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DEEP RECURRENT NEURAL NETWORKS IN ENERGY 
DEMAND FORECASTING: A CASE STUDY OF KAZAKHSTAN’S 

ELECTRICAL CONSUMPTION

Abstract: The critical transformation of the energy sector demands innovative approaches 
to ensure the reliability and efficiency of energy systems. In this pursuit, this study delved into 
the potential of Deep Recurrent Neural Networks (DRNNs) for forecasting energy demand, 
using a comprehensive dataset detailing Kazakhstan’s electrical consumption over a span of 
two years. Traditional statistical models have historically played a role in energy demand pre-
diction, but the growing intricacy of the energy landscape calls for more advanced solutions. 
The paper presented a comparison of the DRNN with other traditional and machine learning 
models and highlighted the superior performance of DRNNs, especially in capturing complex 
temporal relationships.

The energy sector is confronting unprecedented challenges due to population growth and 
the integration of diverse energy sources, leading to increased demand and system strains. Ac-
curate energy demand prediction is essential for system reliability. Traditional models, though 
widely used, often overlook intricate variables like weather patterns and temporal factors. 
Through rigorous methodology, encompassing exploratory data analysis, feature engineer-
ing, and hyperparameter optimization, an optimized DRNN model was developed. The results 
demonstrated the DRNN’s exceptional capability in processing complex time-series data, as 
evidenced by its attainment of an R-squared value of 83.6%. Additionally, it achieved Mean Ab-
solute Errors and Root Mean Squared Errors of less than 2%. However, there were noticeable 
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deviations in some predictions, suggesting areas for refinement. This research underscores the 
significance of DRNNs in energy demand prediction, highlighting their advantages over tradi-
tional models while also noting the need for ongoing optimization. The findings underscore 
DRNN’s promise as a robust forecasting tool, pivotal for the energy sector’s future resilience 
and efficiency.

Keywords: recurrent neural networks; Kazakhstan; electrical consumption; forecasting sys-
tem.

Introduction (Literature review)
The energy sector is undergoing a significant transformation catalyzed by the surge in 

population growth and the integration of diversified energy sources. These factors have led to 
an increased strain on energy systems, creating supply uncertainties and risks of blackouts. In 
this evolving landscape, accurate forecasting of energy demand has become paramount for ef-
fective system management and planning. Traditional statistical models have been commonly 
used for this purpose but often fail to account for complex variables like weather conditions, 
time of day, and holidays. More recently, machine learning (ML) techniques have been adopted 
to address these shortcomings. 

This literature review aims to present an overview of various approaches to energy demand 
prediction, emphasizing the application of machine learning models such as recurrent neural 
networks (RNN), convolutional neural networks (CNN), and support vector regression (SVR) 
[1,2]. To overcome the limitations of conventional models, researchers have started exploring 
the application of machine learning techniques for energy demand prediction. Among various 
ML techniques, RNN, CNN, MLP, and SVR have emerged as front-runners in the sector. Agrawal 
et al. [1] leveraged Long Short-Term Memory (LSTM) RNN models for long-term load forecast-
ing, achieving a Mean Absolute Percentage Error (MAPE) of 6.54%. Their study utilized a public 
dataset spanning twelve years, showcasing the model’s high accuracy. Conversely, Taheri et 
al. [2] compared different deep learning algorithms for long-term energy consumption pre-
diction. Their findings showed that Deep-RNN (DRNN) outperformed gradient boosting (GB) 
and support vector machines (SVM), with monthly average errors being lower for DRNN. Deep 
Recurrent Neural Networks (DRNNs) are a specialized class of neural networks optimized for 
sequence prediction problems. Unlike traditional RNNs, which usually consist of a single layer 
of recurrent connections, DRNNs employ multiple layers. This enables DRNNs to capture high-
er-order dependencies and complexities, making them particularly well-suited for tasks like 
energy demand prediction, which involve intricate relationships among multiple variables. 
Energy demand prediction is not a trivial task; it encompasses a variety of variables such as 
weather conditions, holidays, time of day, and day of the week. Traditional statistical models 
often fail to account for these complexities. Taheri et al.’s study [2] delves into this aspect, 
presenting DRNNs as a more effective solution for long-term energy consumption prediction. 
One of the unique strengths of DRNNs are their ability to handle sequence data efficiently. 
Traditional machine learning models often disregard the temporal sequence of data points, 
which can be a critical factor in energy demand prediction. DRNNs maintain a memory; of past 
sequences, enabling them to capture temporal dependencies effectively. This makes them ide-
ally suited for time-series data, a common data type in energy systems. Training DRNNs require 
significant computational power and time, which could be a limitation for real-time applica-
tions. Also, like other deep learning models, DRNNs may require large datasets for training to 
prevent overfitting [3]. Research works [4,5] have highlighted that DRNNs are highly effective 
for applications in sequentially collected data, outperforming other machine learning algo-
rithms in accuracy. Despite their capabilities, DRNNs are computationally intensive, especially 
when multiple layers and neurons are involved. DRNNs represent a promising approach in the 
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domain of energy demand prediction, overcoming several limitations of traditional statistical 
models and other machine learning algorithms. With their deep architecture and ability to 
capture complex temporal relationships, they offer a robust model for accurate, long-term 
forecasting in energy systems, albeit with some computational challenges. Therefore, their ap-
plication in the energy sector should be the subject of continuous research and optimization 
to fully realize their potential.

Another practical usage of DRNN is image segmentation (for example, cardiac). In [6] au-
thors reviewed 60 works by using deep learning methods in cardiac image segmentation. 
They did comparative analysis of different network architectures with accuracies. Paper [7] 
proposes to use neural network algorithms for detecting heart sound signal. Their algorithms 
include lots of input parameters and computationally expensive for running. In the result part, 
authors achieved 97.2% accuracy. Deep learning algorithms (namely ResNet) can be effectively 
used for Inferior Vena Cava (IVC) filter segmentations [8]. Authors analyzed 84 CT scans and by 
applying 3D-CNN and Swin-UNETR architecture retrieved IVC filters.

Research paper [9] contains information about different variations of LSTM (long short-
term memory) for recognizing sequential data, text, video and audio. 

Moreover, deep neural network models can also be used in transportation sector. For exam-
ple, authors of [10] paper tested deep neural network framework on complex road geometry 
to predict dynamics of driver-vehicle system.

Several studies [11,12] have examined the performance of sequential data using LSTM, 
GRU, and Transformer models. In terms of model training speed [11], GRU is 29.29% faster 
than LSTM in processing the same dataset; and in terms of performance, GRU outperforms 
LSTM in the long text and small dataset scenario and is inferior to LSTM in other scenarios. 
Considering two aspects, performance and cost of computing power, the performance cost ra-
tio of GRU is higher than that of LSTM, which is 23.45%, 27.69% and 26.95% higher in terms 
of precision, recall and F1 respectively.

Two metrics, the BLEU score and the ROUGE score, are utilized to estimate the performance 
of the models [12]. The BLEU-4 score is 0.386, 0.402, and 0.482 for the RNN+LSTM, RNN+-
GRU, and Transformer models respectively. The precision, recall, and F1 score studies for the 
ROUGE Score show similar results to those of the BLEU Score training. Both evaluation metrics 
show that the Transformer model outperforms both RNN variants.

In addition to Recurrent Neural Networks (RNNs), models based on the CNN-LSTM architec-
ture have demonstrated high performance in forecasting energy demand [13,14]. Specifically, 
research papers [14,15] highlight the application of the CNN-LSTM framework across various 
datasets, resulting in precise predictions of energy consumption with an accuracy rate ranging 
between 94% and 96%. This indicates the robustness of the CNN-LSTM model in handling the 
complexities of energy demand forecasting [16,17]. 

Recent advances in Transformer models have significantly expanded the field of time series 
analysis, particularly in energy forecasting tasks. The scientific papers listed as references 
[18,19] provide a comprehensive exploration of the application of transformer models in this 
context. These models are characterized by their ability to skillfully manage and accurately 
describe the intricate relationships inherent in complex data sets. This is particularly impor-
tant in the field of energy forecasting, where the dynamism and complexity of the data require 
sophisticated analytical approaches. The Transformer architecture, with its advanced mecha-
nisms for handling sequential data, provides a robust framework for capturing temporal de-
pendencies and nuances, thereby enhancing the accuracy and reliability of predictive analysis 
in the energy sector [20].

In conclusion, the energy sector’s growing complexity and dynamic nature necessitate ad-
vanced forecasting methods, and machine learning techniques, especially deep learning mod-
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els like DRNNs, have proven superior in addressing this need. While these models offer en-
hanced accuracy and the ability to process complex temporal data, they also pose challenges 
in terms of computational intensity and data requirements. The continued exploration and 
optimization of these technologies, including DRNNs, CNN-LSTM, and Transformer models, 
are crucial for improving long-term energy demand prediction and application in other sectors 
like healthcare and transportation.

Methods and Materials
Deep Recurrent Neural Networks (RNNs) are a type of neural network architecture designed 

to handle sequential data by incorporating multiple layers of recurrent units. They are an ex-
tension of the standard RNN architecture, which has the limitation of struggling to capture 
long-range dependencies in sequential data. Deep RNNs aim to address this issue by stacking 
multiple recurrent layers on top of each other. Here’s a general overview of the architecture:

1. Recurrent Layers: The core building blocks of a Deep RNN are the recurrent layers. These 
layers maintain hidden states that capture information from the input sequence at dif-
ferent time steps. In a deep architecture, you have multiple recurrent layers stacked on 
top of each other.

2. Time Steps: Each layer in the deep RNN processes the input sequence one time step at a 
time. The output from one time step becomes the input to the next, effectively passing 
information forward through the network.

3. Hidden States: The hidden state at each time step in a recurrent layer is a vector that 
represents the network’s memory of the past inputs. In a deep RNN, each layer has its 
own set of hidden states. The output of one layer’s hidden states becomes the input for 
the next layer.

4. Multiple Layers: Deep RNNs typically consist of multiple recurrent layers, which allows 
them to capture complex dependencies in the data. The first layer processes the raw 
input, and subsequent layers process the output of the previous layer.

5. Non-Linear Activation Functions: Similar to other neural networks, deep RNNs often use 
non-linear activation functions, such as the hyperbolic tangent (tanh) or Rectified Linear 
Unit (ReLU), to introduce non-linearity into the network and enable it to learn complex 
patterns.

6. Backpropagation Through Time (BPTT): Training a deep RNN involves backpropagating 
the error through time to adjust the network’s parameters, including the weights and 
biases in each layer. This process is known as Backpropagation Through Time (BPTT).

Deep RNNs have been used in a wide range of applications, including natural language 
processing, speech recognition, and time series analysis. They can capture intricate patterns in 
sequential data, making them a valuable tool for tasks that involve understanding and gener-
ating sequences.

It’s important to note that deep RNNs can be challenging to train due to issues like van-
ishing and exploding gradients. To mitigate these problems, variations of RNNs, such as Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, are often used in prac-
tice. These variants have mechanisms to better control the flow of information through the 
network’s hidden states and have become the standard choice for deep recurrent architectures.

The conventional approach for constructing deep RNNs is remarkably straightforward: we 
arrange multiple RNN layers in a stacked fashion. When dealing with a sequence of length 
“T” the initial RNN layer generates an output sequence of the same length “T,” which then 
serves as the input for the subsequent RNN layer. In this concise section, we demonstrate this 
architectural pattern and provide a simple example of how to implement such stacked RNNs. 
Illustrated in Figure 1 below is a deep RNN with “L” hidden layers. Each hidden state processes 
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a sequential input and yields a sequential output. Additionally, it’s important to note that any 
RNN cell (represented as a white box in Figure 1) at each time step relies on both the previous 
time step’s value within the same layer and the value of the previous layer at the correspond-
ing time step.

Figure 1. Architecture of DRNN Model

A Deep Recurrent Neural Network (RNN) can be mathematically formulated as a series of 
equations representing how information flows through the network. Here is the mathematical 
formulation of a basic deep RNN with “L” hidden layers:

Notation:
• t represents the time step.
• X(t) is the input at time step t
• H1

(t) is the hidden state of the l-th layer at time step t
• O(t) is the output at time step t

Input to Hidden State of Layer 1 can be described by using the following equation: 

(1)

where f ( ) is the activation function (e.g., tanh or ReLU); 
          W (1) – the weight matrix for the input;
          U (1) – the weight matrix for the previous hidden state of the first layer;
          H1

(t–1) – the hidden state of the first layer at the previous time step.
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Calculation of next hidden layers : 

(2)

where W (l) is the weight matrix for the hidden state of the previous layer;
             U (l)  – the weight matrix for the previous hidden state of the same layer;
              – the hidden state of the previous layer at the current time step;
              – the hidden state of the current layer at the previous time step.
Output at time step t is computed as follows: 

(3)

where V is the weight matrix for the output layer.
            – the hidden state of the final layer at the current time step.

The above equations represent the basic mathematical formulation of a deep RNN. In prac-
tice, it is possible to use more advanced RNN cell types like LSTM (Long Short-Term Memory) 
or GRU (Gated Recurrent Unit) cells and implement various optimization techniques to make 
training more efficient and stable. The choice of activation functions, the number of layers, and 
the architecture may vary based on the specific problem which we are solving.

In this paper, it was employed a Deep Recurrent Neural Network (DRNN) to analyze a de-
tailed dataset capturing Kazakhstan’s electrical consumption from April 2018 to April 2020. 
Each entry in the dataset presents consumption metrics for a specific hour and date. Covering 
a broad spectrum of zones and regions, the dataset provides a consolidated overview of Ka-
zakhstan’s electrical demand, further segmented into regions such as North, South, West, and 
East. Detailed data for specific locales, including Semey and Karaganda GRES, are also availa-
ble. Moreover, the dataset encompasses secondary load metrics for selected regions. Given its 
extensive duration and hourly granularity, this dataset serves as a critical resource for evalu-
ating electricity consumption trends, identifying regional energy imbalances, informing policy 
and infrastructure planning, and supporting predictive demand forecasting. The data primarily 
originates from national electricity boards or associated regulatory agencies.

Deep Recurrent Neural Network were developed using this dataset, the DRNN model in-
cludes pandas for structured data manipulation, numpy for numerical operations, matplotlib 
and seaborn for visualization, sklearn for preprocessing and metrics, tensorflow for deep learn-
ing operations, and optuna for hyperparameter optimization.

The feature engineering stage comes next. Here, lag features, which are historical data 
values, are introduced. Specifically, three lag features are generated to capture the power con-
sumption data from the previous three time steps. Additionally, a rolling window statistic, a 
rolling mean in this case, is computed over a window of three time periods to offer a smoothed 
version of power consumption.

The entire dataset is then normalized to fall between the range 0 and 1 using the MinMax-
Scaler. This normalization ensures stable and efficient training of neural networks. For data 
analysis, a correlation heatmap is plotted to visualize correlations between different features. 
Following this, pair plots are generated for select columns to visually inspect relationships 
between pairs of variables. The equation of the scaling is: 

(4)
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The dataset is prepared for modeling by dividing it into training, validation, and test sub-
sets, which constitute 60%, 20%, and 20% of the total data, respectively. A utility function cre-
ate dataset structures the data to make it suitable for time-series prediction using recurrent 
neural networks. The aim is to train the model to predict the data at time “t+1” based on the 
data available at time “t”.

Hyperparameter optimization is a critical step before model training. Optuna is employed 
to search for the best hyperparameters, including the type of RNN layer (SimpleRNN, LSTM, or 
GRU), the number of units in each RNN layer, dropout rates, learning rate, and the optimizer 
type (Adam, RMSprop, or SGD). The objective for Optuna’s optimization is the validation loss, 
with the aim to minimize it.

Once the best hyperparameters are identified, the deep learning model is constructed. This 
model is a deep recurrent neural network with three RNN layers followed by dropout layers for 
regularization and a dense layer for output. The model’s architecture is influenced by the best 
parameters from the optuna search. Furthermore, a learning rate scheduler is incorporated 
which reduces the learning rate by 10% after the initial 10 epochs to enhance the stability of 
training.

Post-training, the model’s performance is assessed using various metrics. Loss curves are 
plotted to visualize the model’s training and validation loss across epochs. The model’s pre-
dictive accuracy on the test set is then evaluated using the Root Mean Squared Error (RMSE), 
R-squared, and the Mean Absolute Error (MAE). To provide a visual comparison between the 
actual and predicted power consumption, plots are generated for two subsets of the test data: 
the first 100 and 1000 data points. 

The equations of RMSE, R2, and MAE are:

(5)

(6)

(7)

Where,  is the actual value
             is the predicted value
             is the mean of the actual values
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Figure 2. Deep Recurrent Neural Network Development Process Flow Chart

The flowchart shows the stages of deep recurrent neural network (RNN) development. As 
discussed above, it begins with data preparation, which includes feature engineering and nor-
malization, followed by an analysis phase that examines the relationships in the data. Then, 
it  moves to model preparation, which includes partitioning the dataset and creating a utility 
function. This is followed by model building, which involves optimizing the hyperparameters 
using tools such as Optuna and designing the model architecture. Model training involves 
tuning the learning rate, evaluating post-training results using loss visualization and accura-
cy metrics, and finally deploying the model and analytically comparing predicted and actual 
results.

Results and Discussion 
Before training model some data were analyzed using correlation heat map and pair plots. 

Correlation heatmaps and pair plots are essential tools in exploratory data analysis, offering a 
visual summary of relationships between variables. Correlation heatmaps display the strength 
and direction of relationships through color-coding, enabling rapid identification of positive-
ly, negatively, or uncorrelated variables. Pair plots, on the other hand, provide both univari-
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ate (through histograms or density plots on the diagonal) and bivariate insights (via scatter 
plots off the diagonal), revealing distributions and patterns of interaction between variables. 
Together, these tools facilitate a quick overview of large datasets, guiding analysts towards 
deeper investigation or highlighting areas for data cleaning. However, it’s crucial to remember 
that correlation doesn’t equate to causation. Figure 2 shows correlation between all features 
of dataset.

Figure 3. Correlation heat map

This correlation heatmap visually represents the relationships between various power con-
sumption or load metrics across different regions. The color-coded matrix ranges from deep 
red, indicating strong positive correlations (values near 1), to deep blue, suggesting strong 
negative correlations (values near -1). The diagonal line from the top left to the bottom right 
signifies a perfect positive correlation, as any metric is always perfectly correlated with itself. 
Overall, the heatmap shows that many regions and metrics have strong positive correlations, 
suggesting that changes in one region or metric often coincide with similar changes in others, 
while a few areas display weak or negative correlations.
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Figure 4. Pair Plots

The pair plot  in Figure 3 provides a visual comparison of the relationships and distribu-
tions among four different power load metrics: ‘P Country load’, ‘P North region load’, ‘P South 
region load’, and ‘P West Region load’. On the diagonal, the histograms show the distribution 
of each metric individually. The other scatter plots reveal the bivariate relationships between 
the metrics. For instance, the relationship between ‘P Country load’ and ‘P North region load’ 
exhibits a clustered pattern, implying specific common trends or groupings. Similarly, other 
plots also demonstrate various patterns or clusters of data points. Some of the metrics appear 
to have stronger linear relationships, while others show more dispersed scatter patterns, hint-
ing at less direct correlations.

Based on this analysis, a Deep recurrent neural network (RNN) model were trained for a 
time series dataset. Initially, the dataset is split into training (60%), validation (20%), and 
testing (20%) sets. A helper function create dataset is defined to format the data for time 
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series forecasting with a specified look_back period. The data is then transformed using this 
function to produce input-output pairs. Subsequently, the model leverages the Optuna library 
for hyperparameter tuning: different RNN architectures (SimpleRNN, LSTM, GRU), number of 
units, dropout rates, learning rates, and optimizers are explored to determine the best model 
configuration. The objective of the tuning is to minimize the validation loss. After identifying 
the best parameters, the optimal RNN model is built and trained for 50 epochs, with a learning 
rate scheduler reducing the rate after 10 epochs. Finally, the training and validation loss is 
visualized over the epochs to assess the model’s performance. 

Figure 5. Loss function graph.

The provided graph in Figure 4 displays the model loss across epochs for both training 
and validation sets. Notably, the training loss sees a rapid decrease in the initial epochs and 
then stabilizes, suggesting a swift learning process. Meanwhile, the validation loss remains 
consistently low, hinting at effective model generalization. Although there’s a discernible gap 
between the training and validation losses, with the former being lower, it’s not alarmingly 
wide. Thus, overfitting doesn’t seem to be a predominant issue, indicating that the model ap-
pears to be performing proficiently on both datasets. 

Also, the model exhibits a fitting performance with an R-squared value of 83.6%, while the 
RMSE of 0.0126 and MAE of 0.0056 indicate the model’s error magnitude, which should be 
assessed relative to the data’s scale, distribution, and the specific application context. 

Finally, Actual vs Predicted plots were designed to visualize the model performance:
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Figure 6. Actual versus Predicted graph.

The Figure 5 illustrates the comparison of actual versus predicted power consumption. 
Both datasets are normalized. While the predicted (in orange) and actual (in blue) trends are 
generally aligned, indicating a reasonably accurate prediction model, there are moments of 
noticeable deviation.After, the predicted values consistently overshoot the actual readings. 
Overall, the prediction model demonstrates a good approximation of actual power consump-
tion with minor discrepancies at certain intervals.

Conclusion 
In conclusion, methodology employed robust techniques ranging from exploratory data 

analysis, feature engineering, normalization, and model training, leading to the development 
of an optimized DRNN model. The correlation heatmap and pair plots were instrumental in un-
derstanding the dataset’s underlying patterns and relationships. These insights, in conjunction 
with DRNN’s innate ability to handle time-series data, provided a solid foundation for model 
training.

The model showcased commendable performance metrics with an R-squared value of 
83.6%, a testament to its accuracy. However, while the RMSE and MAE provided an encourag-
ing picture of the model’s predictive capabilities, there were instances of divergence between 
actual and predicted values, underscoring the need for continuous refinement.

In essence, while DRNNs represent a leap forward from traditional forecasting models, the 
journey towards perfecting them remains ongoing. Their computational intensity and the need 
for large datasets can be hurdles, but the promise they hold, as evidenced by this study, is un-
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deniable. The energy sector stands at the cusp of an era where data-driven insights, powered 
by deep learning, can significantly mitigate risks and guide infrastructural advancements. As 
this study on Kazakhstan’s energy consumption has shown, when appropriately harnessed, 
such models can be a linchpin in ensuring a resilient and efficient energy future. Future re-
search should focus on addressing DRNN limitations and diversifying datasets to enhance 
generalization and accuracy further.
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