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1. Introduction 
In recent years, autonomous ground vehicles (AGVs) have 

played an essential role in material handling and logistics. 
Additionally, AGVs are emerging in other application fields, 
such as hospitals, restaurants, and agricultural environments 
[1, 2]. Based on navigation control strategy, there are mainly 
two types of AGVs [3]. In the first type, AGV can only follow 
predefined paths and move to predefined points on the guide 
path. This type of AGV can use mechanical guides, magnetic 
guides, inductive guides, or laser navigation guides for its 
navigation control [4]. Since it relies solely on a fixed path, 
the application of such AGVs is limited. Even minor changes 
in factory layout would require significant time to modify the 
program and guidance system for AGVs, reducing factory 
productivity. The second type, namely AMR, uses sensing 
systems to detect the surrounding environment or provide 
positioning information, allowing it to autonomously locate 
itself in the environment. The sensors for AMRs include 
global positioning systems (GPS), depth cameras, or ranging 
sensors such as LiDAR. Equipped with such a smart sensor 
system, AMRs can naturally locate themselves and reach any 
accessible position in a defined area. Moreover, AMRs can 
rapidly adapt to changes in the working environment. Camera 
sensor-based localisation has been utilised in many previous 

works [5, 6]. Some noteworthy algorithms for Visual SLAM 
include Unified point-line-plane feature fusion for RGB-D 
visual SLAM [7], point-line-plane features visual SLAM [8], 
etc. However, visual SLAM algorithms mostly utilise a sparse 
set of features, resulting in tracking loss and lack of robustness 
due to discarding most of the image information. In addition, 
visual SLAM faces challenges from environmental conditions 
such as variations in illumination and atmospheric conditions, 
which can result in a lack of pose estimation accuracy. Due to 
the high accuracy and reliability of LiDAR, and its robustness in 
various environmental conditions, we used it as an autonomous 
localisation device in this research. However, LiDAR is very 
sensitive to large changes in the surrounding environment.

Using high-accuracy encoders is one method to deal with 
environmental variations. Many commercial products employ 
encoders combined with camera sensors to detect QR codes 
and localise the AMR’s position. The AMR system with 
omnidirectional wheels is able to perform holonomic motion, 
which allows it to move in all directions. This ability makes 
omnidirectional AMRs easily navigate even in narrow aisle 
spaces or crowded environments. In addition, omnidirectional 
wheels are a well-known mechanism that brings the advantages 
of a low budget and flexibility [9]. However, the slip problem 
of omnidirectional wheels is more serious than that of general 
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wheels, leading to significant errors in localisation when using 
encoders alone and difficulties in navigation control [10]. To 
address these drawbacks, we utilised a sensor fusion algorithm 
that combines sensory data from LiDAR, encoders, and IMU 
sensors to achieve high-accuracy localisation for AMRs. On the 
other hand, an advanced navigation control scheme is developed 
to reduce slip phenomena for AMRs and achieve robust and 
high-accuracy performance. After a robust localisation scheme 
is employed to determine the AMR’s position on the map, a 
motion planning scheme is then applied to drive the AMR from 
its current position to the target position. 

Most previous approaches have focused on dealing with 
navigation and robot movement in a static environment 
with static obstacles. However, this is not suitable for real 
applications in working factories, where the environment is 
constantly changing with dynamic obstacles. Therefore, we 
propose a motion planning approach that combines a global 
motion planner and a local motion planner to obtain an optimal 
path and ensure collision avoidance for AMRs [11-13]. The 
global technique calculates the optimal path from the start 
point to the goal offline. Then, the local planner uses only a 
small portion of the world model to generate robot control and 
a local path to help the robot avoid dynamic obstacles.

In addition, this work employs a fuel cell power system as an 
alternative power solution for mobile robot systems [14]. The 
combination of a fuel cell and a battery provides a promising 
solution to reduce cycle time and increase productivity in the 
manufacturing industry. Therefore, in this research, we utilise a 
hybrid power source of a fuel cell and battery system to extend 
the continuous working time of AMRs and enhance production 
efficiency.

The main contributions of the article can be summarised 
as follows:

Firstly, to address the localisation problem with AMRs in 
varying environments, a combination and fusion technique to 
filter the AMR’s position based on LiDAR sensor, encoder, and 
IMU sensor data is utilised to cope with localisation errors due 
to wheel slip phenomena, changing environmental conditions, 
and sensor noise.

Secondly, a motion planning scheme that combines a hybrid 
A-star-based global planner and a dynamic window approach-
based local planner to generate an optimal path for AMRs in 
the presence of dynamic obstacles.

Thirdly, to increase the power efficiency of the AMR 
system, a hybrid power source is installed on the AMR, thereby 
increasing factory productivity.

Fourthly, the organisation of this research is presented as 
follows. Section 2 introduces an overview of the AMR system 
with hardware and software descriptions. The kinematics and 
modelling of the AMR system are presented in Section 3. The 
localisation algorithm is discussed in Section 4. The motion 

planning scheme is investigated in Section 5. The navigation 
control scheme and experimental results are demonstrated in 
Section 6. Finally, concluding remarks are discussed in Section 7.

2. Problem statement
2.1. AMR system description

The structure of the AMR system is depicted in Fig. 1, 
comprising a hybrid power source, a sensing system, motor and 
motor control system, main CPU, DIO system, communication 
system, mechanical system, and AMR control system (ACS). The 
hybrid power source consists of a fuel cell system, battery power, 
and DC-DC converters. The AMR system gathers information 
from two ranging sensors, an IMU sensor, and four encoders to 
estimate its state. Additionally, laser scan data can be used for 
obstacle detection and avoidance algorithms. The main CPU 
collects data from the sensing system and processes path planning, 
navigation control schemes, and motor control schemes.

Fig. 1. Overview of developed AMR system.

2.2. Software development
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The software diagram for the AMR system, as shown 
in Fig. 2, consists of three levels. At the client PC level, the 
multi-AMR control system is developed to control multiple 
AMRs simultaneously. In this level, the ACS receives 
information and commands from a higher management 
system or other robots to control AMRs in performing tasks. 
ACS also retrieves information and status updates from 
AMRs and sends them to the higher management system. 
The tasks may include sequential movement processes 
and application tasks such as conveyor movement. The 
command is sent to AMR systems and processed at the 
second level. To perform movement tasks, the AMR requires 
information from the sensing system to autonomously 
estimate its location, sense the surrounding environment 
and obstacles, and plan its path. The third-level software 
calculates the kinematic and dynamic properties of the 
AMR and subsequently determines the desired speed for its 
four motors. 

3. System modelling
3.1. Kinematics description

The four mecanum wheels are symmetrically positioned 
at the geometric centre of the AMR’s body to ensure stable 
chassis operation. To derive the equation of motion for the 
AMR, we make two assumptions:

Assumption 1: The AMR moves on a horisontal and flat 
plane.

Assumption 2: All the parts of the AMR are rigid.
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Fig. 3. Kinematics and coordinates of the AMR system.

The kinematic description of the AMR is illustrated 
in Fig. 3, considering three coordinate frames: the global 
frame OG, the body frame OB (where its centre is the 
gravity centre of the AMR), and the wheel coordinate frame 
OWi (i=1, 2, 3, 4).

The relationship between the speeds of the mecanum 
wheels and the velocities of the AMR is described as follows 
[15]: 

7 
 

XG

YG

θG

XB

YB

θB

XW4

YW4 θW4

XW3

YW3 θW3

XW2

YW2 θW2

XW1

YW1 θW1

ω1 ω2

ω3ω4

W

L

D

 
Fig. 3. Kinematics and coordinates of the AMR system. 

The kinematic description of the AMR is illustrated in Fig. 3, considering three 

coordinate frames: the global frame OG, the body frame OB (where its centre is the 

gravity centre of the AMR), and the wheel coordinate frame OWi (i=1, 2, 3, 4). 

The relationship between the speeds of the mecanum wheels and the velocities of 

the AMR is described as follows [15]: 

 [
𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] = 360
𝜋𝜋𝜋𝜋

[
 
 
 
 
 
 1 1 − (𝐿𝐿+𝑊𝑊)

720

1 −1 (𝐿𝐿+𝑊𝑊)
720

1 −1 −(𝐿𝐿+𝑊𝑊)
720

1 1 (𝐿𝐿+𝑊𝑊)
720 ]

 
 
 
 
 
 

[
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝛺𝛺𝑧𝑧

] (1) 

 [
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝛺𝛺𝑧𝑧

] = 𝜋𝜋𝜋𝜋
1440 [

1 1 1 1
1 −1 1 −1

−720
𝐿𝐿+𝑊𝑊

−720
𝐿𝐿+𝑊𝑊

−720
𝐿𝐿+𝑊𝑊

−720
𝐿𝐿+𝑊𝑊

] [
𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] = 𝐻𝐻 [
𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] (2) 

where vx, vy, and Ωz are the linear velocities in the X and Y directions and angular 

velocity about Z axis; ωi  (i: 1-4) is the rotation speed of ith wheel in units of rotation per 

  

(1)

7 
 

XG

YG

θG

XB

YB

θB

XW4

YW4 θW4

XW3

YW3 θW3

XW2

YW2 θW2

XW1

YW1 θW1

ω1 ω2

ω3ω4

W

L

D

 
Fig. 3. Kinematics and coordinates of the AMR system. 

The kinematic description of the AMR is illustrated in Fig. 3, considering three 

coordinate frames: the global frame OG, the body frame OB (where its centre is the 

gravity centre of the AMR), and the wheel coordinate frame OWi (i=1, 2, 3, 4). 

The relationship between the speeds of the mecanum wheels and the velocities of 

the AMR is described as follows [15]: 

 [
𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] = 360
𝜋𝜋𝜋𝜋

[
 
 
 
 
 
 1 1 − (𝐿𝐿+𝑊𝑊)

720

1 −1 (𝐿𝐿+𝑊𝑊)
720

1 −1 −(𝐿𝐿+𝑊𝑊)
720

1 1 (𝐿𝐿+𝑊𝑊)
720 ]

 
 
 
 
 
 

[
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝛺𝛺𝑧𝑧

] (1) 

 [
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝛺𝛺𝑧𝑧

] = 𝜋𝜋𝜋𝜋
1440 [

1 1 1 1
1 −1 1 −1

−720
𝐿𝐿+𝑊𝑊

−720
𝐿𝐿+𝑊𝑊

−720
𝐿𝐿+𝑊𝑊

−720
𝐿𝐿+𝑊𝑊

] [
𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] = 𝐻𝐻 [
𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] (2) 

where vx, vy, and Ωz are the linear velocities in the X and Y directions and angular 

velocity about Z axis; ωi  (i: 1-4) is the rotation speed of ith wheel in units of rotation per 
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where vx, vy, and Ωz are the linear velocities in the x and y 
directions and angular velocity about z axis; ωi  (i: 1-4) is the 
rotation speed of ith wheel in units of rotation per minute; L 
and W are the length and width of the AMR calculated from 
the centre of the wheel, respectively; D is the wheel diameter. 

To regulate the motion of the AMR, the linear and 
angular velocities are converted into the rotational speed 
of each wheel using inverse kinematics. Furthermore, the 
AMR’s velocity is determined through forward kinematics 
and information obtained from encoders.

3.2. Dynamic description

The dynamics of the AMR with uncertainties are derived 
using the Lagrange method, considering the following 
assumptions: 

Assumption 3: The body frame OB is located in the centre 
of mass of the AMR. 

Assumption 4: The AMR operates on a two-dimensional 
floor, AMR’s potential energy is assumed to be constant, 
with the potential energy being considered zero. 

Assumption 5: The moment of inertia of the rollers in the 
omnidirectional wheel is ignored.

Basing on the above assumptions, the dynamics of the 
AMR system are presented as the following:
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where q=(x, y, θ)T with x and y denote the centre position 
and θ is the rotational angle of the AMR in the global 
coordinate frame xOG y; τ is the applied torque input 
vector; M(q) denotes the symmetric positive definite robot 
inertia matrix; C(
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, q) denotes the centrifugal and Coriolis 
torque vectors; G(q) is the gravity vector; τex is a vector of 
bounded external disturbances and dynamics uncertainties.
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In 2D planar movement, the vector of gravity is 
neglected, and the centrifugal and Coriolis torque vectors 
can be calculated by numerical methods and experiments. 
The inertial matrix is calculated as the following [16]:
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with mA being the total weight of the AMR system; IW and IZ being the moment of inertia 

of the AMR’s body and wheels, respectively.  

4. Robot localization 

In this section, the extended Kalman filter method is applied to fuse data from the 

laser-ranging finder, wheel encoder, and IMU sensor. It is assumed that the AMR system 

operates on an ideal flat planar surface. The AMR's pose information at the k-th sample is 

defined as the state vector. The position of the AMR is updated every 0.05 seconds in 

accordance with the update frequency of the laser-ranging finder sensor. The localization 

algorithm is illustrated in Fig. 4. 
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Fig. 4. Extended Kalman filter for localization of the AMR system. 

4.1. State estimation 

The new position at the sampling time k+1 without localization error can be given 

as follows: 

 ( + 1) = ( ) + ( ( ) , ( + 1) , ( + 1) )  (6) 

where u(k + 1) denotes the control signal and is determined by the rotating angles of the 

wheels as measured by wheel encoders; (k + 1) denotes the process noise.  

The predicted value of x(k + 1) is given by: 

 �− ( + 1) = �( ) + [
( � ) − ( � ) 0

( � ) ( � ) 0
0 0 1

] [ ]  (7) 

  (5)

with mA being the total weight of the AMR system; IW and IZ 
being the moment of inertia of the AMR’s body and wheels, 
respectively. 

4. Robot localisation
In this section, the extended Kalman filter method is 

applied to fuse data from the laser-ranging finder, wheel 
encoder, and IMU sensor. It is assumed that the AMR 
system operates on an ideal flat planar surface. The AMR’s 
pose information at the k-th sample is defined as the state 
vector. The position of the AMR is updated every 0.05 
seconds in accordance with the update frequency of the 
laser-ranging finder sensor. The localisation algorithm is 
illustrated in Fig. 4.
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The new position at the sampling time k+1 without 
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( � ) − ( � ) 0

( � ) ( � ) 0
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  (6)
where x(k) denotes the state variable in the sampling time k; 
u(k + 1) denotes the control signal and is determined by the 
rotating angles of the wheels, measuring by wheel encoders; 
α(k + 1) denotes the process noise; f(.) is a nonlinear function 
of x(k), u(k+1) and α(k + 1). 

The predicted value of x(k + 1) is given by:
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4.1. State estimation 

The new position at the sampling time k+1 without localization error can be given 

as follows: 

 𝑥𝑥(𝑘𝑘 + 1) = 𝑥𝑥(𝑘𝑘) + 𝑓𝑓(𝑥𝑥(𝑘𝑘), 𝑢𝑢(𝑘𝑘 + 1), 𝛼𝛼(𝑘𝑘 + 1)) (6) 

where u(k + 1) denotes the control signal and is determined by the rotating angles of the 

wheels as measured by wheel encoders; 𝛼𝛼(k + 1) denotes the process noise.  

The predicted value of x(k + 1) is given by: 

 �̂�𝑥−(𝑘𝑘 + 1) = �̂�𝑥(𝑘𝑘) + [
𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑘𝑘) 0

0 0 1
] [
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝛺𝛺𝑧𝑧
] 𝑑𝑑𝑑𝑑 (7) 

 
(7)

where the accent “ˆ” above the status vector indicates an 
approximated value and the superscript “−” defines the 
estimated value of the state variable at the sampling time 
k+1; dt is the sampling time.

Combining Eqs. (2) and (7), we obtain:
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where P(k) denotes the covariance matrix of the state x(k) and Q(k+1) is the covariance 

matrix of the process noise 𝛼𝛼(k+1). The Jacobian matrices used in Eq. (9) is calculated as: 
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where: I4 denotes identity matrix with the order of four and J1, J2, and J3 are derived from 
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4.2. Measurement update 

Let z(k+1) denote a new measurement vector, with its value obtained as follows: 

 𝑧𝑧(𝑘𝑘 + 1) = ℎ(𝑥𝑥(𝑘𝑘 + 1), 𝛽𝛽(𝑘𝑘 + 1)) (12) 

where h(𝑥𝑥(𝑘𝑘 + 1)) is the measurement function and β(k+1) is the measurement noise.  

The predicted measurement vector is given according to the extended Kalman 

filter as the following: 
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where P(k) denotes the covariance matrix of the state 
x(k); Q(k+1) is the covariance matrix of the process noise 
α(k+1); T denotes transpose operator of the matrix; 
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𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐻𝐻(𝑑𝑑) (8) 

The matrix P−(k+1) denotes the prior covariance matrix of x(k+1) and is defined as 

the following: 

 𝑃𝑃−(𝑘𝑘 + 1) = 𝛻𝛻𝑓𝑓𝑥𝑥𝑃𝑃(𝑘𝑘)𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇 + 𝛻𝛻𝑓𝑓𝛼𝛼𝑄𝑄(𝑘𝑘 + 1)𝛻𝛻𝑓𝑓𝛼𝛼𝑇𝑇 (9) 

where P(k) denotes the covariance matrix of the state x(k) and Q(k+1) is the covariance 

matrix of the process noise 𝛼𝛼(k+1). The Jacobian matrices used in Eq. (9) is calculated as: 

 𝛻𝛻𝑓𝑓𝑥𝑥 = [
1 0 𝐽𝐽1
0 1 𝐽𝐽2
0 0 1 + 𝐽𝐽3

], 𝛻𝛻𝑓𝑓𝛼𝛼 = [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐼𝐼4 (10) 

where: I4 denotes identity matrix with the order of four and J1, J2, and J3 are derived from 

the following equation: 

 [
𝐽𝐽1
𝐽𝐽2
𝐽𝐽3
] = [

− 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐻𝐻(𝑘𝑘) (11) 

4.2. Measurement update 

Let z(k+1) denote a new measurement vector, with its value obtained as follows: 

 𝑧𝑧(𝑘𝑘 + 1) = ℎ(𝑥𝑥(𝑘𝑘 + 1), 𝛽𝛽(𝑘𝑘 + 1)) (12) 

where h(𝑥𝑥(𝑘𝑘 + 1)) is the measurement function and β(k+1) is the measurement noise.  

The predicted measurement vector is given according to the extended Kalman 

filter as the following: 

 
(10)

where I4 denotes identity matrix with the order of four; H is 
the matrix defined in Eq. (2); and J1, J2, and J3 are derived 
from the following equation:
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where the accent “ˆ” above the status vector indicates an approximated value and the 

superscript “−” defines the estimated value of the state variable at the sampling time k+1. 

Combining Eqs. (2) and (7), we obtain: 
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𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
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= �̂�𝑥(𝑘𝑘) + [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐻𝐻(𝑑𝑑) (8) 

The matrix P−(k+1) denotes the prior covariance matrix of x(k+1) and is defined as 
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 𝑃𝑃−(𝑘𝑘 + 1) = 𝛻𝛻𝑓𝑓𝑥𝑥𝑃𝑃(𝑘𝑘)𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇 + 𝛻𝛻𝑓𝑓𝛼𝛼𝑄𝑄(𝑘𝑘 + 1)𝛻𝛻𝑓𝑓𝛼𝛼𝑇𝑇 (9) 

where P(k) denotes the covariance matrix of the state x(k) and Q(k+1) is the covariance 

matrix of the process noise 𝛼𝛼(k+1). The Jacobian matrices used in Eq. (9) is calculated as: 

 𝛻𝛻𝑓𝑓𝑥𝑥 = [
1 0 𝐽𝐽1
0 1 𝐽𝐽2
0 0 1 + 𝐽𝐽3
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]𝐻𝐻𝐼𝐼4 (10) 

where: I4 denotes identity matrix with the order of four and J1, J2, and J3 are derived from 

the following equation: 
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𝐽𝐽1
𝐽𝐽2
𝐽𝐽3
] = [

− 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
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]𝐻𝐻𝐻𝐻(𝑘𝑘) (11) 

4.2. Measurement update 

Let z(k+1) denote a new measurement vector, with its value obtained as follows: 

 𝑧𝑧(𝑘𝑘 + 1) = ℎ(𝑥𝑥(𝑘𝑘 + 1), 𝛽𝛽(𝑘𝑘 + 1)) (12) 

where h(𝑥𝑥(𝑘𝑘 + 1)) is the measurement function and β(k+1) is the measurement noise.  

The predicted measurement vector is given according to the extended Kalman 

filter as the following: 
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4.2. Measurement update

Let z(k+1) denote a new measurement vector, with its 
value obtained as follows:
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where the accent “ˆ” above the status vector indicates an approximated value and the 

superscript “−” defines the estimated value of the state variable at the sampling time k+1. 

Combining Eqs. (2) and (7), we obtain: 

 �̂�𝑥−(𝑘𝑘 + 1) = �̂�𝑥(𝑘𝑘) + [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻 [

𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] 𝑑𝑑𝑑𝑑

= �̂�𝑥(𝑘𝑘) + [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐻𝐻(𝑑𝑑) (8) 

The matrix P−(k+1) denotes the prior covariance matrix of x(k+1) and is defined as 

the following: 

 𝑃𝑃−(𝑘𝑘 + 1) = 𝛻𝛻𝑓𝑓𝑥𝑥𝑃𝑃(𝑘𝑘)𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇 + 𝛻𝛻𝑓𝑓𝛼𝛼𝑄𝑄(𝑘𝑘 + 1)𝛻𝛻𝑓𝑓𝛼𝛼𝑇𝑇 (9) 

where P(k) denotes the covariance matrix of the state x(k) and Q(k+1) is the covariance 

matrix of the process noise 𝛼𝛼(k+1). The Jacobian matrices used in Eq. (9) is calculated as: 

 𝛻𝛻𝑓𝑓𝑥𝑥 = [
1 0 𝐽𝐽1
0 1 𝐽𝐽2
0 0 1 + 𝐽𝐽3

], 𝛻𝛻𝑓𝑓𝛼𝛼 = [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐼𝐼4 (10) 

where: I4 denotes identity matrix with the order of four and J1, J2, and J3 are derived from 

the following equation: 

 [
𝐽𝐽1
𝐽𝐽2
𝐽𝐽3
] = [

− 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐻𝐻(𝑘𝑘) (11) 

4.2. Measurement update 

Let z(k+1) denote a new measurement vector, with its value obtained as follows: 

 𝑧𝑧(𝑘𝑘 + 1) = ℎ(𝑥𝑥(𝑘𝑘 + 1), 𝛽𝛽(𝑘𝑘 + 1)) (12) 

where h(𝑥𝑥(𝑘𝑘 + 1)) is the measurement function and β(k+1) is the measurement noise.  

The predicted measurement vector is given according to the extended Kalman 

filter as the following: 

 (12)

where h(x(k+1)) is the measurement function and β(k+1) is 
the measurement noise. 

The predicted measurement vector is given according to 
the extended Kalman filter as the following:
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 �̂�𝑧(𝑘𝑘 + 1) = [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑘𝑘) 0

0 0 1
] [�̂�𝑥−(𝑘𝑘 + 1) − �̂�𝑥(𝑘𝑘)] = [

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝛺𝛺𝑧𝑧
] 𝑑𝑑𝑑𝑑 (13) 

The difference between the measurement vector and the predicted measurement 

value, denoted δ(k + 1), and its estimated covariance matrix, denoted Λ(k+1), are 

obtained by the following: 

 𝛿𝛿(𝑘𝑘 + 1) = 𝑧𝑧(𝑘𝑘 + 1) − �̂�𝑧(𝑘𝑘 + 1), 𝛬𝛬(𝑘𝑘 + 1) ≈ 𝛻𝛻ℎ𝑥𝑥𝑃𝑃−(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥𝑇𝑇 + 𝑆𝑆(𝑘𝑘 + 1) 
(14) 

where S(k+1) is the covariance of the measurement noise β(k+1) and  

 𝛻𝛻ℎ𝑥𝑥 = [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑘𝑘) 0

0 0 1
] (15) 

The Kalman gain is given as the following: 

 𝐾𝐾(𝑘𝑘 + 1) = 𝑃𝑃−(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥𝑇𝑇(𝛬𝛬(𝑘𝑘 + 1))−1 (16) 

Thus, the posterior estimation of the AMR’s position is given as: 

 �̂�𝑥(𝑘𝑘 + 1) = �̂�𝑥−(𝑘𝑘 + 1) + 𝐾𝐾(𝑘𝑘 + 1)𝛿𝛿(𝑘𝑘 + 1) (17)  

 𝑃𝑃(𝑘𝑘 + 1) = (𝐼𝐼3 − 𝐾𝐾(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥)𝑃𝑃−(𝑘𝑘 + 1). (18) 

5. Motion planning 

The motion planning scheme consists of two parts: a modified A*-based global 

planner and a dynamic window approach-based local planner. 

5.1. Traditional A* algorithm 

The A* algorithm is among the most widely used path planning algorithms for 

finding the optimal robot path in complex areas. It is represented by the following 

formula: 

 𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) (19) 

where h(x) represents the heuristic distance (using one of the following methods: 

Manhattan, Euclidean, or Chebyshev) from the current node to the target node; g(x) 

signifies the distance from the start node to the target node through the selected sequence 

of nodes.  

 
(13)

The difference between the measurement vector and 
the predicted measurement value, denoted δ(k + 1), and its 
estimated covariance matrix, denoted Λ(k+1), are obtained 
by the following:
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The Kalman gain is given as the following: 

 𝐾𝐾(𝑘𝑘 + 1) = 𝑃𝑃−(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥𝑇𝑇(𝛬𝛬(𝑘𝑘 + 1))−1 (16) 

Thus, the posterior estimation of the AMR’s position is given as: 

 �̂�𝑥(𝑘𝑘 + 1) = �̂�𝑥−(𝑘𝑘 + 1) + 𝐾𝐾(𝑘𝑘 + 1)𝛿𝛿(𝑘𝑘 + 1) (17)  

 𝑃𝑃(𝑘𝑘 + 1) = (𝐼𝐼3 − 𝐾𝐾(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥)𝑃𝑃−(𝑘𝑘 + 1). (18) 

5. Motion planning 

The motion planning scheme consists of two parts: a modified A*-based global 

planner and a dynamic window approach-based local planner. 

5.1. Traditional A* algorithm 

The A* algorithm is among the most widely used path planning algorithms for 

finding the optimal robot path in complex areas. It is represented by the following 

formula: 

 𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) (19) 

where h(x) represents the heuristic distance (using one of the following methods: 

Manhattan, Euclidean, or Chebyshev) from the current node to the target node; g(x) 

signifies the distance from the start node to the target node through the selected sequence 

of nodes.  
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where S(k+1) is the covariance of the measurement noise 
β(k+1), P-(k+1) is derived from Eq. (9), and 
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 �̂�𝑧(𝑘𝑘 + 1) = [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
] [�̂�𝑥−(𝑘𝑘 + 1) − �̂�𝑥(𝑘𝑘)] = [
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𝛺𝛺𝑧𝑧
] 𝑑𝑑𝑑𝑑 (13) 

The difference between the measurement vector and the predicted measurement 

value, denoted δ(k + 1), and its estimated covariance matrix, denoted Λ(k+1), are 

obtained by the following: 

 𝛿𝛿(𝑘𝑘 + 1) = 𝑧𝑧(𝑘𝑘 + 1) − �̂�𝑧(𝑘𝑘 + 1), 𝛬𝛬(𝑘𝑘 + 1) ≈ 𝛻𝛻ℎ𝑥𝑥𝑃𝑃−(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥𝑇𝑇 + 𝑆𝑆(𝑘𝑘 + 1) 
(14) 

where S(k+1) is the covariance of the measurement noise β(k+1) and  
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where the accent “ˆ” above the status vector indicates an approximated value and the 

superscript “−” defines the estimated value of the state variable at the sampling time k+1. 

Combining Eqs. (2) and (7), we obtain: 

 �̂�𝑥−(𝑘𝑘 + 1) = �̂�𝑥(𝑘𝑘) + [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻 [

𝜔𝜔1
𝜔𝜔2
𝜔𝜔3
𝜔𝜔4

] 𝑑𝑑𝑑𝑑

= �̂�𝑥(𝑘𝑘) + [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐻𝐻(𝑑𝑑) (8) 

The matrix P−(k+1) denotes the prior covariance matrix of x(k+1) and is defined as 

the following: 

 𝑃𝑃−(𝑘𝑘 + 1) = 𝛻𝛻𝑓𝑓𝑥𝑥𝑃𝑃(𝑘𝑘)𝛻𝛻𝑓𝑓𝑘𝑘𝑇𝑇 + 𝛻𝛻𝑓𝑓𝛼𝛼𝑄𝑄(𝑘𝑘 + 1)𝛻𝛻𝑓𝑓𝛼𝛼𝑇𝑇 (9) 

where P(k) denotes the covariance matrix of the state x(k) and Q(k+1) is the covariance 

matrix of the process noise 𝛼𝛼(k+1). The Jacobian matrices used in Eq. (9) is calculated as: 

 𝛻𝛻𝑓𝑓𝑥𝑥 = [
1 0 𝐽𝐽1
0 1 𝐽𝐽2
0 0 1 + 𝐽𝐽3
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where: I4 denotes identity matrix with the order of four and J1, J2, and J3 are derived from 
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𝐽𝐽1
𝐽𝐽2
𝐽𝐽3
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𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0

0 0 1
]𝐻𝐻𝐻𝐻(𝑘𝑘) (11) 

4.2. Measurement update 

Let z(k+1) denote a new measurement vector, with its value obtained as follows: 

 𝑧𝑧(𝑘𝑘 + 1) = ℎ(𝑥𝑥(𝑘𝑘 + 1), 𝛽𝛽(𝑘𝑘 + 1)) (12) 

where h(𝑥𝑥(𝑘𝑘 + 1)) is the measurement function and β(k+1) is the measurement noise.  

The predicted measurement vector is given according to the extended Kalman 

filter as the following: 
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The Kalman gain is given as the following:
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 �̂�𝑧(𝑘𝑘 + 1) = [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
] [�̂�𝑥−(𝑘𝑘 + 1) − �̂�𝑥(𝑘𝑘)] = [

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝛺𝛺𝑧𝑧
] 𝑑𝑑𝑑𝑑 (13) 

The difference between the measurement vector and the predicted measurement 

value, denoted δ(k + 1), and its estimated covariance matrix, denoted Λ(k+1), are 

obtained by the following: 

 𝛿𝛿(𝑘𝑘 + 1) = 𝑧𝑧(𝑘𝑘 + 1) − �̂�𝑧(𝑘𝑘 + 1), 𝛬𝛬(𝑘𝑘 + 1) ≈ 𝛻𝛻ℎ𝑥𝑥𝑃𝑃−(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥𝑇𝑇 + 𝑆𝑆(𝑘𝑘 + 1) 
(14) 

where S(k+1) is the covariance of the measurement noise β(k+1) and  

 𝛻𝛻ℎ𝑥𝑥 = [
𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) − 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 0
𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝜃𝑘𝑘) 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝜃𝑘𝑘) 0

0 0 1
] (15) 

The Kalman gain is given as the following: 

 𝐾𝐾(𝑘𝑘 + 1) = 𝑃𝑃−(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥𝑇𝑇(𝛬𝛬(𝑘𝑘 + 1))−1 (16) 

Thus, the posterior estimation of the AMR’s position is given as: 

 �̂�𝑥(𝑘𝑘 + 1) = �̂�𝑥−(𝑘𝑘 + 1) + 𝐾𝐾(𝑘𝑘 + 1)𝛿𝛿(𝑘𝑘 + 1) (17)  

 𝑃𝑃(𝑘𝑘 + 1) = (𝐼𝐼3 − 𝐾𝐾(𝑘𝑘 + 1)𝛻𝛻ℎ𝑥𝑥)𝑃𝑃−(𝑘𝑘 + 1). (18) 

5. Motion planning 

The motion planning scheme consists of two parts: a modified A*-based global 

planner and a dynamic window approach-based local planner. 

5.1. Traditional A* algorithm 

The A* algorithm is among the most widely used path planning algorithms for 

finding the optimal robot path in complex areas. It is represented by the following 

formula: 

 𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) (19) 

where h(x) represents the heuristic distance (using one of the following methods: 

Manhattan, Euclidean, or Chebyshev) from the current node to the target node; g(x) 

signifies the distance from the start node to the target node through the selected sequence 

of nodes.  

 (16)
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where h(x) represents the heuristic distance (using one of the 
following methods: Manhattan, Euclidean, or Chebyshev) 
from the current node to the target node; g(x) signifies the 
distance from the start node to the target node through the 
selected sequence of nodes. 

Each neighbour of the current node is evaluated using the 
function f(x), and the next node is chosen if it has the lowest 
value of f(x). The algorithm has been successfully applied to 
finding the best robot route in various applications. However, 
it has been observed that the algorithm requires improvement 
to meet the requirements of real-world applications. One of 
its drawbacks is the extensive computational time, which 
limits its real-time applicability to high-quality hardware 
systems. Therefore, a modification of the A* algorithm is 
investigated to overcome this limitation.

5.2. Modified A* algorithm

To reduce the number of examined cells, a modified 
version of the A* algorithm is introduced. The principle of 
this method involves cropping the neighbourhood cells of 
potential candidates.

(A) (B)

Fig. 5. The improved A* algorithm.

START

GOAL

1 2

3 4

5

67

8

Fig. 6. Optimal path found by the modified A* algorithm.

The idea of the modified A* algorithm is illustrated 
in Fig. 5. We define node ‘a’ as the evaluated node, and 
the arrows represent the direction of movement from 
the previous node. The grey nodes are eliminated from 
the candidate list because they can be reached without 
entering node ‘a’. The white nodes are considered natural 
neighbours, and they are the only candidates for the next step 
of movement. Fig. 5 depict cases without and with obstacle 
nodes, respectively. The general description of the modified 
algorithm is presented in Fig. 6. The figure demonstrates 
a significant reduction in the number of evaluated nodes, 
thereby reducing the computational load on the computer 
and making it suitable for real-time implementation.

5.3. Dynamic window approach 

The modified A* algorithm creates a global path from 
the starting point to the target point without considering 
dynamic obstacles, which may result in collision 
probabilities. Therefore, a local planning scheme called the 
dynamic window approach is employed to ensure collision-
free navigation for the AMR. The idea of the algorithm is 
explained as follows: 

- The expected velocity towards the target is calculated 
based on the robot’s current pose and the target.

- Suitable ranges of linear and angular velocities are 
computed based on the robot’s dynamics.

- Velocity candidates within the calculated ranges are 
checked to find the nearest obstacle.

- The gap between the current position and the nearest 
obstacle is examined to determine if the robot can stop 
before a collision occurs. Velocity candidates that would 
lead to a collision are discarded.

- Among the velocity candidates that meet the collision 
avoidance requirements, the one with the best objective 
function is selected for the robot’s next movement.
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Initial open list and close list
Initial start node  ‘ x’  

and put it on open list

Calculate cost function: sum of 
heuristic distance and distance from 
the current node to the target node:

f(x) = h(x) + g(x)

START

Remove node ‘ x’ from open list, put on close list
save index of node ‘ x’ as the smallest f

If ‘ x’ is the target node

Check all the successor nodes of node 
‘ x’ not in close list

STOP

Terminate algorithm and 
export path in close list

Calculate cost function and apply 
dynamic window approaches to choose 

next candidate that satisfy obstacle 
avoidance, safety and optimal path  

Fig. 7. Flowchart of the proposed path planning algorithm. 

The flowchart of the proposed path planning algorithm is illustrated in Fig. 7. 

Initially, the global path planner generates a path using the modified A* algorithm to 

avoid static obstacles in the working environment. As the robot moves, the current area 

around the robot is referred to as the local area, which includes not only static obstacles 

but also dynamic obstacles such as changes in the environment or human movement. In 

such cases, the global path is no longer suitable for the local area. Therefore, dynamic 

window approach is employed to replan the robot's path to avoid dynamic and new 

Fig. 7. Flowchart of the proposed path planning algorithm.

The flowchart of the proposed path planning algorithm 
is illustrated in Fig. 7. Initially, the global path planner 
generates a path using the modified A* algorithm to avoid 
static obstacles in the working environment. As the robot 
moves, the current area around the robot is referred to as the 
local area, which includes not only static obstacles but also 
dynamic obstacles such as changes in the environment or 
human movement. In such cases, the global path is no longer 
suitable for the local area. Therefore, dynamic window 
approach is employed to replan the robot’s path to avoid 
dynamic and new obstacles. The new local path ensures 
optimal path planning and obstacle avoidance. As explained 
in the dynamic window approach algorithm, the appropriate 
velocity command is executed to safely navigate the robot 
within the local area.

6. Results
6.1. SLAM deployment

Through the sensor fusion algorithm, which combines 
odometry data from the laser sensor, wheel encoder, and 
IMU sensor, the AMR’s location is updated at a frequency 
of 20 Hz while in motion. Subsequently, the SLAM 
algorithm [17-19] is applied to construct a virtual map of 
the warehouse, a crucial step for the navigation algorithm 
and path planning. The environment map was generated 
by the robot using a laser rangefinder and selected SLAM 
techniques, as illustrated in Fig. 8.

START POINT

Fig. 8. Map obtained from the SLAM process.

6.2. Motion planning deployment

By implementing the motion planning scheme, the 
optimal path for the AMR from the starting point to the 
destination point is depicted in Fig. 9. The algorithm 
successfully finds the path between these points. 
Furthermore, as evident in Fig. 9, the obtained path is both 
the shortest and collision-free with the static obstacles in 
the environment. To ensure accurate path tracking for the 
robot, an adaptive pure pursuit controller is employed. This 
pure pursuit algorithm, known as lateral vehicle control, 
aims to follow a target point on the desired path with a 
look-ahead distance from the robot. The angular velocity 
is selected to guide the robot to the target point according 
to the robot’s kinematics. The linear velocity is computed 
based on the radius of the curved path the robot follows, 
decelerating when the radius is small and accelerating when 
the radius is large. Additionally, a PID controller is applied 
to minimise the error between the calculated values and real 
measurements.
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linear velocity is computed based on the radius of the curved path the robot follows, 

decelerating when the radius is small and accelerating when the radius is large. 

Additionally, a PID controller is applied to minimize the error between the calculated 

values and real measurements. 

START POINT

TARGET POINT

Optimal path

 
Fig. 9. Optimal path obtained by the path planning algorithm. 

6.3. Experimental results 

The specifications of the AMR system are detailed in Table 1. In the validation 

section, QR barcodes are placed at the START and TARGET positions to measure the 

control errors of the AMR at those positions. The tests are conducted over 15 continuous 

working cycles of the AMR. The tracking errors for each conveyor include linear position 

errors in the x and y directions and the heading angle control error of the AMR. 

Table 1. Specification of the AMR system. 

Component Specification Units 

Size (L×W×H) 1500×1500×750 mm×mm×mm 

Weight 230 kg 

Power 15 kW 

Power source Hybrid Fuel cell/Battery - 

Wheel diameter 360 mm 

Type of motors BLDC - 

Type of movement Omnidirectional - 

Fig. 9. Optimal path obtained by the path planning algorithm.



MATHEMATICS AND COMPUTER SCIENCE | COMPUTATIONAL SCIENCE, PHYSICAL SCIENCES | ENGINEERING

9DECEMBER 2023 • VOLUME 65 NUMBER 4

6.3. Experimental results

The specifications of the AMR system are detailed in 
Table 1. In the validation section, QR barcodes are placed 
at the START and TARGET positions to measure the 
control errors of the AMR at those positions. The tests are 
conducted over 15 continuous working cycles of the AMR. 
The tracking errors for each conveyor include linear position 
errors in the x and y directions and the heading angle control 
error of the AMR.
Table 1. Specification of the AMR system.

Component Specification Units

Size (L×W×H) 1500×1500×750 mm×mm×mm

Weight                                 230 kg

Power 15 kW

Power source Hybrid fuel cell/battery -

Wheel diameter 360 mm

Type of motors BLDC -

Type of movement Omnidirectional -

Laser range 30 m

Encoder resolution 3000 PPR

Maximum speed 1.2 m

Maximum working time 12 hour

Wireless device Moxa -

Applying the localisation method and navigation control 
algorithm for the AMR, the control errors in x, y direction 
and the angle error at START and TARGET positions are 
shown in Figs. 10 and 11.
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Laser range 30 m 

Encoder resolution 3000 PPR 

Maximum speed 1.2 m 

Maximum working time 12 hour 

Wireless device Moxa - 
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(B) 

 
Fig. 10. Control errors at the START position. (A) Position errors; (B) 

heading errors. 

(A) 

 

(B) 

 
Fig. 11. Control errors at the TARGET position. (A) Position errors; (B) 

heading errors. 
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Fig. 10. Control errors at the START position. (A) Position errors; 
(B) Heading errors.

As can be seen in these figures, the control errors of the 
AMR are bounded. The control errors in x and y directions 
are limited in the range of [-5, 5] cm while the absolute 
values of the heading errors are always smaller than 4 
degrees. These results show the promising application of the 
designed AMR system for the requirement of industry. In 
addition, the AMR can work continuously in 8 hours before 
refuelling the hydrogen and the time for full refuelling is 10 
minutes. These factors help reduce the working cycle time, 
increase the mass production ability and economy saving 
for industrial applications.

7. Conclusions

This article presents the development and experimental 
results of an omni-directional AMR system powered by 
a hybrid power source comprising a fuel cell and battery. 
A three-layered software architecture, consisting of a 
client interface, high-level software system, and low-level 
control system, ensures the flexibility of the developed 
AMR system. Data from wheel encoders, IMU sensors, 
and two laser-ranging finders were fused using an extended 
Kalman filter algorithm to localise the AMR. Subsequently, 
the modified motion planning algorithm was applied to 
determine the optimal path for the robot, ensuring collision-
free navigation.

The preliminary experimental results indicate that the 
autonomous localisation and mapping method is feasible 
in industrial applications, resulting in a 20% reduction in 
travel time compared to conventional path planning methods 
and ensuring a safe path. Furthermore, the position errors 
and heading control accuracy are promising for industrial 
applications, with a 30% reduction compared to traditional 
PID controllers. The use of a hybrid power source proves to 
be an efficient solution for addressing cycle time issues in 
many manufacturing processes.
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Fig. 10. Control errors at the START position. (A) Position errors; (B) 
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Fig. 11. Control errors at the TARGET position. (A) Position errors; (B) 

heading errors. 
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Fig. 11. Control errors at the TARGET position. (A) Position errors; 
(B) Heading errors.
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