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Abstract
Objective: This study aimed to introduce novel techniques for identifying the genes associated with developing 
chronic obstructive pulmonary disease (COPD) and to prioritize COPD candidate genes using regression methods.    

Materials and Methods: This is a secondary analysis of the data from an experimental study. We used penalized 
logistic regressions with three different types of penalties included least absolute shrinkage and selection operator 
(LASSO), minimax concave penalty (MCP), and smoothly clipped absolute deviation (SCAD). The models were 
trained using genome-wide expression profiling to define gene networks relevant to the COPD stages. A 10-fold 
cross-validation scheme was used to evaluate the performance of the methods. In addition, we validate our 
results by the external validity approach. We reported the sensitivity, specificity, and area under curve (AUC) of 
the models.  

Results: There were 21, 22, and 18 significantly associated genes for LASSO, SCAD, and MCP models, respectively. 
The most statistically conservative method (detecting less significant features) was MCP detected 18 genes that were 
all detected by the other two approaches. The most appropriate approach was a SCAD penalized logistic regression 
(AUC= 96.26, sensitivity= 94.2, specificity= 86.96). In this study, we have a common panel of 18 genes in all three 
models that show a significant positive and negative correlation with COPD, in which RNF130, STX6, PLCB1, 
CACNA1G, LARP4B, LOC100507634, SLC38A2, and STIM2 showed the odds ratio (OR) more than 1. However, there 
was a slight difference between penalized methods. 

Conclusion: Regularization solves the serious dimensionality problem in using this kind of regression. More exploration 
of how these genes affect the outcome and mechanism is possible more quickly in this manner. The regression-based 
approaches we present could apply to overcoming this issue. 
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Introduction 
Chronic obstructive pulmonary disease (COPD), a 

progressive inflammatory disorder, that is characterized 
mainly by airway obstruction is predicted to be one of 
the three first death causes worldwide by 2030 (1). The 
disease has exhibited by emphysema, small airway 
obstructions, and chronic bronchitis. Smoking is the 
first-line risk factor in a healthy airway and alveolar 
development background. Some other general risks are 
a history of maternal/paternal asthma, maternal smoking, 
and childhood asthma or respiratory infections. Polluted 
air, second-hand smoke, and malnutrition could also lead 
to COPD in the susceptible population (2).

This complex disease may be influenced by different 

gene interactions (2). The incidence of this disease is 
increasing worldwide. Its mortality rate has shown a 12.3 
% increase from 1990 to 2017, while this rate increased 
to 60 % in 2020 in comparison with 1999 (3). Thus, the 
disease is a global public health challenge with high 
prevalence, mortality, and disability rates, while diagnosis 
is usually based on spirometry results and clinical 
signs with an inability to diagnose recurrences (4). It 
seems that identifying more effective initial diagnostic 
methods based on reliable biomarkers is essential. DNA 
microarrays now permit scientists to screen thousands 
of genes simultaneously and determine whether the 
expression pattern of these genes, changes in tissues, 
particularly pulmonary tissue. So, new analytical methods 
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must be developed to select COPD-related genes (2). 
Since genome-wide association studies (GWAS) 
have shown the different phenotypes or severity of 
COPD are associated with numerous genetic variants 
such as CHRNA3/CHRNA5 (5), HHIP (6), FAM13A, 
and CYP2A6 (7). On the other side, many studies 
have performed expression profiles of COPD-related 
genes, which have screened thousands of different 
expression genes (DEGs) involved in the development 
and progression of the disease. Among these studies, 
due to sample heterogeneity and diagnostic platform 
differences, they did not have very successful results 
and could not help in the correct diagnosis. Therefore, 
the associations between genomics and disease 
incidence and progression could be studied precisely 
through machine-learning techniques (8). Also, 
network medicine has been introduced to facilitate 
the investigations of genomics, transcriptomics, 
proteomics, and other “omics” to cast a more 
elucidating light on the pathogenesis complexity of 
diseases likewise COPD. One of the properties of 
microarray data is that the number of genes (parameter 
number in statistics) exceeds the number of samples 
(number of observations in statistics). They are dealing 
with the situation commonly known as the high 
dimensional dataset. However, logistic regression as 
a highly appropriate classification tool for such high-
dimensional datasets from the microarray technique 
has drawbacks, such as the emergence of irrelevant 
data (9).

Moreover, regression analysis has been established 
to overlook the multicollinearity problem such as the 
strong correlation between two or more genes in the 
regression model. So, overfitting and multicollinearity 
are the most common problems in high-dimensional data 
when applying statistical classification and prediction 
methods (10). Nowadays, researchers update, improve, 
and optimize the techniques such as the least absolute 
shrinkage and selection operator (LASSO), minimax 
concave penalty (MCP), and smoothly clipped absolute 
deviation (SCAD) to introduce statistical learning 
models to overcome this issue. Penalized Logistic 
Regression models represent spares and interpretable 
models in high-dimensional datasets and control the 
multicollinearity (9). There has been no study on the 
omics data integration on COPD to compare these 
approaches.  

Although, LASSO has many excellent properties, it 
is a biased estimator that does not always tend to zero 
as the sample size is increased. The bias of the LASSO 
estimation for a truly non-zero variable is constant even 
for significant regression coefficients. One approach 
to reducing this bias is using the weighted penalty 
approach. If we choose the weights that give lower 
weight to the variables with significant coefficients, 
we can reduce the estimation bias of the LASSO. It is 
the motivation of adaptive the LASSO approaches. The 
SCAD penalty retains the penalization rate (and bias) 

of the LASSO for small coefficients but continuing 
relaxes the rate of penalization as the absolute value of 
the coefficient increases. The idea behind the MCP is 
very similar. In comparison with the SCAD, the MCP 
immediately relaxes the penalization rate, although, 
its rate remains flat before decreasing (11). As, these 
approaches may lead to different results, selecting the 
appropriate one needs to consider various clinical and 
statistical aspects.

Based on the biological perspective, a smaller subset 
of genes  may cause a definite disease (12). Therefore, 
the present study was designed to apply statistical-
learning methods for a better understanding of the 
genetic etiology of COPD affected by the previous 
smoking habits.

Materials and Methods
Ethics declarations

Our project was founded under the Ethical Committee of 
the National Institute for Medical Research Development 
(NIMAD), Tehran, Iran (I.R.NIMAD.REC.1398.115).

Study population and dataset
This is a secondary analysis on an experimental study 

data that used genome-wide expression profiling to define 
gene networks relevant to the COPD stages. The raw 
data of gene expression architecture in the small airway 
epithelium (SAE) of COPD affected was retrieved from 
the Gene Expression Omnibus (GEO) site in the National 
Center of Biotechnology Information (NCBI) database 
(13), with the accession number “GSE22148”, with 
54,675 probes from 143 patients with GOLD stage of 
COPD, from 2 to 4 stages. Genome-wide gene expression 
analysis was performed using Affymetrix Human Genome 
U133 Plus 2.0 array (GPL570) (14).   

The subjects were selected of the evaluation of COPD 
Longitudinally to Identify Predictive Surrogate End-
points (ECLIPSE). We chose a three-year multicenter 
longitudinal study with four specific aims: i. Definition 
of clinically relevant COPD subtypes; ii. Identification 
of parameters that predict disease progression in these 
subtypes; iii. Examination of biomarkers that correlate 
with COPD subtypes and may predict disease progression; 
and iv. Identification of novel genetic factors and/or 
biomarkers that both correlate with clinically relevant 
COPD subtypes and predict disease progression (15). 
Totally, the gene arrays on 140 subjects passed the quality 
control criteria (69 GOLD stage II and 71 GOLD stages 
III/IV) which we entered in our study. More details about 
this database and data gathering were published elsewhere 
(14).

Normalization and filtering of primary probes
At first, the data was transformed according to the 

logarithmic scale 2 for better distribution. The "sva" and 
"affy" packages were used respectively for removing 
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batch effects and other unwanted variations in data and 
for statistical comparisons. Also, the standardization and 
normalization in the "limma" package were performed. 
In addition, differential analysis of gene expression data 
was conducted using the adjusted P value based on the 
Benjamini-Hochberg-FDR correction at α=0.05. The 
penalized regression approaches shrink the coefficients 
to zero and eliminate the unrelated features. Therefore, 
the large dimensionality is not mattering further, and 
the P value of the adjusted model effectively reports 
the statistically significant. All statistical analyses were 
performed using R version 3.5.2.

LASSO, MCP, and SCAD logistic regressions

The LASSO regression uses the absolute value of 
the magnitude of the coefficient as a penalty term 
and hence provides an automatic gene selection. The 
penalty-based models tend to shrink the coefficients of 
correlated variables toward each other, which is suitable 
for multicollinearity and grouped selection. However, 
the LASSO penalty is indifferent to choose a set of solid 
but correlated variables. Therefore, LASSO is good for 
simultaneous estimation and eliminating trivial genes, 
but not for grouped selection. However, it is known that 
LASSO requires rather stringent conditions on the design 
matrix to be variable selection consistent (9).

Non-convex penalized high-dimensional regression 
has recently received considerable attention, especially 
for identifying the unknown sparsity pattern. Fan and Li 
recommended the SCAD penalty, which enjoys the oracle 
property for variable selection. The zero coefficients can 
be estimated as an exact zero with probability approaching 
one and estimate the non-zero coefficients as efficiently as 
if the actual sparsity pattern is known in advance (16).

Zhang (17) proposed the MCP penalized regression 
and devised a novel algorithm that, when used together, 
can achieve the oracle property under certain regularity 
conditions. The mentioned logistic classifiers were done 
by "ncvreg" R packages.

Cross-validation, stability, and accuracy  
The K-fold Cross-Validation scheme (K-CV), a common 

technique, evaluates the classifier performance. The K-CV 
estimation of the error is the average value of the errors 
committed in each fold. Thus, the K-CV error estimator 
depends on the training set and the partition into folds 
(18). In the present study, the algorithms split the data set 
by using 100 times repeated random sub-sampling in 10-
fold cross-validation, permuting the sample labels every 
time. The cross-validated performance is summarized 
by observing sensitivity and specificity and the Youden 
index. Furthermore, the receiver operator characteristic 
(ROC) curve and its area under curve (AUC) was used 
to calculate the accuracy of classifier performance. We 
used the "cv.ncvreg" and "roc" function in the "ncvreg" 
and "pROC" R packages for K-CV and ROC analysis, 

respectively.

Interactive cluster heatmap
A heatmap is a popular graphical method for visualizing 

high-dimensional data. Rows and columns are sorted 
using a hierarchical clustering technique. The interactive 
cluster heatmap was applied by the “heatmap” R package. 

External validity
We used completely independent data to explore the 

external validity of the findings. This data is available 
online with accession number “GSE20257” on the 
NCBI database. We fitted to the regression models to 
this data and a test data set. The sensitivity, specificity 
and AUC of each model were calculated to predict the 
COPD stages. 

Results
Differential analysis of genes expression data

Differential analysis was performed on the array 
expression profiling of 54675 probes. The expression 
profiling of 140 patients at the GOLD stages 2-4 
COPD was used in this study. The differential expression 
analysis results showed significant expressions for the 
top 250 genes after adjusting P values by the Benjamini-
Hochberg-false discovery rate (FDR) correction at α 
=0.05 and the logarithm of fold change (Table S1, See 
Supplementary Online Information at www.celljournal.
org). In addition, the visualize quality control test results 
include the volcano plot (P value logarithm vs. fold 
change logarithm) and MD plot (fold change logarithm 
vs. mean logarithm of expression) are presented in 
Figure S1 (See Supplementary Online Information at 
www.celljournal.org).

Gene selection and model validation

All the genes normalized expression and 20 surrogate 
variables entered the logistic regression models. The 
tuning parameter of Lambda was set according to 
the minimization of cross-validation errors in each 
approach. This study identified 23 significant genes 
associated with COPD progression based on all three 
logistic regression models, while 18 of them were 
observed in all three models, and 9 of them, RNF130, 
PLCB1, CACNA1G, LARP4B, CALD1, TMEM182, 
PARD3B, PELP1, and RPIA, were positively 
correlated. These genes were the most significantly 
regulated novel genes selected based on the Z scores and 
may represent novel biomarkers in COPD prognosis. 
In this way, the LASSO model minimized the cross-
validation error when we entered 21 features. The 
minimum values were achieved at 22, and 18 selected 
genes for SCAD and MCP approach (Fig.1). The Venn 
diagram shows all the 18 genes detected by the MCP 
approach overlap in all three models, and 20 overlap 
only between SCAD and LASSO models (Fig.2). 
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Fig.1: Cross-validation error and the selected number of features in 
LASSO, SCAD, and MCP for different values of the tuning parameter. 
LASSO; Least absolute shrinkage and selection operator, SCAD; Smoothly 
clipped absolute deviation, and MCP; Minimax concave penalty.

Fig.2: The Venn diagram of overlapping between 3 different regularization 
methods. LASSO; Least absolute shrinkage and selection operator, SCAD; 
Smoothly clipped absolute deviation, and MCP; Minimax concave penalty.

The list of the selected genes for each model is 
presented in Table 1. Among 21 genes in the LASSO 
approach, 12 of them negatively correlate with the 
outcome. Therefore, higher expressions of these genes 
were more likely for individuals in moderate stages of 
COPD patients. All the models confirm these negative 
associations. The STX6 presents the highest significant 
positive association in the LASSO model, with the 
odds ratio (OR) equal to 1.63. This gene is placed in 
the second importance rank with the OR of 1.65 in 
comparison with RNF130 with OR 1.69 in the SCAD 
approach. The SCAD pattern is repeated in the MCP 
approach, and the ORs for RNF130 and STX6 are 1.76 
and 1.72, respectively.

The ROC curves of the models are presented in 
Figure 3. The AUC values are 95.61, 96.26, and 96.37 
for LASSO, SCAD, and MCP models. In addition, the 
MCP, both sensitivity and specificity, are 89.86. Also, 
the specificity of LASSO is 85.51, and the corresponding 
value for SCAD is 86.96. It means that the extra genes 
were detected by the LASSO and SCAD approach are 
more relevant to detecting severe patients than moderate 
stage ones. All the second-order interactions between 
genes were explored in the final models, and none were 
significant. Therefore, we only report the main effects in 
Table 1.

Fig.3: The ROC curves for logistic regressions using LASSO, SCAD, and 
MCP regularization. ROC; Receiver operator characteristic, LASSO; Least 
absolute shrinkage and selection operator, SCAD; Smoothly clipped 
absolute deviation, and MCP; Minimax concave penalty.
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Table 1: Results of gene selection by LASSO, SCAD, and MCP logistic regression

Gene symbol Gene title LASSO SCAD MCP

Estimate OR (95% CI) Adj P Estimate OR (95% CI) Adj P Estimate OR (95% CI) Adj P

LOC100507634 Uncharacterized 
LOC100507634

0.16 1.17 (1.04-1.32) 5.20E-05 0.19 1.21 (1.05-1.4) 5.20E-05 0.23 1.26 (1.06-1.49) 5.20E-05

LINC00693 Long intergenic 
non-protein coding 
RNA 693

-2.41 0.09 (0.02-0.38) 0.0105 -2.68 0.07 (0.01-0.35) 0.0105 -3.13 0.04 (0.01-0.29) 0.0105

TAF15 TATA-box binding 
protein associated 
factor 15

-0.79 0.45 (0.28-0.75) 7.78E-05 -0.91 0.4 (0.22-0.72) 7.78E-05 -0.9 0.41 (0.23-0.73) 7.78E-05

CACNA1G Calcium voltage-
gated channel 
subunit alpha1 G

0.19 1.21 (1.05-1.39) 0.000203 0.27 1.31 (1.07-1.6) 0.0002 0.3 1.34 (1.08-1.69) 0.000203

UCP2 Uncoupling protein 
2

-0.06 0.94 (0.9-0.98) 7.21E-06 -0.05 0.95 (0.92-0.99) 7.21E-06 - -

NR2F1 Nuclear receptor 
subfamily 2 group F 
member 1

- - -0.02 0.98 (0.96-1) 0.00499 - -

CALD1 Caldesmon 1 -0.05 0.95 (0.92-0.99) 2.04E-05 -0.08 0.92 (0.87-0.98) 2.04E-05 -0.01 0.99 (0.98-1) 2.04E-05

RPIA Ribose 5-phosphate 
isomerase A

-1.61 0.2 (0.09-0.46) 6.05E-06 -1.73 0.18 (0.07-0.44) 6.05E-06 -2.08 0.12 (0.04-0.36) 6.05E-06

PLCB1 Phospholipase C 
beta 1

0.28 1.32 (1.1-1.59) 1.07E-05 0.31 1.37 (1.1-1.68) 1.07E-05 0.32 1.38 (1.11-1.71) 1.07E-05

PELP1 Proline, glutamate 
and leucine rich 
protein 1

-1.02 0.36 (0.2-0.64) 5.43E-06 -0.95 0.39 (0.22-0.67) 5.43E-06 -0.81 0.44 (0.27-0.73) 5.43E-06

SLC38A2 Solute carrier family 
38-member 2

0.08 1.08 (1.02-1.15) 6.40E-06 0.11 1.12 (1.03-1.21) 6.40E-06 0.04 1.04 (1.01-1.07) 6.40E-06

ESYT2 Extended 
synaptotagmin 2

0.04 1.04 (1.01-1.07) 2.99E-06 - - - -

STIM2 Stromal interaction 
molecule 2

-0.01 0.99 (0.98-1) 0.000307 -0.1 0.9 (0.84-0.98) 0.00031 -0.1 0.9 (0.84-0.98) 0.000307

EPC1 Enhancer of 
polycomb homolog 
1

0.1 1.1 (1.03-1.18) 1.22E-05 0.14 1.15 (1.04-1.27) 1.22E-05 - -

LAMA1 Laminin subunit 
alpha 1

-0.4 0.67 (0.53-0.85) 3.17E-06 -0.44 0.64 (0.49-0.84) 3.17E-06 -0.43 0.65 (0.5-0.85) 3.17E-06

RNF130 Ring finger protein 
130

0.56 1.74 (1.27-2.42) 4.12E-07 0.52 1.69 (1.22-2.31) 4.12E-07 0.57 1.76 (1.25-2.5) 4.12E-07

AMOTL1 Angiomotin like 1 -1.76 0.17 (0.07-0.42) 1.96E-05 -1.67 0.19 (0.08-0.45) 1.96E-05 -1.89 0.15 (0.06-0.4) 1.96E-05

TMEM182 Transmembrane 
protein 182

-0.41 0.67 (0.51-0.87) 0.0226 -0.4 0.67 (0.51-0.88) 0.0226 -0.3 0.74 (0.6-0.91) 0.0226

PARD3B Par-3 family cell 
polarity regulator 
beta

-0.69 0.5 (0.31-0.8) 0.0902 -0.99 0.37 (0.19-0.73) 0.0902 -1.1 0.33 (0.16-0.7) 0.0902

LARP4B La ribonucleoprotein 
domain family 
member 4B

0.19 1.2 (1.06-1.39) 0.0014 0.22 1.25 (1.06-1.47) 0.0014 0.16 1.18 (1.04-1.32) 0.0014

CARD8-AS1 CARD8 antisense 
RNA 1

- - 0.02 1.02 (1-1.04) 0.00046 - -

STX6 Syntaxin 6 0.49 1.63 (1.2-2.22) 6.47E-05 0.5 1.65 (1.19-2.29) 6.47E-05 0.55 1.72 (1.21-2.48) 6.47E-05

PRDX2 Peroxiredoxin 2 -0.5 0.61 (0.45-0.81) 0 -0.53 0.59 (0.43-0.81) 0 -0.6 0.55 (0.38-0.78) 0

Sensitivities 92.75 94.2 89.86

Specificities 85.51 86.96 89.86

Youden index 78.26 81.16 79.71

AUC (95% CI) 95.61 
(92.68-
95.61)

96.26 
(93.59-
96.26)

96.37 
(93.79-
96.37)

LASSO; Least absolute shrinkage and selection operator, SCAD; Smoothly clipped absolute deviation, MCP; Minimax concave penalty, OR; Odds ration, CI; 
Confidence interval, Adj P; Adjusted P values, and AUC; Area under the curve.
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Finally, The Spearman’s rank correlation, co-expression 
matrix between the selected genes and heatmap for 
hierarchical clustering of the twenty-three candidate genes 
based on their gene expression pattern was presented in 
Figure 4.

Fig.4: Spearman’s rank correlation, co-expression matrix between the 
selected genes: heatmap of hierarchical clustering, the twenty-three 
candidate genes based on their gene expression pattern.

The predictive power of the model was evaluated in the 
test dataset (Table 2). According to our findings, the MCP 
model predicts 75% of cases (higher stage) and 67% of 
non-cases (lower stage) correctly on the test data.

Table 2: Predictive power of genes in test data

Criteria LASSO SCAD MCP

Sensitivities 83.33 83.33 75.00

Specificities 44.44 44.44 66.67

LASSO; Least absolute shrinkage and selection operator, SCAD; Smoothly 
clipped absolute deviation, and MCP; Minimax concave penalty.

Discussion 
In this study, the highest positive correlation with 

COPD in all three models was related to RNF130, an E3 
ubiquitin ligase RING finger (RNF) protein with high 
levels of similarity to human GRAIL protein. This protein 
degrades CD3ζ in response to T-cell receptor (TCR) 
activation and is reported as a negative regulator of TCR 
signalling (19). On the other hand, it has been reported 
that tumor-adjacent and COPD lungs show a higher T cell 
density than the lungs of healthy donors, reflecting the 
inflammation in these patients (20). Therefore, reducing 

the expression level of RNF130 can lead to more activity 
of T cells and more inflammation and tissue damage in 
the lungs. Hence, examining the RNF130 expression level 
can help in COPD process identification in early step.

Moreover, the phospholipase C beta (PLCB) class of 
phospholipases comprises four isozymes (B1-B4) that 
showed an association with several inflammatory diseases 
and cancers. It has been shown that PLCB1, one of the 
responsible genes for PLCB phospholipases, is highly 
expressed by neuronal tissue and plays a substantial role 
in the stimulation of neuroendocrine growth factors that 
promote the progression of small cell lung carcinoma 
by increasing the proliferation of tumour cells (21) and 
significantly associated with poor overall survival (O.S.) 
of lung adenocarcinoma (22). It has also been shown 
that PLCB1 plays a role in endothelial inflammation, 
inhibiting the effect of lipopolysaccharide-induced 
endothelial cell inflammation with varying degrees of 
proinflammatory cytokine expression (23). We also 
observed that the expression of PLCB1 positively 
correlated with COPD. It seems that the expression of 
PLCB1 can be used as an informative early gene in the 
early detection of inflammatory disease and eventually 
lung cancer. In addition, Calcium voltage-gated channel 
subunit alpha1 G (CACNA1G) expressed significantly 
higher in the non-small cell lung cancer (NSCLC) tissues 
or cell lines than that in para-carcinoma normal tissues or 
cells and was relative to more lymph node metastasis and 
distant metastasis and epithelial-mesenchymal transition 
(EMT) (24). In addition, the RNA-binding protein la 
ribonucleoprotein 4B (LARP4B) has a la motif (lam) 
that allows it to participate in posttranscriptional control 
of RNA and play an important role in translation. It has 
been shown that LARP4B mRNA is highly expressed 
in liver cancer tissue and was correlated with survival 
status, where genes involved in the G2M checkpoint, E2F 
targets, and mitotic spindle were differentially enriched 
(25). Also, Caldesmon 1 gene (CALD1), as the unique 
gene of the MCP regression model, is a novel gene 
associated with both overall and disease-free survival in 
bladder cancer patients (26), diabetic nephropathy (27), 
and glioma neovascularization. Furthermore, it has been 
shown that the oncogenic activity of the TNF-α/miR-
450a/TMEM182 axis is primarily through activating 
the extracellular signal-regulated kinase 1/2 (ERK1/2) 
signaling pathway, which was first discovered in cancer 
cells, and drugs that reverse the signaling are being 
investigated as cancer treatments. It has been revealed 
that ERK1/2 inhibitor prevented the TNF-α-induced miR-
450a expression and enhanced adhesion ability which 
seems that TNF-α-induced ERK1/2-dependent miR-450a 
against TMEM182 expression exerts a great influence on 
increasing oral squamous cell motility (28) which may 
result in metastasis of cancer cells. The par-3 family cell 
polarity regulator beta (PARD3B) is highly expressed in 
the kidney, lung, and skeletal muscle, and is localized at 
tight junctions with tight junction protein ZO-1. Recently, 
it has been revealed that PARD3B binds to the tumor 
suppressor protein Lkb1 and suppresses its kinase activity, 
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whereas ablation of PARD3B causes rapid and profound 
stem cell loss that is vital for mammary gland stem cell 
maintenance (29). Therefore, it seems that increasing 
the expression of partitioning defective 3 homolog B 
(PARD3B) may lead to increased proliferation of lung 
stem cells and gradually the incidence of lung cancer. 
PELP1 is an active member of this pathway, closely 
related to cancer metastasis reported in the lung cancer. It 
has been shown that PELP1 transcript and protein levels 
in tumor tissues compared to adjacent pathologically 
unchanged tissues are significantly increased in all 
patients, which correlated with lung cancer stages (I/
II stages), tumor size, and lymph node metastasis (30). 
It has also has been reported that PELP1 dysregulates 
in the non-small cell lung carcinoma, especially in lung 
adenocarcinoma, which significantly positively correlated 
with more minor differentiated features of carcinoma 
cells, positive lymph node metastasis, higher clinical 
stage as well as the status of ERα, ERβ, and PCNA (22). 
In other words, it can be said that since the PELP1 gene 
represents the adverse clinical outcome of lung cancer 
patients, examining PELP1 expression in COPD can give 
a reasonable prognosis of the disease process. Ribose-5-
phosphate isomerase A (RPIA) is an important integral 
member of the PPP and regulates cancer cell growth 
and tumorigenesis in pancreatic ductal adenocarcinoma 
(PDAC) and hepatocellular carcinoma (HCC) (31). It has 
been reported that in the RPIA is significantly up-regulated 
in the CRC tissue, and it is expressed at multiple stages 
of tumorigenesis, including early stages. It has also been 
shown that RPIA increases the expression of β-catenin 
and its target genes, and induces tumorigenesis in gut-
specific promoter-carrying RPIA transgenic zebrafish in 
which RPIA enters the nucleus and stabilizes β-catenin 
activity (32). Since this process could be one of the first 
events in the cancer progression, hence it seems that RPIA 
can be used as an important marker in early detection of 
cancer. It is worth noting that above mention genes are not 
previously detected in COPD studies and because they all 
play a role in the inflammatory cycle and cancer, they may 
represent novel biomarkers in the diagnosis or prognosis 
of COPD. 

On the other hand, in this study, we have a panel of 
genes that show a significant negative correlation 
with COPD, which includes STX6, LOC100507634, 
SLC38A2, STIM2, LAMA1, PRDX2, TAF15, AMOTL1, 
and LINC00693. In this regard, studies showed that STX6 
is involved in diverse cellular functions in various cell 
types and has been shown to regulate many intracellular 
membrane trafficking events such as endocytosis, 
recycling, anterograde and retrograde trafficking. The 
oncogenic roles of STX6 in the progression of esophageal 
squamous cell carcinoma (ESCC) are established, and 
it might be a valuable target for ESCC therapy (33). 
Moreover, an epigenome-wide association study (EWAS) 
found that STX6 may be one of the genes associated 
with atopic asthma. They also reported that STX6 might 
have a role in the methylation process seen in this disease 
(34). The STX6 may have a role in regulating neutrophil 

secondary granule exocytosis and stimulating cells by 
Ca2+. This role may influence the inflammatory process 
that obstructs airways in the COPD. Also, the only report 
for the solute carrier family 38 members 2, SLC38A2, 
has been reported that the mRNA expression levels of the 
solute carrier were higher in the tumour lung than in the 
healthy lung (35), the mechanism of which is unknown.

Moreover, Stromal interaction molecules, STIM2, 
as the unique gene of the LASSO regression model, 
regulates store-operated calcium (Ca2+) entry and basal 
cytoplasmic Ca2+ levels in human cells. As is known, E2 
exposure inhibits STIM1 translocation in airway epithelia, 
and prevents SOCE. The E2 can signal non gnomic by 
inhibiting basal phosphorylation of STIM1, and STIM2, 
leading to a reduction in SOCE (36). Another study showed 
that STIM1 and STIM2 were significant as up-regulated 
genes versus healthy controls and healthy smokers 
(37). On the other hand, haplotype-based computational 
genetic analysis and gene expression profiling of lung 
tissue obtained from fibrosis-susceptible and -resistant 
mouse models identified LAMA1 as a genetic modifier 
of susceptibility to pulmonary fibrosis. The LAMA1 
gene is a genetic modifier of TGF-β1 effector responses, 
such as macrophage activation, fibroblast proliferation, 
myofibroblast transformation, and the extracellular matrix 
production that significantly affects the development 
of pulmonary fibrosis (38). Therefore, it seems that 
the study of the LAMA1 gene can give us a reasonable 
prognosis of the COPD process. Also, AMOTL1 via the 
activation of LKB1/AMPK signalling and IFN-γ-induced 
hyperpermeability of cultured human lung microvascular 
endothelial cells by maintaining the levels of AMOTL1 is 
related to lung function. Angiomotin Like AMOTL1 and 
caldesmon, one has a role in involvement in Adhesion and 
Cell Motility in lung airway and alveolar and may have a 
role in the obstruction of the airway by a problem in the 
expulsion of produced mucosa and destruction of alveolar 
walls or spasm in small airways. The STIM2 and AMOTL1 
were selected as the essential genes in this study to reveal 
these genes as a novel target in treating COPD (36).

COPD is a progressive health problem accompanied by 
dyspnea, cough, and sputum production. Two mechanisms 
cause dyspnea: i. Alveolar cell destruction and the 
inability of the alveolar wall to maintain its structure 
and decrease available respiratory gases exchange 
surface area, and ii. Inflammation of the airways that 
causes narrowing of small airways, and this can result in 
a problem with the passing of air in the small airways. 
Several molecular pathophysiology pathways induce 
similar clinical symptoms and signs, such as limitations 
in pulmonary function and caught. The studies showed 
that chronic inflammation and increased oxidative stress 
by smoking might have a role in the COPD progression. 
The inflammatory cells could release mediators, such as 
proteases and cytokines; these mediators may contribute 
to tissue remodeling. Chemoattractant factors and 
chemokines attract other inflammatory cells to pulmonary 
tissue, including epithelial and proinflammatory cytokines, 
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chemokines, and other mediators (2).
It seems that two main mechanisms participate in the 

COPD development, and several genes may be involved 
in these processes. The first mechanism is oxidative stress 
and the response of immune cells such as neutrophils, 
CD4, and CD8 lymphocytes and macrophages, which 
have an essential role in this inflammatory process.  It 
is reported that macrophage 5-10 times increased in the 
airways, lung parenchyma, BAL fluid, and sputum in 
patients with COPD (2). Gens such as AMOTL1, Syntaxin 
6, and PRX2 may have a role in inflammation or oxidative 
stress response. Some other genes, such as Cacna1g and 
smooth muscles, exist in small airways. Some genes, such 
as CALD1, may have a role in cell members maintenance 
and may destroy alveolar walls. Furthermore, these genes 
may induce another mechanism such as production of 
glycoproteins and amyloids that help obstruct the small 
airways. On the other hand, genes such as PELP1, LAMA1, 
and RNF130 are associated with increased inflammation, 
metastasis, TCR down-regulation, and lung cancer, giving 
us a reasonable prognosis for the COPD process.

Conclusion
Differential analysis of gene expression data can reduce 

the number of possible genes for further exploration. 
Regularization solves the serious dimensionality problem 
in using this kind of regression. More exploration of 
how these genes affect the outcome and mechanism is 
possible more quickly in this manner. The regression-
based approaches we present could apply to overcoming 
this issue. However, it should be considered that most 
of the mentioned genes do not have supporting data in 
experimental studies of lung inflammation and cancer, 
and they need to be validated in such investigations.  
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