the 
maximum number of fail parameter were determined as 5 10 
15 20 25 under normal conditions. However, due to the use of 
Taguchi method [95] in parameter analysis, 30 35 40 values 
have been added to ensure that the level of this parameter is the 
same as the other two parameters. In most of the studies in the 
literature, values between 40 and 100 are used as the 
population number. Therefore, this range was used in this 
study as well. However, as stated earlier, the value of 30 was 
added for the population number, since the levels of the 
parameters must be the same. 

Table 5. Chaotic maps. 

 # Name 
1 Chebyshev map 
2 Circle map 
3 Gauss/Mouse map 
4 Iterative map 
5 Logistic map 
6 Piecewise map 
7 Sine map 
8 Singer map 

As mentioned above, the number of possible values of tf, cm, 
dbMax and N parameters that need to be optimized is 
determined as 8, 8, 5 and 7, respectively. The number of all 
possible combinations for these parameters is 8×8×5×7 = 2240. 
Applying each combination with 30 runs for 15 problems 
requires a very long process time. Therefore, a more effective 
process was followed by using the Taguchi method, which is 
frequently preferred in parameter analysis and gives successful 
results [96]. Taguchi's orthogonal array design approach was 
used in this study. In this approach, the level of each parameter 
must be equal. That's why; the dbMax and N parameters have 
been expanded and made into 8 levels as shown in Table 4. In 
this case, the total number of combinations is 8×8×8×8 = 4096. 
With the Taguchi orthogonal array design approach applied in 
this study, 512 combinations were obtained and tested. Each of 
these combinations was applied with 30 runs on the 15 
problems given in Table 1. In this case, there are 450 (15x30) 
results for each combination. As the success criterion, the hit 
value obtained from the total results of the combinations was 
used. According to the experimental results obtained in the 
parameter analysis, it was seen that the parameter combination 
tf=S2, cm=Piecewise, dbMax=5 and N=80 achieved the most 

successful result with 402 total hits. Therefore, the results 
obtained with this parameter combination were used for the 
proposed algorithm. 

5.1.3 The effect of modifications on the success of the 
proposed algorithm 

In order to analyze the effect of each modification on the 
success of the proposed algorithm, eight different experimental 
algorithms were run according to the combinations given in 
Table 6. The red cross below the modification indicates that the 
modification was not used in that experimental study, and the 
green checkmark indicates that it was used. For example, In 
Exp3, only "random flame selection" modification was applied, 
"chaotic map" and "desert bush" modifications were not 
applied. In Exp8, by applying all 3 modifications, the algorithm 
proposed in this study is obtained.  

Eight different experimental algorithms given in Table 6 were 
run on CAP problems with 30 repetitions for N=80 and 80,000 
maximum fitness assessment numbers (maxFEs). The average 
cost and standard deviation values of experimental algorithms 
for each problem are given in Table 7. In addition, the success 
rank of the algorithms for each problem and the average 
success rank achieved over the problem set is also presented in 
the same table.  

Table 6. 8 different experimental algorithms obtained with 3 
modifications. 

Chaotic map 
Random flame 

selection 
Desert  
bush 

 

   Exp1 

   Exp2 

   Exp3 

   Exp4 

   Exp5 

   Exp6 

   Exp7 

   Exp8 

In Table 7, it is seen that all algorithms can reach optimal 
solutions for all runs on Cap71-74 and Cap102, Cap104 
problems. This can be explained by the fact that these problems 
are relatively low-dimensional and easy problems. On the 
Cap101 problem, all algorithms except Exp2 and Exp5 obtain 
optimal solutions, while algorithms other than Exp1, Exp2 and 
Exp6 reach optimal solutions on the Cap103 problem. The 
performances of the algorithms for Cap131-134, which are 
defined as large type problems, have begun to diverge from 
each other. While only Exp3 algorithm reach optimal solutions 
in all runs in Cap131, Exp7 and Exp8 algorithms achieve equal 
success and share the second place. In Cap132 problem, while 
Exp3, Exp4, Exp6, Exp7 and Exp8 algorithms reach optimal 
solutions in all runs; Exp2, Exp5 and Exp1 algorithms ranked as 
2nd, 3rd and 4th. places respectively. In Cap133 problem, the 
Exp8 algorithm takes the first place by obtaining the best mean, 
while Exp6 and Exp7 share the second place with an equal 
performance. 
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Table 7. Mean, standard deviation, and rank values of the experimental algorithms on the CAP problems. 

    Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 
Exp8 (proposed 

algorithm) 
Problem                   

Cap71 

mean 932615.75 932615.75 932615.75 932615.75 932615.75 932615.75 932615.75 932615.75 

std. 0 0 0 0 0 0 0 0 

rank 1 1 1 1 1 1 1 1 

Cap72 

mean 977799.40 977799.40 977799.40 977799.40 977799.40 977799.40 977799.40 977799.40 
std. 0 0 0 0 0 0 0 0 
rank 1 1 1 1 1 1 1 1 

Cap73 

mean 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45 
std. 0 0 0 0 0 0 0 0 
rank 1 1 1 1 1 1 1 1 

Cap74 

mean 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98 
std. 0 0 0 0 0 0 0 0 
rank 1 1 1 1 1 1 1 1 

Cap101 

mean 796648.44 796705.79 796648.44 796648.44 796677.11 796648.44 796648.44 796648.44 
std. 0 218.26 0 0 157.07 0 0 0 
rank 1 3 1 1 2 1 1 1 

Cap102 

mean 854704.20 854704.20 854704.20 854704.20 854704.20 854704.20 854704.20 854704.20 
std. 0 0 0 0 0 0 0 0 
rank 1 1 1 1 1 1 1 1 

Cap103 

mean 893804.72 893884.02 893782.11 893782.11 893782.113 893823.62 893782.113 893782.113 
std. 68.97 310.94 0 0 0 189.18 0 0 
rank 2 4 1 1 1 3 1 1 

Cap104 

mean 928941.75 928941.75 928941.75 928941.75 928941.75 928941.75 928941.75 928941.75 
std. 0 0 0 0 0 0 0 0 
rank 1 1 1 1 1 1 1 1 

Cap131 

mean 793692.97 793582.94 793439.56 793496.92 793760.26 793525.59 793468.24 793468.24 
std. 394.46 326.09 0 218.26 401.97 262.50 157.07 157.07 
rank 6 5 1 3 7 4 2 2 

Cap132 

mean 851560.95 851501.15 851495.33 851495.33 851517.20 851495.33 851495.33 851495.33 
std. 200.24 31.91 0 0 119.82 0 0 0 
rank 4 2 1 1 3 1 1 1 

Cap133 

mean 893348.90 893249.16 893200.11 893157.71 893322.25 893147.25 893147.25 893134.19 
std. 450.58 421.56 266.63 251.67 440.48 215.24 215.24 222.59 
rank 7 5 4 3 6 2 2 1 

Cap134 

mean 929129.92 928941.75 928941.75 928941.75 929318.10 928941.75 928941.75 928941.75 
std. 1030.67 0 0 0 1432.24 0 0 0 
rank 2 1 1 1 3 1 1 1 

CapA 

mean 17869403.08 17156454.48 17418566.26 17156454.48 17928883.17 17166266.93 17475008.71 17156454.48 
std. 384572.22 0 244881.89 0 386185.06 49391.95 326438.49 0 
rank 5 1 3 1 6 2 4 1 

CapB 

mean 13327830.12 13034533.46 13244952.36 13026598.76 13361023.17 13045987.73 13261062.51 13024905.67 
std. 160836.07 62284.36 162338.62 49753.05 165772.61 68600.81 129384.60 39614.03 
rank 7 3 5 2 8 4 6 1 

CapC 

mean 11802434.05 11574746.53 11722427.13 11528700.38 11814749.39 11584708.71 11708865.54 11536635.1 
std. 163366.47 56766.08 150635.73 27875.15 141498.66 82561.52 102017.29 32729.71 
rank 7 3 6 1 8 4 5 2 

  
Mean 
rank 

3.133 2.200 1.933 1.333 3.333 1.867 1.933 1.133 

 

In Cap134 problem, while Exp2, Exp3, Exp4, Exp6, Exp7 and 
Exp8 algorithms reach optimal solutions in all runs; Exp1 and 
Exp5 algorithms rank as 2nd and 3rd places respectively. In the 
CapA problem, while Exp2, Exp4 and Exp8 takes the first place 
by reaching the optimal solution in all runs; Exp6, Exp3, Exp7, 
Exp1 and Exp5 achieve 2nd, 3rd, 4th, 5th and 6th places, 
respectively. In the CapB problem, the Exp8 algorithm takes the 
first place by achieving the best result, while the Exp4 
algorithm performs close to the Exp8 and takes the second 
place. Finally, in the CapC problem, the Exp4 algorithm takes 
the first place by obtaining the best result, while the Exp8 
algorithm takes the second place with a small difference.  
When a general evaluation is made, it is observed that the Exp8 
algorithm ranked first in 13 of the 15 problems and achieve the 
best ranking with a mean success rank of 1.133. While the Exp4 
algorithm is the second most successful algorithm with a mean 
success rank of 1.333; Exp6 takes the 3rd place with a mean 
success rank of 1.867. 

The common point of the 3 algorithms, which are the most 
successful in order of mean success rank, is the "desert bush" 
modification. From this point of view, it can be said that the 

modification that makes the most important contribution to the 
proposed algorithm is "desert bush". Additionally, Exp5 
algorithm with only "chaotic map" modification had a worse 
result in terms of mean success rank than Exp1 algorithm 
without any modification. This shows that applying "chaotic 
map" modification alone does not contribute to the success of 
the algorithm. The fact that the Exp8 algorithm has a better 
mean success rank than the Exp4 algorithm shows that the 
"chaotic map" modification contributes to the algorithm when 
used together with the "random flame selection" and "desert 
bush" modifications.  

As a result, the values presented in Table 7 clearly show the 
contribution of all 3 modifications to the proposed algorithm. 

5.2 Experimental environment and results 

15 different UFL problems taken from OR-Library [80] were 
used to evaluate the performance of the proposed algorithm. All 
problems were run for 30 repeats and the maxFEs is set as 
80,000 for each run to be a fair comparison. Experimental 
studies were conducted using Matlab 2016 version on 
Windows 10 64-bit operating system. 
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The performance comparison was made over the results of 
studies in the literature that used the same problem set. In the 
articles compared, it is seen that all or some of the average, 
standard deviation, best, worst, hit or gap values of the 
obtained results were used as performance criteria. Here, hit is 
the number of times the algorithm reaches the optimum 
solution and gap is the ratio of deviation of the best solution 
found by the algorithm from the optimum solution. The 
mathematical expression of the gap is given in Eq. (11). 

𝑔𝑎𝑝 =  
𝑚𝑒𝑎𝑛 − 𝑜𝑝𝑡

𝑜𝑝𝑡
 𝑥 100 (11) 

Here, mean is the average value of all runs and opt is the value 
of optimum solution for the related problem. Which of these 
performance criteria are given in the compared study, the same 
metric values are given for the proposed approach. 

5.2.1 Comparison with other algorithms 

In Table 8, the proposed algorithm is compared over the best, 
worst, average and gap values of the SS-EC [47] algorithm. 
When the results are examined, it is seen that while both 
algorithms reach optimal results in Cap71, Cap72, Cap73, 
Cap74, Cap104 and Cap134 problems, the proposed algorithm 
achieves superior results for other problems. When all the 
results are compared, the proposed algorithm in 12 of the 15 
problems reached the optimal solution in all 30 runs and 
outperformed the SS-EC method. 

In Table 9, the proposed algorithm is compared with the PSO 
and ABC variants [30] on standard deviation and gap values. 
Algorithms were ranked according to their performance for 
each problem. Average achievements are given at the bottom of 
the table. In addition, W/D/L results of the algorithms are also 
given. Here, win means that the proposed algorithm is more 
successful, lost means that the compared algorithm is more 
successful, and draw means that both algorithms perform 
equally. The Mean-Rank below the table shows the average 
success rank of each algorithm on the problem set. On the other 
hand, Final-Rank gives the success order of the algorithms 
according to the Mean-Rank value. The proposed algorithm 
achieved the most successful results on the entire problem set 

and took first place in both the Mean-Rank and Final-Rank 
rankings. When the obtained results are examined, it is seen 
that PSO variants suffer from trapping into local-minima even 
in small size problems. ABC variants, on the other hand, are 
successful in small and medium-sized problems, while they are 
stuck in the local minimum for large and huge problems. The 
proposed binEMFO-DB algorithm showed equal or better 
performance in all problems from the compared algorithms and 
ranked first in the average ranking. 

In Table 10, the proposed algorithm is compared with DE and 
genetic algorithm (GA) variants [45],[51] on the gap and hit 
values. When the results are examined, DisDE/rand algorithm 
has slightly better than the binEMFO-DB algorithm by achieving 
404 total hits whereas the proposed algorithm has 402 hits. On 
the other hand, when the gap results are examined, the 
proposed binEMFO-DB method reaches optimal solutions in 12 
of the 15 problems in all runs, while the DisDE/rand method 
reaches optimal solutions in all runs for only 7 problems. 

In Table 11, the proposed binEMFO-DB algorithm is compared 
with the recently proposed binAAA and SimLogicTSA 
algorithms [45],[51] over gap and hit values. All three 
algorithms showed very successful performances except for 
capB and capC problems. While SimLogicTSA algorithm 
achieved 0 hits in capB and capC problems, binEMFO-DB 
achieved 12-2 hits and binAAA achieved 15-1 hits respectively. 
Looking at the gap metric values, binAAA took the first place 
with the lowest gap value in the CapB problem, while 
SimLogicTSA took the second place. In the CapC problem, on the 
other hand, the proposed approach took the first place with the 
lowest gap value. 

In Table 12, the best, worst, average and gap values obtained by 
the proposed algorithm and LS approach [97] for each problem 
are given. When the results are examined, it is seen that the 
proposed approach and the LS algorithm perform similarly in 
small-size problems, and that the proposed approach is more 
successful in medium and large-size problems. Finally, while 
the proposed approach in the capA problem is more successful, 
the LS algorithm achieved better results in capB and capC. 

 

Table 8. A Comparison of binEMFO-DB with SS-EC. 

 SS-EC  binEMFO-DB 

 Best Worst Avg. Gap  Best Worst Avg. Gap 

Cap71 932,615.75 932,615.75 932,615.75 0  932,615.75 932,615.75 932,615.75 0 

Cap72 977,799.40 977,799.40 977,799.40 0  977,799.40 977,799.40 977,799.40 0 

Cap73 1,010,641.45 1,010,641.45 1,010,641.45 0  1,010,641.45 1,010,641.45 1,010,641.45 0 

Cap74 1,034,976.98 1,034,976.98 1,034,976.98 0  1,034,976.97 1,034,976.97 1,034,976.97 0 

Cap101 796,648.44 799,593.49 796,746.61 0.012  796,648.43 796,648.43 796,648.43 0 

Cap102 854,704.20 855,971.75 854,788.70 0.009  854,704.20 854,704.20 854,704.20 0 

Cap103 893,782.11 894,801.16 893,985.92 0.022  893,782.11 893,782.11 893,782.11 0 

Cap104 928,941.75 928,941.75 928,941.75 0  928,941.75 928,941.75 928,941.75 0 

Cap131 793,439.56 795,883.24 793,787.70 0.043  793,439.56 793,439.56 793,439.56 0 

Cap132 851,495.33 851,670.13 851,524.46 0.003  851,495.32 851,495.32 851,495.32 0 

Cap133 893,076.71 899,172.51 893,434.25 0.04  893,076.71 894,095.76 893,134.19 0.0064 

Cap134 928,941.75 928,941.75 928,941.75 0  928,941.75 928,941.75 928,941.75 0 

CapA 17,156,454.48 18,041,168.85 17,215,435.44 0.343  17,156,454.47 17,156,454.47 17,156,454.47 0 

CapB 12,979,071.58 13,511,709.68 13,110,151.33 1.01  12,979,071.58 13,081,049.25 13,024,905.67 0.3531 

CapC 11,505,594.33 11,867,848.70 11,596,027.44 0.786  11,505,594.33 11,613,592.92 11,536,635.10 0.2698 
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Table 9. A Comparison of binEMFO-DB with PSO and ABC variants. 

Problems 
 Algorithms 

 BPSO IBPSO DisABC binABC ABCbin binEMFO-DB 

 Std. Dev. 0 587.49 0 0 0 0 

Cap71 GAP(%) 0 0.037 0 0 0 0 

 Rank 1 2 1 1 1 1 

 Std. Dev. 0 1,844.64 0 0 0 0 

Cap72 GAP(%) 0 0.275 0 0 0 0 

 Rank 1 2 1 1 1 1 

 Std.Dev. 634.62 1,513.78 0 0 0 0 
Cap73 GAP(%) 0.024 0.198 0 0 0 0 

 Rank 2 3 1 1 1 1 

 Std.Dev. 500.27 4,426.67 0 0 0 0 

Cap74 GAP(%) 0.009 0.403 0 0 0 0 

 Rank 2 3 1 1 1 1 

 Std.Dev. 566.44 3,799.52 0 0 0 0 

Cap101 GAP(%) 0.046 0.597 0 0 0 0 

 Rank 2 3 1 1 1 1 

 Std.Dev. 386.76 3,249.38 0 0 0 0 
Cap102 GAP(%) 0.015 0.732 0 0 0 0 

 Rank 2 3 1 1 1 1 
 Std.Dev. 485.26 4,978.98 0 0 85.67 0 

Cap103 GAP(%) 0.042 0.641 0 0 0.005 0 
 Rank 3 4 1 1 2 1 
 Std.Dev. 1,951.81 10,845.26 0 0 0 0 

Cap104 GAP(%) 0.081 0.996 0 0 0 0 
 Rank 2 3 1 1 1 1 
 Std.Dev. 1,207.63 4,244.29 233,764.00 0 1,065.73 0 

Cap131 GAP(%) 0.132 2.424 0.62 0 0.197 0 
 Rank 2 5 4 1 3 1 

 Std.Dev. 1,196.19 11,569.02 813.37 0 213.28 0 
Cap132 GAP(%) 0.091 3.601 0.095 0 0.02 0 

 Rank 3 5 4 1 2 1 
 Std.Dev. 821.28 14,905.27 359.03 200.24 561.34 222.59 

Cap133 GAP(%) 0.112 5.263 0.031 0.122 0.075 0.0064 
 Rank 4 6 2 5 3 1 

 Std.Dev. 2,285.42 15,788.86 0 0 0 0 
Cap134 GAP(%) 0.135 7.634 0 0 0 0 

 Rank 2 3 1 1 1 1 
 Std.Dev. 374,302.81 3,357,138.19 74,782.61 236,833.50 268,685.20 0 

CapA GAP(%) 2.179 137.886 0.152 2.509 3.172 0 
 Rank 3 6 2 4 5 1 

 Std.Dev. 176,206.07 1,406,575.70 109,738.50 91,430.13 88,452.80 41,926.41 
CapB GAP(%) 1.949 55.27 3.303 2.508 2.815 0.3531 

 Rank 2 6 5 3 4 1 
 Std.Dev. 92,977.85 1,245,252.20 95,778.78 82,312.70 78,162.20 32,729.70 

CapC GAP(%) 1.487 45.556 4.697 2.58 2.037 0.2698 
 Rank 2 6 5 4 3 1 

Mean-Rank  2.2 4 2.06 1.8 2 1 
Final-Rank  5 6 4 2 3 1 

W/D/L  13/2/0 15/0/0 6/9/0 4/11/0 7/8/0  

Table 10. A Comparison of binEMFO-DB with DE and GA variants. 

Problem DisDE/rand binDE GA-SP GA-TP GA-UP GA-EC binEMFO-DB 

 Gap Hit Gap Hit Gap Hit Gap Hit Gap Hit Gap Hit Gap Hit 

Cap71 0 30 0 30 0 30 0 30 0 30 0 30 0 30 

Cap72 0 30 0 30 0 30 0 30 0 30 0 30 0 30 
Cap73 0 30 0 30 0.0666 19 0.0484 22 0.0424 23 0 30 0 30 
Cap74 0 30 0 30 0 30 0 30 0 30 0 30 0 30 

Cap101 0.0036 29 0 30 0.0684 11 0.0648 12 0.0576 14 0.0072 28 0 30 
Cap102 0.0049 29 0 30 0 30 0 30 0 30 0 30 0 30 
Cap103 0.0055 27 0 30 0.0637 6 0.0612 10 0.0722 9 0.0067 22 0 30 
Cap104 0 30 0 30 0 30 0 30 0 30 0 30 0 30 
Cap131 0.0036 29 0.0036 29 0.0681 16 0.0723 14 0.0536 15 0.0608 15 0 30 
Cap132 0 30 0.005 29 0 30 0 30 0.0026 29 0.0006 29 0 30 
Cap133 0.0138 25 0.0138 24 0.0913 10 0.0744 12 0.082 9 0.0406 15 0.0064 28 
Cap134 0 30 0 30 0 30 0 30 0 30 0 30 0 30 

CapA 0.037 29 1.3 8 0.0461 24 0.2835 24 0.0604 24 0 30 0 30 
CapB 0.189 18 1.52 0 0.5839 9 0.6507 11 0.9905 3 0.4092 11 0.3531 12 
CapC 0.0909 8 1.55 0 0.7049 2 0.6276 0 0.6345 0 0.1563 5 0.2698 2 

Total Hit  404  360  307  315  306  365  402 
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Table 11. A comparison of binEMFO-DB with SimLogicTSA and binAAA. 

 SimLogicTSA binAAA binEMFO-DB 

 Gap Hit Gap Hit Gap Hit 
Cap71 0 30 0 30 0 30 

Cap72 0 30 0 30 0 30 
Cap73 0 30 0 30 0 30 
Cap74 0 30 0 30 0 30 

Cap101 0 30 0 30 0 30 
Cap102 0 30 0 30 0 30 
Cap103 0 30 0 30 0 30 
Cap104 0 30 0 30 0 30 
Cap131 0 30 0 30 0 30 
Cap132 0 30 0 30 0 30 
Cap133 0 30 0 30 0.0064 28 
Cap134 0 30 0 30 0 30 

CapA 0 30 0 30 0 30 
CapB 0.3176 0 0.2478 15 0.3531 12 
CapC 0.412 0 0.2946 1 0.2698 2 

Total Hit  390  406  402 

Table 12. A comparison of binEMFO-DB and LS algorithm. 

 binEMFO-DB  LS 

 Best Worst Avg. Gap  Best Worst Avg. Gap 

Cap71 932,615.75 932,615.75 932,615.75 0  932,615.75 932,615.75 932,615.75 0 

Cap72 977,799.40 977,799.40 977,799.40 0  977,799.40 977,799.40 977,799.40 0 
Cap73 1,010,641.45 1,010,641.45 1,010,641.45 0  1,010,641.45 1,010,641.45 1,010,641.45 0 
Cap74 1,034,976.97 1,034,976.97 1,034,976.97 0  1,034,976.97 1,034,976.98 1,034,976.98 0 

Cap101 796,648.43 796,648.43 796,648.43 0  796,648.43 799,144.69 796,733.62 0.01 
Cap102 854,704.20 854,704.20 854,704.20 0  854,704.20 855,971.75 854,716.88 0.001 
Cap103 893,782.11 893,782.11 893,782.11 0  893,782.11 894,801.16 893,831.92 0.005 
Cap104 928,941.75 928,941.75 928,941.75 0  928,941.75 934,586.98 929,111.11 0.018 
Cap131 793,439.56 793,439.56 793,439.56 0  793,439.56 795,883.24 793,567.23 0.016 
Cap132 851,495.32 851,495.32 851,495.32 0  851,495.32 851,495.33 851,495.33 0 
Cap133 893,076.71 893,076.71 893,076.71 0.0064  893,076.71 893,782.11 893,182.03 0.011 
Cap134 928,941.75 928,941.75 928,941.75 0  928,941.75 934,586.98 929,506.27 0.06 

CapA 17,156,454.47 17,156,454.47 17,156,454.47 0  17,156,454.47 17,665,889.11 17,163,692.65 0.042 
CapB 12,979,071.58 13,081,049.25 13,024,905.67 0.3531  12,979,071.58 13,215,550.80 13,014,256.16 0.271 
CapC 11,505,594.32 11,613,592.92 11,536,635.10 0.2698  11,505,594.32 11,615,301.64 11,525,439.63 0.172 

W/D/L      8/5/2    
 

6 Conclusions 

It is possible to apply the proposed algorithms to solve 
continuous problems to binary problems with two different 
options. If the structure of the algorithm is suitable, the 
algorithm can be directly adapted to the problem in binary. 
However, algorithms that cannot be used directly in binary, 
such as the MFO algorithm we used in this study, can be 
binarized by applying transfer functions. In this case, choosing 
the right transfer function is an important point to consider. 
However, one of the weak points of this approach is that the 
solutions of the members in the population are kept as 
continuous values and position updates are made over 
continuous values. In this study, when the MFO algorithm is 
converted into binary with only the transfer function and used 
(Table 3), the best result achieved was to catch the 300 best out 
of 450 cases. However, with the modifications we have applied, 
the performance of the algorithm has increased significantly, 
and it has moved to the position of catching the 402 best out of 
450. This shows that the applied modifications were quite 
successful. In this study, the MFO algorithm which is modelled 
based on the nocturnal flight strategy of moths was binarized 
and applied on UFLP. Since, the basic MFO is a continuous 
algorithm, transfer function was used for binarize process. In 
order to increase the performance of the binary MFO; some 
modifications were used, such as generating the initial 
population with a chaotic map, ensuring the diversity of flame 
selection in the position update phase, and by using the desert 
bush strategy providing the resurrection of the population that 
could not progress. The proposed algorithm (binEMFO-DB) 

applied on a problem set that consists of 15 problems with 
different size types was used. The performance of the proposed 
algorithm was compared with a set of algorithms which are 
frequently used in literature by using gap, hit and mean values. 
The experimental results show that the proposed algorithm is 
generally successful on UFLP and has better scores when 
compared with the performance of the other algorithms. On the 
other hand, when the results of the proposed algorithm are 
evaluated within itself, it is seen that it is quite successful in 
small, medium and large sized problems, but it can be improved 
in huge sized problems such as CapB and CapC.  

For the future works, the proposed algorithm can be applied on 
different binary optimization problems such as knapsack, 
future selection, job scheduling, resource allocation in cloud 
computing etc. On the other hand, different search strategies 
can be applied to improve the performance of the proposed 
algorithm for binary problems. 
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