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1. Introduction
Pyrrolo[1,2-a]quinoxaline is a valuable scaffold ubiquitously 

utilised in biological studies and in synthesis of functional 
materials [1-3]. Thus, numerous methods have been developed, 
specifically those for the synthesis of 4-aryl pyrrolo[1,2-a]
quinoxalines. For example, the synthesis of fused N,N-
heterocycles from 1-(2-aminoaryl)pyrroles have been extensively 
reported. Recently, using more upstream starting materials such 
as 1-(2-nitroaryl)pyrroles has witnessed substantial emergence. 
Annulation of those nitroarenes with a benzyl synthon including 
benzyl amines [4], arylacetic acids [5], aromatic aldehydes [6], 
alcohols [7], and 1,2-diols [8] to yield substituted pyrrolo[1,2-a]
quinoxalines is also known. Some methods feature the benefit 
of using metal-free tactics [4, 7]. Meanwhile, transition metal 
complexes have been utilised to convert arylacetic acids and 
1,2-diols to the corresponding pyrrolo[1,2-a]quinoxalines [5, 8]. 
Notably, coupling of 1-(2-nitroaryl)pyrroles with amino acids such 
as derivatives of phenylglycine has also been reported.

The oxidation of benzylic C-H bonds in phenylglycine 
derivatives for the synthesis of N-heterocycles has been 
precedented. One stand-alone method was presented by M. Kumar, 
et al. (2015) [9], where the annulation of 2-nitrobenzonitriles and 
phenylglycines successfully yielded quinazolinones. In this report, 
the authors proposed the redox conversion of phenylglycine and 

2-nitrobenzonitrile to benzaldehyde and 2-aminobenzonitrile, 
respectively, in the presence of an iron(III) catalyst and potassium 
carbonate base. We envisaged that those redox transformations 
could be leveraged to couple 1-(2-nitroaryl)pyrroles with 
phenylglycines. Herein, we report a method affording 4-aryl 
pyrrolo[1,2-a]quinoxalines from 1-(2-nitroaryl)pyrroles and 
phenylglycines as the benzyl equivalence. The reactions utilised 
an Fe(acac)3 (acac = acetylacetonate) catalyst and K2CO3 base, 
while showing good tolerance of functional groups.

2. Experiments
Organic chemicals and metal salts were commercially 

obtained from Acros, Aldrich, Energy chemicals, and 
Bidepharm, and were used as received unless otherwise 
noted. The synthesis of 1-(2-nitroaryl)pyrroles followed 
known procedures reported in previous studies [10, 11]. A 
typical reaction was run in an 8-ml vial equipped with a 
magnetic stir bar. During the study of reaction conditions, 
yields were Gas chromatography (GC) yields obtained from 
a Shimadzu GC2010-Plus equipped with a flame ionisation 
detector (FID) and an SPB-5 column, with diphenyl ether as 
the internal standard. Nuclear magnetic resonance spectra 
(1H-NMR and 13C-NMR) were recorded on Bruker AV 500 
or 600 spectrometers.
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Characterization of the annulation products was as follows:

4-Phenyl pyrrolo[1,2-a]quinoxaline (3aa): 1H NMR (500 
MHz, CDCl3, ppm) δ 8.10 (dd, J=7.8, 1.5 Hz, 1H), 8.02-7.99 
(m, 3H), 7.88 (dd, J=7.9, 1.4 Hz, 1H), 7.57-7.50 (m, 4H), 7.45 
(dd, J=7.8, 1.4 Hz, 1H), 7.00 (dd, J=4.2, 1.3 Hz, 1H), 6.89 (dd, 
J=4.1, 2.7 Hz, 1H). 13C NMR (126 MHz, CDCl3, ppm) δ 154.4, 
138.4, 136.5, 130.2, 129.8, 128.8, 127.5, 127.3, 125.5, 125.3, 
114.8, 114.1, 113.9, and 108.9.

4 - ( 3 - ( Tr i f l u o r o m e t h y l ) p h e n y l ) p y r r o l o [ 1 , 2 - a ]
quinoxaline (3ab): 1H NMR (600 MHz, CDCl3, ppm) 
δ 8.30 (s, 1H), 8.21 (d, J=7.7 Hz, 1H), 8.05 (dd, J=8.0, 
1.4 Hz, 1H), 8.03 (dd, J=2.7, 1.2 Hz, 1H), 7.90 (dd, 
J=8.2, 1.2 Hz, 1H), 7.79 (d, J=7.8 Hz, 1H), 7.68 (t, J=7.8 
Hz, 1H), 7.58-7.53 (m, 1H), 7.51-7.46 (m, 1H), 6.96 
(dd, J=4.0, 1.2 Hz, 1H), 6.93 (dd, J=4.0, 2.7 Hz, 1H). 13C NMR 
(126 MHz, CDCl3, ppm) δ 152.9, 139.3, 136.2, 132.0, 131.2 
(q, J=32.3 Hz), 130.5, 129.3, 128.1, 127.3, 126.6 (q, J=3.4 
Hz), 125.7 (q, J=3.8 Hz), 125.6, 125.2, 124.2 (q, J=270.7 Hz), 
115.1, 114.4, 113.9, and 108.5.

7-Methyl-4-(naphthalen-1-yl)pyrrolo[1,2-a]quinoxaline 
(3bc): 1H NMR (600 MHz, CDCl3, ppm) δ 8.02-7.98 (m, 
3H), 7.94 (d, J=8.2 Hz, 1H), 7.89 (d, J=0.7 Hz, 1H), 7.84 (d, 
J=8.4 Hz, 1H), 7.80 (dd, J=7.0, 1.1 Hz, 1H), 7.61 (dd, J=8.2, 
7.1 Hz, 1H), 7.51 (dd, J=8.0, 6.8, 1.0 Hz, 
1H), 7.43-7.38 (m, 2H), 6.80 (dd, J=4.0, 
2.7 Hz, 1H), 6.55 (dd, J=4.0, 1.3 Hz, 1H), 2.53 (s, 3H). 13C 
NMR (151 MHz, CDCl3, ppm) δ 154.8, 136.2, 135.6, 135.3, 
134.1, 131.7, 130.2, 129.6, 129.0, 128.4, 127.1, 127.0, 126.5, 
126.2, 125.9, 125.3, 125.2, 114.5, 113.8, 113.6, 108.8, and 21.3.

7 - M e t h y l - 4 - ( t h i o p h e n - 2 - y l ) p y r r o l o [ 1 , 2 - a ]
quinoxaline (3bd): 1H NMR (600 MHz, CDCl3, ppm) 
δ 7.95 (dd, J=3.7, 1.1 Hz, 1H), 7.93 (dd, J=2.7, 1.3 Hz, 
1H), 7.80 (d, J=0.7 Hz, 1H), 7.72 (d, J=8.3 
Hz, 1H), 7.53 (dd, J=5.1, 1.1 Hz, 1H), 
7.29 (ddd, J=8.3, 1.9, 0.5 Hz, 1H), 7.25 
(dd, J=4.1, 1.3 Hz, 1H), 7.22 (dd, J=5.1, 3.7 
Hz, 1H), 6.90 (dd, J=4.1, 2.7 Hz, 1H), 2.49 (s, 3H). 13C NMR 
(151 MHz, CDCl3, ppm) δ 147.4, 142.7, 135.9, 135.2, 129.8, 
128.7, 128.2, 127.8, 125.0, 124.1, 114.6, 113.9, 113.4, 107.7, 
21.2.

7-Methyl-4-(pyridin-2-yl)pyrrolo[1,2-a]quinoxaline 
(3be): 1H NMR (600 MHz, CDCl3, ppm) δ 8.80 
(ddd, J=4.8, 1.8, 0.9 Hz, 1H), 8.41 (dt, J=7.9, 1.0 
Hz, 1H), 7.96 (dd, J=2.7, 1.3 Hz, 1H), 
7.88 (td, J=7.8, 1.8 Hz, 1H), 7.86 (d, J=0.7 
Hz, 1H), 7.77 (d, J=8.3 Hz, 1H), 7.73 (dd, 
J=4.0, 1.3 Hz, 1H), 7.40 (ddd, J=7.5, 4.8, 
1.2 Hz, 1H), 7.34 (ddd, J=8.4, 1.9, 0.4 Hz, 
1H), 6.93 (dd, J=4.0, 2.7 Hz, 1H), 2.51 (s, 
3H). 13C NMR (151 MHz, CDCl3, ppm) δ 156.7, 151.3, 149.0, 
136.7, 135.8, 135.0, 130.3, 129.3, 125.7, 124.8, 124.3, 123.5, 
114.3, 114.2, 113.5, 110.4, 21.2.

3. Results and discussion

Our study started with the annulation of 1-(2-nitrophenyl)-
1H-pyrrole (1a) and 2-phenylglycine (2a) to yield 4-phenyl 
pyrrolo[1,2-a]quinoxaline (3aa). Results of the brief 
optimisation are presented in Table 1. The first condition was 
nearly identical to that reported by M. Kumar, et al. (2015) 
[9]. The annulation product was obtained in 45% (GC) yield 
(entry 1). Anions of iron salts were pivotal to successful 
annulation (entries 2 and 3). The results showed that Fe(acac)3 
gave the most reasonable yield of 3aa. Potassium carbonate 
was superior to salts of other alkali metals (entries 4 and 5). 
The use of polar aprotic solvents such as dimethylformamide 
(DMF) and dimethyl sulfoxide (DMSO) was not suitable for 
the annulation (entries 6 and 7). Those results agreed with those 
previously using potassium carbonate for decarboxylation 
and deamination of phenylglycine [9, 12]. Lastly, omitting 
the presence of iron salt gave trace amounts of 3aa (entry 
8), confirming the crucial role of the iron(III) salt. It should 
be noted that unreacting 1-(2-nitrophenyl)-1H-pyrrole 1a, 
together with the reduced product 1-(2-aminophenyl)pyrrole 
could be recovered after the reactions.
Table 1. Study of reaction conditions.

N

NO2

+
HOOC Ph

NH2

1a 2a

FeCl3
 (10 mol%)

K2CO3
 (3 equiv)

toluene, 130 °C N

N

Ph
3aa

Entry Changes from standard conditionsa Yield of 3aa (%)

1 None 45

2 Fe(acac)3 instead of FeCl3 57, 52b

3 Fe(NO3)3.9H2O instead of FeCl3 15

4 Entry 2, Na2CO3 instead of K2CO3 50

5 Entry 2, Cs2CO3 instead of K2CO3 55

6 Entry 2, DMF instead of toluene 32

7 Entry 2, DMSO instead of toluene 28

8 No iron salt trace

a: standard conditions: 1a (0.1 mmol), 2a (0.2 mmol), FeCl3 (0.01 mmol), 
K2CO3 (0.3 mmol), toluene (0.5 ml), 130oC, under air, 24 hours; yields 
are GC yields; b: isolated yield. 

With the reaction conditions in hand, we next 
investigated the scope of (α-amino)arylacetic acids. The 
results are shown in Fig. 1. Notably, the use of electron-poor 
phenylglycines still afforded pyrrolo[1,2-a]quinoxaline in a 
moderate yield (3ab). This result somewhat indicated that 
the decarboxylation and deamination was slowed down 
by electron-poor phenylglycines [9]. Sterically hindered 
phenylglycine was compatible with reaction conditions 
(3bc). (α-amino)heteroarylacetic acids were competent 
substrates (3bd, 3be). 
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N

N

CF3

3ab, 47%

N

N

3bc, 50%

Me N

N

R'Me

R' = 2-thiophenyl, 3bd, 42%
R' = 2-pyridyl, 3be, 48%

N

NO2

+
HOOC R

NH2
Fe(acac)3

 (10 mol%)

K2CO3
 (3 equiv)

toluene, 130 °C N

N

R
ArAr

Fig. 1. Scope of (α-amino)arylacetic acids. Reaction conditions: 
1-(2-nitroaryl)-1H-pyrroles (0.1 mmol), (α-amino)arylacetic acid (0.2 
mmol), Fe(acac)3 (0.01 mmol), K2CO3 (0.3 mmol), toluene (0.5 ml), 
130oC, 24 hours. Yields are isolated yields.

At this moment, we hypothesised a plausible mechanism as 
that shown in Fig. 2 [9]. 2-Phenylglycine (2a) would undergo a 
decarboxylative/deaminative sequence to afford benzaldehyde 4 
[13, 14]. Consequently, phenylglycine could be considered as the 
benzaldehyde equivalence in a Pictet-Spengler-type annulation. 
Ammonia obtained from the extrusion of 2a was likely involved 
in the reduction of the nitro group in 1-(2-nitrophenyl)-1H-pyrrole 
(1a), yielding the corresponding aniline 5. Traditional imine 
condensation of 4 and 5 would yield the adduct (6) followed by 
cyclization and hydrogen transfer to afford 7. Oxidation of 7 by 1a 
in the presence of FeCl3 catalyst would furnish the desired product 
(3aa). Identical to the report of M. Kumar, et al. (2015) [9], we 
believe that iron salts were crucial for the overall condensation, 
although assignment of oxidation states at elementary steps (2a→4 
or 1a→5) was not clear momentarily.

COOH

NH2

2a

[Fe] cat.

CO2 NH3

O

N

NO2

1a

+

N

NH2

+

4
5

[Fe] c
at.

imine

condensation

N

N

then
hydrogen
transfer

N
H

N1a5

3aa
FeCl3

oxidation

6

7

Fig. 2. Plausible mechanism.

4. Conclusions
To conclude, we developed a method for oxidative annulation 

of C-H bonds in (α-amino)arylacetic acids with 1-(2-nitroaryl)-1H-
pyrroles. The reactions proceeded in the presence of an iron(III) 
acetylacetonate catalyst and a potassium carbonate base. Reaction 
conditions were tolerant of electron-poor and hetero (α-amino)
arylacetic acids. The proposed mechanism involved two key steps: 
degradation of phenylglycine to afford ammonia followed by the 
reduction of 1-(2-nitrophenyl)-1H-pyrrole.
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