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Abstract 

This paper scrutinizes the transformation in the electricity production structures of 
G7 nations in the wake of the Russian invasion of Ukraine. The inquiry centers on 
discerning shifts in the trajectory of energy production, particularly toward more 
sustainable and secure sources. With the imposition of economic sanctions against 
the Russian economy, an anticipatory transition from combustible fuels to renewable 
energy sources within G7 countries is envisaged. An empirical investigation is 
conducted utilizing panel data analysis of energy data across the G7. First and 
second-generation unit root tests have been used. Cointegration tests and the Vector 
Error Correction Model have been applied to see short-term and long-term 
relationships between renewable energy-sourced electricity production and 
combustible energy-sourced electricity production. Additionally, predictive modeling, 
employing SARIMA and Machine Learning model (Prophet) with Python, is employed 
to forecast future trends in energy production. This comprehensive analysis sheds 
light on the profound impact of geopolitical events on the energy landscape of 
influential global economies. The results of the econometrics and predictive models 
show that there is a significant effect of Russia-Ukrainian conflicts on electricity 
production in favor of more secure and clean energy. This trend change in renewable 
energy-sourced electricity production should fortify more regulatory aspects. 
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1. Introduction 

On the 24th of February 2022, the Russian military launched an invasion of Ukraine, 
setting off a chain of geopolitical repercussions. In response, G7 nations (comprising 
Canada, France, Germany, Italy, Japan, the UK, and the USA), along with numerous 
other countries, swiftly implemented economic sanctions against the Russian 
economy. A glaring challenge stemming from this embargo lies in the heightened 
dependence of these nations on fossil fuel-derived energy sources. Russia stands as 
a pivotal exporter of fuels and natural gas, thereby necessitating a paradigm shift 
towards alternative energy reservoirs for the importing countries. 

The aftermath of the Russian invasion of Ukraine effects profoundly through the 
global energy market, influencing both current and future energy production 
methodologies. This impact, akin to a butterfly effect, carries the potential to 
reshape the energy landscape. An optimistic outlook suggests that this crisis may 
serve as a catalyst for the acceleration of green and renewable energy sources, 
spurred by the embargo. 

Post-invasion, European countries, encompassing both EU and non-EU members 
such as the UK and Norway, swiftly enacted stringent regulations favoring renewable 
energy while seeking to diminish reliance on fossil fuels. This strategic shift in energy 
policy is anticipated to exert a lasting influence on the transition from conventional, 
combustible energy sources toward sustainable alternatives. 

A cornerstone of the European Union's agenda, the RePowerEU plan, aims to curtail 
reliance on Russian energy imports by the year 2027. Concurrently, Germany has set 
forth an ambitious target of achieving 100% clean energy by 2035 (Kuzemko et al., 
2022). Furthermore, nations including France, Denmark, the Netherlands, and the 
UK, among others, have embarked on regulatory reforms designed to bolster 
renewable energy production. Saktiawan et al. (2022) have conducted a 
comprehensive study of European countries in the post-war era, emphasizing the 
EU's commitment to elevating the share of renewable energy to 45% by 2030. In 
pursuit of this goal, EU governments have allocated an estimated 300 billion euros 
to finance energy transitions. 

This study unfolds in three key stages. Initially, a thorough literature review will be 
undertaken to establish a robust methodological framework. Subsequently, an in-
depth analysis will be conducted to elucidate the relationship between total 
combustible electricity sources and total renewable electricity sources within G7 
countries. The renewable energy sources include wind, solar, hydro, geothermal, 
combustible renewables, and other renewables. The primary energy sources 
comprise coal, peat, manufactured gases, oil, petroleum products, natural gas, and 
nuclear (iea.org). Finally, predictive models will be deployed to forecast future 
trajectories of electricity production in these nations. This research endeavors to 
offer critical insights into the evolving dynamics of energy production within the G7 
context. 
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The selection of G7 countries as the cross-sectional sample is motivated by both 
political and practical considerations. The G7 nations represent a robust economic 
union of Western countries, particularly in opposition to Russia. Additionally, the 
availability of comprehensive data for the year 2022, encompassing total electricity 
production values for 48 countries, including those within the G7, influenced this 
choice. Notably, the collective electricity production of the G7 countries accounts for 
approximately 53 percent of the sample total. This strategic selection allows for a 
focused analysis of a significant portion of global electricity production while 
considering the geopolitical dynamics inherent to the G7 nations.  

The paper centers its attention on electricity, a pivotal element in the energy market 
with profound implications for modern life. Beyond being a key component of our 
daily routines, electricity plays a critical role in determining production costs for 
industries and significantly influences the quality of individual lives. The importance 
of electricity is underscored by some political regulations that seek to steer future 
energy consumption patterns. A notable example is the European Union's 
commitment to ban the sale of petroleum and diesel cars after the year 2035. This 
policy not only reflects a commitment to environmental sustainability but also serves 
as a catalyst for the increased adoption of electric vehicles, thus reshaping the 
demand for electricity in the transportation sector. Recognizing these evolving 
dynamics is essential for comprehending the broader shifts in energy consumption 
and production that this study seeks to explore, particularly within the context of G7 
countries. 

2. Literature Review 

Since the onset of the Russo-Ukrainian War, both the global political agenda and the 
academic community have shifted their focus towards a multitude of perspectives 
on the immediate and post-war effects. Scholars from various corners of the world 
have delved into the economic, financial, political, sociological, environmental, and 
military dimensions of the invasions. This study aims to scrutinize the potential 
repercussions of the invasion on the energy market, particularly within the realm of 
electricity production. 

Upon reviewing the literature surrounding the Russo-Ukrainian War, it became 
evident that not all scholars share the belief that the conflict will act as a catalyst for 
the transition from combustible to renewable energy sources. This section will 
provide a comprehensive summary of both perspectives and their respective 
findings. 

Osička and Černoch (2022) assert with conviction that the energy landscape has 
undergone a paradigm shift since the Russian invasion of Ukraine. Renewable energy 
sources, previously viewed as unreliable and costly, have supplanted Russian natural 
gas as an equally precarious and expensive energy source post-invasion. This shift in 
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paradigm paves the way for renewable and green energy to potentially supplant 
natural gas and fossil-based energy sources.  

Joshi et al (2023) examine the effects of conflicts on stock markets in different 
regions of the world. They identify a negative impact of the conflict on global stock 
markets. Mohammed et al (2022) direct their focus towards renewable energy 
stocks, revealing abnormal spikes in returns during both pre- and post-war periods. 
Employing the CAMP method and VAR modeling, they examined S&P global clean 
energy index data from August 3, 2021, to March 30, 2022, unveiling a positive and 
statistically significant reaction in clean energy stocks. Umar et al (2022) corroborate 
these findings, underlining a notable surge in returns within the renewable energy 
industry, surpassing gains in the metal market. Baek (2023) emphasizes an 
interesting aspect of the Russian-Ukrainian War: the connection between the 
Russian and Eastern European stock markets is weakening after the conflict. 

El Khoury et al (2023) meticulously analyzed the financial impact of the Russian-
Ukrainian War on the renewable energy sector, drawing data from various sources 
spanning two years up to May 2022. Through a range of time series analyses, 
including GARCH and VAR models, they scrutinized the spillover effects of the war 
on various investment options. Notably, gold and renewable energy stocks emerged 
as the most positively affected investment options. Karkowska and Urjasz (2023) 
delved into the spillover effects within the clean and dirty energy market from 2014 
to 2022, encompassing the repercussions of the Russian invasion of Ukraine's 
eastern territory. Their findings suggest that renewable energy carries lower risk in 
financial markets, albeit with relatively higher hedging costs compared to non-
renewable energy. Singh et al (2022) also explored the spillover effects of the war on 
investment behaviors, emphasizing a notably positive impact on the sustainable and 
renewable energy sector. 

Balsalobre-Lorente and colleagues (2023) employed Cross-Quantilogram and Partial 
Cross-Quantilogram approaches to dissect oil and gas prices for G7 countries, 
distinguishing between pre- and post-Russo-Ukrainian War periods. Their findings 
highlight significant disparities in market returns before and after the war, suggesting 
that the Russo-Ukrainian War may offer an opening for the renewable energy sector 
to advance its operations. 

Steffen and Patt (2022) delved into public opinion during the early stages of the 
Russo-Ukrainian war, employing surveys to gauge sentiments towards fossil-based 
and clean energy sources in Switzerland. Their research uncovered a clear shift in 
public opinion favoring clean energy sources following the Russian invasion. This 
suggests a heightened societal readiness for government policies supporting clean 
energy while penalizing fossil-based alternatives. 

Kuzemko et al (2022) conducted a comprehensive survey of post-Russian Invasion of 
Ukraine regulations, concluding that the most viable long-term solution for securing 
energy supply in Europe lies in clean and renewable energy sources. In the short 
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term, there is an anticipation of increased reliance on coal and gas-based energy 
sources. Aitken and Ersoy (2022) focused on both short-term and long-term shifts in 
European energy structures. In the short term, it appears that subsidizing Russian 
gas and oil with coal and traditional energy sources may be the only option. 
Unfortunately, while this may provide short-term stability, it is economically and 
environmentally costly. In the long run, diversification of energy structures through 
the development and expansion of renewable energy sources is anticipated. 

Liao (2023) adopted a unique approach to the Russo-Ukrainian war, examining the 
investments made by European companies in renewable energy prior to the 
invasion. Their findings suggest that companies investing in renewable energy 
experienced relatively less disruption in the financial market's volatility. Liao 
proposes a link between geopolitical risk and investments in renewable energy, 
advocating for diversified energy sources to mitigate political and economic risks. 

Ibar-Alonso et al (2022) delved into one of the crucial aspects of the war: sentiment 
analysis. Analyzing tweets and re-tweets within the period of February 16, 2022, to 
March 3, 2022, using R programming language and natural language processing 
(NLP) techniques, their results were intriguing. Prior to the invasion, global sentiment 
was generally positive, but after the onset of the invasion, sentiment dramatically 
shifted towards negativity, particularly towards the renewable energy sector, which 
consistently maintained positive sentiment.  

Chen et al (2023) took a multifaceted approach to analyzing the Russo-Ukrainian war, 
examining its effects across various dimensions from economics to the environment. 
Notably, they investigated the war's impact on greenhouse gas emissions. Their 
short-term predictions anticipate a significant reduction in CO2 emissions. However, 
in the long run, they project a non-sustainable trend, with CO2 emissions ultimately 
resuming an upward trajectory. This shift is attributed to the substitution of Russian 
natural gas and fuel oil with less sustainable alternatives such as coal and thermal 
power plants. Chen and colleagues utilized a multi-region comparative static CGE 
model to generate different scenarios. Borowski (2022) contends that the EU's aim 
for zero carbon emissions by 2050 is jeopardized by coal-based energy production 
following the Russo-Ukrainian War. In this context, Borowski asserts that the war has 
adversely impacted the trend towards renewable and green energy in EU countries. 

Nerlinger and Utz (2022) analyzed investor decisions following the invasion, 
gathering data from over 1500 companies across 75 countries in the energy sector. 
Their findings suggest that in the initial days post-invasion, there was no abnormal 
change in returns for renewable energy companies. Moreover, coal-fired energy 
firms experienced higher returns compared to their renewable energy counterparts. 

To sum up, the literature review reveals that the effects of the Russian-Ukrainian war 
extend beyond the energy market to encompass all stock markets. The literature also 
indicates significant impacts on both renewable and combustible energy sources. 
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The prevailing notion is that, in the long run, the conflict catalyzes the growth of the 
clean and renewable energy sector in comparison to combustible energy sources. 

3. Data and Models 

The primary objective of this analytical framework is to ascertain whether the 
Russian invasion has had discernible effects on the production of renewable 
electricity within the G7 countries. 

The primary energy sources for electricity generation encompass both renewable 
and combustible energy. A dynamic of substitution exists between these two pivotal 
sources, wherein an inclination towards renewable electricity can lead to a reduction 
in the proportion of combustible electricity production in the overall energy mix, and 
vice versa. The classification by the IEA delineates total renewable electricity 
production into components such as geothermal, solar, wind, and other sources, 
while combustible electricity production includes combustible renewables. To 
elucidate the relationship between these energy sources, combustible renewables 
have been excluded from both sides of the analysis. Given that the weight of 
combustible renewables in total electricity production ranges from approximately 
1% to 8% across different cross-sections, their exclusion is deemed not to impede 
the long-term predictive capacity of the model. 

3.1. Data  

Electricity data for the G7 countries spanning from January 2010 to May 2023 has 
been sourced from the IEA (iea.org) website. This dataset comprises monthly 
observations, with the cross-sections pertaining to the G7 member nations, namely 
Canada, France, Germany, Italy, Japan, the UK, and the USA. A country-specific 
dataset was entered separately, and the ratios were calculated within each specific 
country. The ratios of total renewables and total combustible electricity production 
to overall electricity generation have been computed. The sum of these two ratios 
nearly approximates 1, indicating their complementary nature. Notably, a distinct 
negative correlation prevails between these ratios, signifying that as the proportion 

of 
(Total Combustible Fuels)

(Total Electricity Production)
 increases, the proportion of 

(Total Renewable Energy)

(Total Electricity Production)
 

decreases. The forthcoming econometric models aim to unveil the statistical 
relationships underpinning these ratios. 

3.2. Model Specifications 

Panel Data analysis has been employed to examine the relationships between 
variables. The benefits of using panel data, as opposed to either time series or cross-
sectional data, include higher degrees of freedom, lower multicollinearity, and 
higher data variation, leading to enhanced efficiency of estimators. Furthermore, 
panel data enables the control of heterogeneity, exploration of dynamics, and 
testing of more intricate behavioral hypotheses compared to what can be achieved 
with a sole time series or cross-section (Hsiao, 2006). 

https://www.iea.org/data-and-statistics/data-tools/monthly-electricity-statistics


Geopolitical Turmoil and G7 Renewable Electricity Production: Impacts of the … 
 

 
EJBE 2023, 16(32)                                                                                                                      Page | 57 

Table 1: Variable, acronym, unit of measurement, source  

Variables  Acronym Unit of measurement 
(Total Renewable Energy)

(Total Electricity Production)
 

 
Dependant Variable 𝑌𝑖,𝑡 GWh 

(Total Combustible Fuels)

(Total Electricity Production)
 Independent Variable 𝑋𝑖,𝑡 GWh 

Dummy Variable Independent Variable 𝐷𝑈𝑀𝑖,𝑡 0 or 1 

Trend Component Independent Variable @𝑡𝑟𝑒𝑛𝑑  
Source: https://www.iea.org/data-and-statistics/data-product/monthly-electricity-statistics  

The basic equation of the study is given below.  

Total Electricity Production = Total Combustible Fuels + Total Renewable Energy 

If we divide all parts of the equation by Total Electricity Production, we get the 
following equation: 

(Total Combustible Fuels)

(Total Electricity Production)
+

(Total Renewable Energy)

(Total Electricity Production)
= 1 

I can represent the basic equation provided above in econometric form as follows: 

(
Total Renewable Energy

Total Electricity Production 
)

𝒊,𝒕

=  𝛽0 + 𝛽1 (
Total Combustible Fuels

Total Electricity Production 
)

𝒊,𝒕

+ 𝑢𝑖,𝑡   

If we incorporate a trend component and a dummy variable, and after some 
simplification, we arrive at the final form of the econometric model as follows: 

𝑌𝑖,𝑡 = 𝛽0 + 𝛽1𝑋𝑖,𝑡 + 𝛽2𝐷𝑈𝑀𝑖,𝑡 + @𝑡𝑟𝑒𝑛𝑑 + ɛ𝑖,𝑡  

Where: 

𝑌𝑖,𝑡  denotes the proportion of Total Renewables (excluding combustible renewables) 

over Total Electricity Production 
𝑋𝑖,𝑡  represents the proportion of Total Combustible electricity (excluding 

combustible renewables) over Total Electricity Production. 
𝐷𝑈𝑀𝑖,𝑡 is a dummy variable accounting for the period following the Russian invasion 

of Ukraine. 
𝛽0 signifies the intercept. 
𝛽1  and 𝛽2 denote the coefficients.  
@trend: Trend component. 
ɛ𝑖,𝑡: Error term. 

Initial scrutiny entailed conducting unit root tests, both cross-sectionally 
independent and dependent, to assess the stationary properties of the series. In 
economic terms, a variable exhibiting a unit root (non-stationary) may not naturally 
revert to a specific long-term level after experiencing a shock. This distinction holds 
crucial implications for policymakers and decision-makers, influencing the choice 
between ongoing versus one-time interventions. The results of the Augmented 

https://www.iea.org/data-and-statistics/data-product/monthly-electricity-statistics
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Dickey-Fuller (ADF) tests confirm that the variables exhibit stationarity at the level, 
as demonstrated in Table 2 (Dickey and Fuller, 1979). 

Table 2: ADF Unit root test    

Variable Method Statistics Prob. 

Independent  ADF - Fisher Chi-Square 91.91A 0.00 
  ADF - Choi Z-stat -6.37A 0.00 

Dependent ADF - Fisher Chi-Square 179.03A 0.00 
  ADF - Choi Z-stat -8.65A 0.00 
Notes: A, B and D indicate the 1%, 5%, and 10% of levels of significance, respectively. Unit root test 
with trend and intercept. Lag Length: Automatic selection: Schwarz info criterion. 

For the second-generation unit root test, the Pesaran – CIPS unit root test was 
employed, accounting for cross-section effects. The results of the Pesaran – CIPS test 
affirm that the variables exhibit stationarity at the level in both unit root tests 
(Pesaran, 2007). This reinforces the notion that the examined variables do not exhibit 
a unit root and are considered stationary, which is crucial for accurate economic 
interpretations and policy formulation. Please look at Table 3 for Pesaran – CIPS unit 
root test results and refer to Table 4 for the CADF unit root test results. 

Table 3: CIPS Unit Root Test (Model 2) 
 Statistics t-stat p-value 

Independent CIPS -3.749 <0.01 
 Truncated CIPS -3.691 <0.01 

Dependent CIPS -4.828 <0.01 
 Truncated CIPS -4.828 <0.01 

 Critical Values  
 Level CIPS Trunc. CIPS 
 1% -3.03 -3.03 
 5% -2.83 -2.83 
 10% -2.73 -2.73 

Notes: Constant and deterministic trends have been chosen. ADF lag criterion was chosen. Maximum 
lang is taken as 6. 

 

Table 4: CADF Unit root test (Model 2) 
  Independent Variable Dependent Variable 
  CADF Truncated CADF CADF Truncated CADF 

Cross
-Sec. 

ADF 
Lags 

t-stat p-val. t-stat p-val. t-stat p-val. t-stat p-val. 

1 6 -3.079 >=.10 -3.079 >=.10 -6.381 <0.01 -6.381 <0.01 

2 2 -3.758 <0.05 -3.758 <0.05 -3.576 <0.10 -3.576 <0.10 

3 1 -4.363 <0.01 -4.363 <0.01 -3.849 <0.05 -3.849 <0.05 

4 6 -2.534 >=0.1 -2.534 >=0.1 -3.875 <0.05 -3.875 <0.05 

5 6 -2.467 >=0.1 -2.467 >=0.1 -4.818 <0.01 -4.818 <0.01 

6 6 -3.219 >=0.1 -3.219 >=0.1 -6.056 <0.01 -6.056 <0.01 

7 6 -6.819 <0.01 -6.42 <0.01 -5.241 <0.01 -5.241 <0.01 
Notes: Constant and deterministic trend have been chosen. ADF lag criterion was chosen. Maximum 
lang is taken as 6. Critical values (CADF and Trunc. CADF): -4.31 (%1), -3.70 (5%), -3.40 (10%). 
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To assess the long-term effects of the Russian Invasion on the production of Total 
Renewables (Geo, Solar, Wind, Other) electricity production in G7 countries, a 
regression analysis was conducted. The choice between a Random and Fixed Effect 
model was determined through a Hausman Test, ultimately leading to the adoption 
of a one-way random effect panel data analysis. 

The Hausman Test is instrumental in gauging whether individual-specific effects bear 
significant correlation with the independent variables. Should the p-value exceed 
0.05, it indicates that these effects are not significantly related to the independent 
variables. Consequently, in such a scenario, the random effects model is deemed 
more appropriate. This model posits that individual-specific effects are stochastic 
and uncorrelated with the independent variables (Hausman, 1978). Please refer to 
Table 5 for the Hausman Test results. 

Table 5: Hausman Test      

Test Summary Chi-Sqr Statis. Chi-Sq. d.f. Prob 

Cross-Section Random 0.00 2 1.00 

The outcomes of one-way random effect panel data analysis are given in Table 6. 

Table 6: Panel Random Effect Model  

Variable Coefficient t-statistic 

C 0.520ᴬ 61.04 

X -0.598ᴬ -39.67 

DUMMY 0.013ᴬ 3.56 

@TREND 0.0004ᴬ 17.2 

R-square 0.969  

A. R-square 0.969  

F statistics 3912ᴬ  

Akakike -4.08  

DW stat 0.48  

I have observed a negative and statistically significant coefficient for the dependent 
variable, in line with my expectations. Additionally, the dummy variable yielded a 
positive and statistically significant coefficient. This implies that the Russian invasion 
has led to a shift in production in favor of renewable electricity production sources. 
In Table 6, C represents the constant of the model. 

𝑌𝑖,𝑡 = 𝛽0 + 𝛽1𝑋𝑖,𝑡 + 𝛽2𝐷𝑈𝑀𝑖,𝑡 + @𝑡𝑟𝑒𝑛𝑑 + ɛ𝑖,𝑡 

Coefficient (𝛽1) for 𝑋𝑖,𝑡 (-0.598): Holding all other variables constant, a one-unit 

increase in 𝑋𝑖,𝑡  is associated with a decrease in 𝑌𝑖,𝑡  by approximately 0.598 units. This 

indicates a negative relationship between 𝑋𝑖,𝑡 and 𝑌𝑖,𝑡. 

Given this negative coefficient, it suggests that there is a form of divergence between 
𝑌𝑖,𝑡and 𝑋𝑖,𝑡 in the context of the model. In other words, an increase in 𝑋𝑖,𝑡 is 

associated with a decrease in 𝑌𝑖,𝑡.  
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The findings of the model reveal valuable insights into the dynamics of electricity 
production, particularly the proportion of Total Renewables in the context of 
combustible electricity and the period following the Russian invasion of Ukraine. The 
negative coefficient (-0.59) associated with the proportion of combustible electricity 
suggests that as this component increases, there is a corresponding decrease in the 
proportion of Total Renewables. This implies that efforts to reduce reliance on 
combustible electricity could lead to an increase in renewable energy production. 
Furthermore, the positive coefficient (0.013) for the dummy variable representing 
the post-Russian invasion period indicates a slight increase in the proportion of Total 
Renewables during this period. Practically, these findings imply that strategic policy 
interventions targeting a reduction in combustible electricity and recognizing the 
impact of geopolitical events, such as the Russian invasion, could be instrumental in 
promoting a more sustainable and resilient energy mix over time. Additionally, 
careful consideration of the trend component is essential for anticipating and 
adapting to long-term shifts in the landscape of electricity production. 

3.2.1. Cointegration and Vector Error Correction Model 

In order to justify the long-run relationship between Total Renewable Electricity 
production and Total Combustible Electricity production, it is good to look at 
cointegration between these two variables.  

I have looked at Pedroni (Engel-Granger bases) cointegration test with individual and 
individual trend. The cointegration test results are given in Table 7 (Pedroni, 1999).  

Table 7: Pedroni Cointegration Test 

  Statistic W. Statistic 

Panel v- statistic 1.066 0.269 

Panel rho-statistic -16.116ᴬ -17.19ᴬ 

Panel PP-statistic -12.366ᴬ -11.94ᴬ 

Panel ADF-statistic -10.668ᴬ -10.62ᴬ 

Group rho-statistic -25.38ᴬ  

Group PP-statistic -14.24ᴬ  

Group ADF-statistic -11.38ᴬ  

A, B and D indicate the 1%, 5%, and 10% of levels of significance, respectively. Cointegration 
test with trend and intercept. Lag Length: Automatic selection: Schwarz info criterion. Null 
Hypothesis: No cointegration. Bandwidth selection: Newey-West automatic bandwidth 
selection and Barnett kernel 

Out of the 11 statistics examined, 9 exhibit significant values. Based on the results of 
the Pedroni Cointegration test, I confidently conclude that a long-term relationship 
indeed exists between Total Renewable Electricity production and Total Combustible 
Electricity production, aligning with my initial expectations. 

In the short run, various factors can lead to shocks and deviations from the long-term 
equilibrium. To ascertain whether these short-term discrepancies eventually revert 
to a long-term equilibrium, the Error Correction model proves invaluable. 
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Additionally, exploring the Vector Error Correction model, as proposed by Johansen 
in 1995, holds promise for providing deeper insights into the dynamic interplay 
between these variables (Johansen, 1995). 

Long-Run cointegration regression model: 𝑌𝑖,𝑡 = 𝛽0 + 𝛽1𝑋𝑖,𝑡 + ɛ𝑖,𝑡 

Lagged residuals (cointegrating equation): ɛ𝑖,𝑡−1 = 𝐸𝐶𝐶𝑖,𝑡−1 =  𝑌𝑖,𝑡−1 − 𝛽0 − 𝛽1𝑋𝑖,𝑡−1  

𝛥𝑌𝑖,𝑡 = 𝛼𝑖 + ∑ 𝛽𝑖𝛥𝑌𝑖𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝛿𝑖𝛥𝑋𝑖𝑡−𝑘

𝑞

𝑘=0

+ 𝜃𝑖𝐸𝐶𝐶𝑖𝑡−1 + 𝑢𝑖,𝑡 

𝐸𝐶𝐶𝑖𝑡−1: Error correction coefficient term 

The VEC model outcomes are given Table 8.  

Table 8: Vector Error Correction Model  
Cointegrating Eq CointEq1 t-statistic 

Y(-1) 1.00  

X(-1) -0.211 -0.70 

C -0.169  

Error Correction  - D(Y) Coefficient t-statistic 

CointEq1 -0.015ᴬ -2.86 

DY(-1) -0.138B -2.64 

DY(-2) 0.0017 -0.03 

DX(-1) -0.02 -0.41 

DX(-2) 0.044 0.93 

C 0.002 1.446 

R-square 0.026  

A. R-square 0.021  

F statistics 5.88ᴬ  

Akakike -3.889  

I have discovered a statistically significant Error Correction Coefficient, which aligns 
with the theoretical expectations, showing a negative sign. This implies that any 
short-term disequilibrium in the model will gradually adjust towards the long-run 
equilibrium at a rate of approximately 1.5% per month. This finding underscores the 
dynamic nature of the relationship between the variables, with adjustments 
occurring over a relatively short time frame. 

3.2.2. Forecast- SARIMA and Prophet Model 

Through the Random Effect Panel Data Analysis, we observe that the Russian 
invasion of Ukraine has spurred the G7 countries to seek out alternative energy 
sources. Consequently, they have embarked on a transition in their electricity 
production, moving away from traditional fuel and natural gas towards renewable 
energy sources. This section aims to provide future projections for total combustible 
electricity production and the utilization of renewable electricity production sources 
within the G7 countries. Unlike the panel data framework, I'll be examining the 
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cumulative electricity production of G7 countries. That is to say, I accumulated all 
data for the G7 countries, calculated the ratios, and started to forecast using SARIMA 
and Prophet models. 

The results of the panel data analysis show a significant shift in the electricity 
production structure of G7 countries toward renewable energy sources. For future 
predictions, a macro-economic perspective is necessary. Therefore, I prefer to utilize 
the total electricity production dataset of G7 countries instead of employing panel 
data analysis. To achieve this, I have used a time series dataset to make long-run 
future predictions with SARIMA and Prophet models. 

To forecast the production of electricity from renewable sources within the G7 
countries up until 2050, I employed the SARIMAX (1,1,1,12) model. The graph below 
depicts the trajectory of the proportion of electricity production sourced from 
renewables relative to the total. The presence of a steadily ascending trend instills 
optimism about the future prospects for our planet (Box et al., 1994). 

𝑌𝑡 = 𝑐0 + 𝛷1𝑌𝑡−1 + 𝜃1ɛ𝑡−1 + 𝛩1𝑌𝑡−12 + ф1ɛ𝑡−12 +  ɛ𝑡 

Where: 

𝑌𝑡: Observed time series: Renewable Energy based electricity production and 
Combustible Energy based electricity production. 

𝑐0: Constant term, 

𝛷1: the autoregressive parameter.  

𝑌𝑡−1: Lagged value of observed time series at time t-1. 

𝜃1: the moving average parameter.  

ɛ𝑡−1: the error term at time t-1. 

𝛩1: the seasonal autoregressive parameter.  

𝑌𝑡−12: the values from the same season in the previous year (seasonal lag). 

ф1: the seasonal moving average parameter. 

ɛ𝑡−12: the error term from the same season in the previous year (seasonal error 
term). 

ɛ𝑡: the error term at time t. 

I have also conducted predictions for combustible source electricity production, and 
an evident negative trend is discernible. This indicates a notable decrease in the 
reliance on combustible sources for electricity generation in the future. 
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Figure 1: Sarima Model Future Predictions 

Additionally, I cross-verified the future predictions using the Prophet Model, as 
suggested by Taylor and Letham in 2018. Encouragingly, the results from the Prophet 
Model align closely with the earlier predictions, further reinforcing our outlook. 

 

Figure 2: Prophet Model Predictions 

4. Results and Discussion 

The analysis presented in this study underscores the significant impact of the Russian 
invasion of Ukraine on the electricity production of G7 countries. Through Random 
Effect Panel Data Analysis, we observed a decisive shift towards alternative energy 
sources, marking a departure from traditional reliance on fossil fuels and natural gas. 
This transition is poised to shape the future of electricity production in these nations. 
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Forecasts for both renewable and combustible electricity production were 
conducted, revealing distinct trends. The proportion of electricity sourced from 
renewables exhibited a promising upward trajectory, affirming the potential for a 
more sustainable energy future. Conversely, combustible source electricity 
production exhibited a discernible negative trend, indicating a declining reliance on 
these traditional energy sources. 

These projections, derived from SARIMA and Prophet models, provide valuable 
insights for policymakers, industry leaders, and stakeholders alike. The findings 
suggest a clear imperative for further investments in renewable electricity 
infrastructure and policies to facilitate this transition. 

5. Conclusion and Policy Recommendations 

The analysis conducted highlights the effectiveness of employing advanced modeling 
techniques in predicting future trends in electricity production. Looking forward, it 
becomes abundantly clear that a unified effort towards the adoption of renewable 
energy is not only justified but also entirely feasible. 

In summary, the aftermath of the Russian invasion of Ukraine has served as a catalyst 
for a transformative shift in the electricity production landscape of G7 countries. By 
embracing alternative energy sources, these nations stand to not only alleviate 
environmental impacts but also develop a more resilient and sustainable energy 
future. 

It is crucial to recognize that G7 countries play a considerable role in the global 
electricity production, holding a significant share of the overall pie. Consequently, 
from both political and economic perspectives, the trajectory of electricity 
production in these nations will undoubtedly reflect globally, influencing a more 
secure and environmentally friendly trend in the realm of energy generation. 

To further solidify the commitment to renewable energy, implementing additional 
regulations favoring these sources will widen the gap between renewable and 
combustible energy sources. These regulations, when effectively enforced, serve as 
a pivotal step in making renewable energy sources a permanent fixture in the 
landscape of electricity production. By creating a regulatory environment that 
incentivizes the use of clean energy, G7 countries can set a precedent for sustainable 
practices, encouraging other nations to follow suit. 

In conclusion, the comprehensive adoption of renewable energy within the G7 
countries is not only a strategic environmental choice but also a powerful driver for 
fostering global energy security and sustainability. Through sustained commitment 
and the implementation of supportive policies, these nations can lead the way 
towards a cleaner, more resilient energy landscape for the benefit of both current 
and future generations. 
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Appendices 

A.1. Python Codes: For Sarimax Model 

import pandas as pd 
import numpy as np 
from statsmodels.tsa.statespace.sarimax import 
SARIMAX 
import matplotlib.pyplot as plt 
df = 
pd.read_csv('C:\\Users\\...\\model1_two_variabl
e.csv') 
df['Time'] = pd.to_datetime(df['Time'], 
format='%b/%y') 
df.set_index('Time', inplace=True) 
df.head() 
df.tail() 
# Assuming you have prepared your dataframe 
df as described 
# Train SARIMA model for Y2_Ratio 
model = SARIMAX(df['Y2_Ratio'], order=(1, 1, 1), 
seasonal_order=(1, 1, 1, 12)) 
results = model.fit() 
# Generate future dates up to 2050 
future_dates = pd.date_range(start='2023-06-
01', end='2050-12-31', freq='M') 
# Make predictions 
future_Y2_Ratio_predictions = 
results.get_forecast(steps=len(future_dates)) 
# Get the predicted values 
predicted_values = 
future_Y2_Ratio_predictions.predicted_mean 
# Combine predictions with original data 
df_combined = pd.concat([df, 
predicted_values.rename('Y2_Ratio_Forecast')], 
axis=1) 
# Plot the results 
plt.figure(figsize=(10, 6)) 
plt.plot(df_combined.index, 
df_combined['Y2_Ratio'], label='Actual 
Y2_Ratio') 
plt.plot(df_combined.index, 
df_combined['Y2_Ratio_Forecast'], 
label='Forecasted Y2_Ratio') 
plt.xlabel('Time') 
plt.ylabel('Ratio') 
plt.title('Future Predictions') 
plt.legend() 
plt.show() 

### SARIMAX Model for X2_Ratio 
independent variable no exog variables. 
# Train SARIMA model for Y2_Ratio 
model = SARIMAX(df['X2_Ratio'], order=(1, 
1, 1), seasonal_order=(1, 1, 1, 12)) 
results = model.fit() 
# Generate future dates up to 2050 
future_dates = pd.date_range(start='2023-
06-01', end='2050-12-31', freq='M') 
# Make predictions 
future_X2_Ratio_predictions = 
results.get_forecast(steps=len(future_dat
es)) 
# Get the predicted values 
predicted_values = 
future_X2_Ratio_predictions.predicted_m
ean 
# Combine predictions with original data 
df_combined = pd.concat([df, 
predicted_values.rename('X2_Ratio_Forec
ast')], axis=1) 
# Plot the results 
plt.figure(figsize=(10, 6)) 
plt.plot(df_combined.index, 
df_combined['X2_Ratio'], label='Actual 
X2_Ratio') 
plt.plot(df_combined.index, 
df_combined['X2_Ratio_Forecast'], 
label='Forecasted X2_Ratio') 
plt.xlabel('Time') 
plt.ylabel('Ratio') 
plt.title('Future Predictions') 
plt.legend() 
plt.show() 
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A2. Python codes for Prophet Model 

#For Prophet Model for Total Combustible 
pip install fbprophet # makes error. 
pip install prophet 
from prophet import Prophet 
df = 
pd.read_csv('C:\\Users\\...\\model1_two_variable.csv') 
df['Time'] = pd.to_datetime(df['Time'], format='%b/%y') 
df.set_index('Time', inplace=True) 
df.head() 
df3 = df[['X2_Ratio']].copy() 
df3.head() 
df3 = df3.rename(columns={'X2_Ratio': 'y'}) 
df3.head() 
df3.index = pd.to_datetime(df3.index) 
# Initialize the Prophet model 
model = Prophet(yearly_seasonality=True, 
weekly_seasonality=False, daily_seasonality=False) 
# Prepare the data for Prophet 
df_prophet = df3.reset_index() 
df_prophet.columns = ['ds', 'y']  # Prophet requires 
column names to be 'ds' and 'y' 
df_prophet.head() 
# Fit the model 
model.fit(df_prophet) 
# Generate future dates up to 2050 
future_dates = pd.date_range(start='2023-06-01', 
periods=324, freq='M')  # Generate 324 months (27 
years) 
future_df = pd.DataFrame({'ds': future_dates}) 
# Make predictions 
future_predictions = model.predict(future_df) 
predicted_values = future_predictions['yhat'] 
# Combine predictions with original data 
df_combined = pd.concat([df_prophet.set_index('ds'), 
predicted_values.rename('yhat')], axis=1) 
# Plot the results 
plt.figure(figsize=(10, 6)) 
plt.plot(df_combined.index, df_combined['y'], 
label='Actual X') 
plt.plot(future_dates, predicted_values, 
label='Forecasted X') 
plt.xlabel('Time') 
plt.ylabel('Value') 
plt.title('Future Predictions Total Combustible/Total 
Electricity Productions') 
plt.legend() 
plt.show() 

#For Prophet Model for Total Renewable 
Energy 
df2 = df[['Y2_Ratio']].copy() 
df2 = df2.rename(columns={'Y2_Ratio': 
'y'}) 
df2.index = pd.to_datetime(df2.index) 
# Initialize the Prophet model 
model = 
Prophet(yearly_seasonality=True, 
weekly_seasonality=False, 
daily_seasonality=False) 
# Prepare the data for Prophet 
df_prophet = df2.reset_index() 
df_prophet.columns = ['ds', 'y']  # Prophet 
requires column names to be 'ds' and 'y' 
df_prophet.head() 
# Fit the model 
model.fit(df_prophet) 
# Generate future dates up to 2050 
future_dates = 
pd.date_range(start='2023-06-01', 
periods=324, freq='M')  # Generate 324 
months (27 years) 
future_df = pd.DataFrame({'ds': 
future_dates}) 
# Make predictions 
future_predictions = 
model.predict(future_df) 
predicted_values = 
future_predictions['yhat'] 
# Combine predictions with original data 
df_combined = 
pd.concat([df_prophet.set_index('ds'), 
predicted_values.rename('yhat')], axis=1) 
# Plot the results 
plt.figure(figsize=(10, 6)) 
plt.plot(df_combined.index, 
df_combined['y'], label='Actual y') 
plt.plot(future_dates, predicted_values, 
label='Forecasted y') 
plt.xlabel('Time') 
plt.ylabel('Value') 
plt.title('Future Predictions Total 
Renewables/Total Electricity Productions') 
plt.legend() 
plt.show() 

 


