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1. Introduction
Fluidic flow detection refers to the measurement and 

detection of the properties of fluidic flow including conductivity, 
permittivity, and the appearance of foreign objects inside the 
fluidic flow. This technique has become an integral part of 
several systems in pharmaceutical [1], chemical analysis [2, 3], 
and biomedical systems [4]. Due to its vital roles in these fields, 
several methods have been proposed to improve fluidic flow 
detection such as optical, ultrasonic, and electrical sensing. When 
fluidic flow detection is based on the change of physical properties 
that are directly or indirectly related to electrical properties, the 
capacitively coupled contactless conductivity detection (C4D) 
sensor structure [5-7] first proposed by A.J. Zemann, et al. (1998) 
[8]; J.A.F. da Silva, C.L. do Lago (1998) [9] is among the most 
prevalent methods. This method employs a conductivity detection 
technique in which a two-electrode configuration is utilized. These 
electrodes constitute a sensing capacitor including one electrode 
that acts as an exciting electrode in which the electrical signal is 
applied, and the other electrode function as a pick-up electrode 
where the electrical signal is sensed. Thus, any change in the 
electrical properties of the fluidic flow in the sensing area results in 
a change of the pick-up signal. This detection method has potential 
in many areas and has been employed in several detection and 
measurement applications [10-14]. However, stray capacitances 
can be generated by various sources, such as background noise, 
which can significantly influence the output sensitivity of the C4D 
structure and thus impede the ability to detect objects or particles 
on the microscale.

Inductor-capacitor (LC) passive wireless sensing is based on 
the principle of resonance frequency shift detection. This is a high 
sensitivity technique that has been applied in several applications 
such as speed, position, and pressure detection [15, 16]. A potential 
technique to overcome the limits and difficulties of the conventional 
C4D structure is its integration with LC sensing, resulting in a 
passive capacitively coupled contactless conductivity detection 
(PC4D) sensor [17]. In this study, the C4D structure, which acts 
as the sensing component, was connected to a PCB planar helical 
inductor to constitute a detection path whose resonant frequency 
is utilized for fluidic flow detection. LC sensors require no direct 
power connection to electrodes, thus minimizing any inadvertent 
change in electrical and chemical properties of the measured 
fluidic flow. The C4D structure, as well as the planar inductors, 
were successfully fabricated using PCB technology. The fabricated 
PCB-based PC4D structure was experimentally examined and the 
performance of the proposed method was evaluated by detecting 
the conductivity of the fluid and the presence of foreign objects in 
the fluidic flow. 

2. Working principle and design
Figure 1A shows the design of the proposed PCB-based 

PC4D sensor for fluidic flow detection. The proposed structure 
comprises two through-hole electrodes enclosing the conduit or 
the insulating pipe that contains the fluidic flow to be measured. 
The two electrodes create a sensing capacitor with the materials 
inside the channel wall acting as the dielectric material (Fig. 1B). 
An equivalent electrical circuit of the C4D structure is shown in 
Fig. 1C. The resistance of the fluid inside the channel is RS. The 
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wall capacitance is Cw. The configuration of the two electrodes 
also creates a stray capacitance Cp. Therefore, the impedance of 
the C4D cell, Z, can be determined by Q.L. Do, et al. (2019) [17]:
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Fig. 1. Design of the proposed PCB-based PC4D sensor (A), a cross-section of a C4D 

structure (B), and the simplified equivalent circuit of the C4D structure (C). 
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(1)

where RS is the solution resistance; ω=2πf, f is the measurement 
frequency; 𝑗 is the imaginary unit. As can be seen from the above 
equation, the imaginary part of the impedance is a function of ω, 
Cw, Cp, and Rs. The wall capacitance Cw depends on the dielectric 
layer’s thickness and permittivity and the electrode’s size. Thus, 
any change in the permittivity of the fluid material inside the 
conduit would give rise to a change in impedance of the sensing 
capacitor formed by the two electrodes.

As discussed above, two electrodes in the C4D structure 
constitute a capacitor with the dielectric material being the fluid 
flow. The sensing capacitor is connected to an inductor L2, forming 
an LC resonator. The resonant frequency fres of the detection path 
and quality factor Q can be expressed as Q.L. Do, et al. (2019) [17]:
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where C is the capacitance of the sensing component in the 
detection path. The presence of an object or a change in the 
conductivity of the fluid gives rise to a change in the capacitance 
of the sensing capacitor. This in turn leads to a change in the 
resonant frequency of the LC resonator. The detection path is 
then wirelessly connected to the network analyser via a pair of 
antennae to detect such a change. The primary inductor L1 works 

as the transmitting antenna. This antenna functions as the energy 
transmitting terminal by sending signals to the receiving antenna, 
which is the receiving inductor L2 at the detection path with the 
C4D structure. The electrical signals from the network analyser are 
reflected through the pair of transmitting and receiving inductors. 
R1 and R2 are the parasitic resistances of the inductors. The input 
impedance Zi of the network analyser is the combination of the 
reader path impedance ZR and the detection path impedance Zd, 
which is given by Q.L. Do, et al. (2019) [17]:
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where 𝜔 is the angular frequency; 𝑅1 and 𝐿1 are the resistance 
and inductance of the readout coil, respectively; M is the mutual 
inductance between the transmitting antenna and the receiving 
antenna. The mutual inductance M of the coil is given by Q.A. 
Huang, et al. (2016) [18]:
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where k is the geometry-dependent coupling coefficient with 
a value that varies between 0 (no coupling) and ±1 (maximum 
coupling). 

As can be seen from Eq. 4, with the values of the primary 
and secondary inductors (L1 and L2) and the mutual inductance M 
between two coils considered constant during the measurement, 
the input impedance to the network analyser Zi depends on the 
capacitance of the C4D sensor as well as the operating frequency. 
The input impedance of the detection path will experience changes 
corresponding to a change of the fluidic flow. This results in a change 
of the input reflection coefficient S11, i.e., the ratio of reflected and 
incident power. As the excitation frequency corresponds to the 
resonant frequency of the LC detection path, the reflection coefficient 
S11 hits a low. Therefore, the change in the resonant frequency of the 
LC circuit can be detected by analysing the reflection coefficient S11.

3. Measurement setup
Figure 2A shows the experimental measurement setup. A 

network analyser (E5061A, ENA Agilent) was used as a vector 
network analyser to detect the resonant frequency of the LC 
wireless passive sensor by analysing the reflection coefficient S11. 
At the resonant frequency of the detection path, the parameter S11 
reaches a minimum value. The fluidic channel was a silicon tube. 
A syringe micropump (AS ONE - CT10) was used to inject the 
solution into the fluidic channel. In addition, several experiments 
were conducted to determine the resonance frequency change 
while air bubbles move through the detection zone. The Y-channel 
configuration was employed in conjunction with two syringes. One 
syringe contained a sodium chloride (NaCl) solution, while the 
other was filled with air. As the micropump was activated, liquid 
droplets and air bubbles were generated inside the main channel. 
By altering the liquid and air phase flow rate, liquid droplets and 
air bubbles of different sizes can be achieved.

Fig. 1. Design of the proposed PCB-based PC4D sensor (A), a 
cross-section of a C4D structure (B), and the simplified equivalent 
circuit of the C4D structure (C).
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Both the electrodes of the C4D structure as 
well as the primary and secondary inductors 
were fabricated by the (PCB) technique. 
Fig. 2B shows the design of the transmitting 
and receiving antennae as well as the design 
of the two electrodes that constitute the 
sensing component of the C4D structure. The 
electrodes of the C4D structure were designed 
as through-hole semicircles facing each other. 
Each electrode has an inner radius of 1.15 
mm and an outer radius of 2.5 mm. The two 
electrodes are separated by a cavity where the 
fluidic channel is placed for measurements, as 
shown in Fig. 2C. Similar to the capacitance 
sensing electrodes, the receiving antenna was 
designed as helical coplanar inductors on a 
PCB board. The inductor at the detection path 
has a radius of 12.3 mm, which is composed 
of 23 turns, as shown in Fig. 2B. Meanwhile, 
the transmitting antenna has a dimension 
of 20x20 mm with a width of 1 mm. Two 
inductors are placed in air and separated by 
a fixed distance of 8.0 mm.

4. Results and discussion
4.1. Fluidic flow conductivity detection

NaCl solutions with concentrations 
ranging from 10 mM to 1 M were utilized to 
examine the ability to detect changes in the 
conductivity of the fluid flow. The network 
analyser detects the resonant frequency of 

the detection path by parametrically sweeping the stimulating 
frequencies. The reflection coefficient S11 corresponding to the 
sweeping frequency of the excitation signals was acquired. At the 
resonant frequencies, the reflection coefficient S11 experiences a 
minimum. Fig. 3A shows the relationship between the reflection 
coefficient S11 and the stimulating frequency with several values 
of the NaCl concentration solution. In the experiments with each 
concentration, the acquired values of resonant frequency at which 
S11 was a minimum were extracted. The experimental results show 
that when the concentration of the NaCl solution filling the fluidic 
channel increases from 10 mM to 1 M, the resonant frequency of the 
proposed sensor decreases from 49.32 to 49.12 MHz, respectively. 
At the same time, the value of the reflection coefficient S11 changes 
from -10.04 to -11.01 dB. Therefore, it can be concluded that the 
change in the measured solution not only caused a shift in the 
resonant frequency but also the value of the reflection coefficient 
S11. Fig. 4 also demonstrates that the resonant frequency varies with 
the concentration of the solution. On a logarithmic scale of NaCl 
concentration, the dependence of the resonant frequency on the 
NaCl concentration is considered roughly linear with a decreasing 
rate of approximately 0.098 MHz/decade. Therefore, it is possible 
to utilize the proposed LC wireless passive sensor to detect the 

Fig. 3. Dependence of the reflection coefficient S11 on the NaCl concentration ranging 
from 10 mM to 1 M over frequencies ranging from 48 to 50.5 MHz (A) and over the 
frequency range from 48.8 to 49.8 MHz (B).

Fig. 2. Measurement setup (A), the fabricated detection path 
including the receiving antenna and the PCB-based electrodes of 
the C4D structure (B), and the experimental generated droplets (C).

Fig. 4. The dependence of the resonant frequency on the concentration of NaCl solution.
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electrical properties of the solution by measuring the resonant 
frequencies of the detection path.

 4.2. Detection of liquid drops and air bubbles passing 
through the sensor

An air bubble generation structure utilizing a Y-junction 
configuration was conducted to investigate the ability to detect 
the appearance of foreign objects in the fluidic flow. Two syringes 
with a volume of 1 ml were employed to generate the same flow 
rate for the two phases. The syringe micropump speed was set at 
6 mm/min. With such configurations, the length of the droplets 
and air bubbles generated in the main channel were equal. The 
resonance frequency of the detection path was monitored and 
tracked while air bubbles and droplets moved along the main 
fluidic channel through the detection zone.

Fig. 5. Resonant frequency of the detection path as bubbles pass 
through the detection zone with the channel filled with 1 M NaCl.

The alternation of the resonant frequency according to the 
passage of air bubbles through the detection zone is shown in Fig. 
5. The results show the resonant frequency’s dependence on air 
bubble position inside the fluidic channel, which causes a change 
in the resonance frequency of the detection path circuit. When the 
droplets and air bubbles pass through the sensing region of the C4D 
structure, the measured resonant frequency of the detection path 
changes. As the air bubbles travel through the detection region 
at T1, the acquired resonant frequency increases. In contrast, 
the resonant frequency value drops at the appearance of liquid 
droplets passing the detection zone (T2). Since the Y-junction 
droplet generation configuration generates air bubbles and liquid 
droplets consecutively, the acquired resonant frequency changed 
harmonically. These primary results demonstrate that the detection 
system can recognize the appearance of foreign objects or air 
bubbles. Compared to the C4D technique proposed by X.Y. Tang, 
et al. (2020) [19], which used the C4D technique with capacitive 
reactance elimination, the LC passive wireless detection method 
appears to be more precise. The observed data seems to be less 
influenced by background noise. In addition, this flow detection 
approach does not require a complex circuit for signal conditioning 
or a processing unit.  

Object detection performance of the proposed system was 
experimentally studied. The sizes of droplets and air bubbles were 
altered by modifying the input flow rate into the Y junction. The 
length ratio (LR) of a generated droplet is defined as the ratio of 
the length of the liquid droplet over the length of an air bubble 
generated in the main fluidic channel:
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In this study, two syringes of different volumes, including 1 
and 3 ml, were employed to produce a LR of approximately 1:5. 
Fig. 6 shows the variation of resonant frequency in the detection 
path when 1 M NaCl droplets and air bubbles passed through 
the sensor with LRs of 1:1 and 1:5. It can also be seen from the 
results that in the case of LR=1:5, the average value of resonant 
frequency was higher than that of LR=1:1. In the case of LR=1:5, 
the resonant frequencies varied from approximately 49.5 to 50.25 
MHz. Meanwhile, the resonant frequencies changed in the range 
of 49.34 and 49.85 MHz in the case of LR=1:1. In addition, it can 
also be observed that the peak of the signals with LR=1:5 lasted 
longer than the minimum signal peaks at LR=1:1. This can be 
explained by the fact that the air bubbles were longer in the case 
of LR=1:5. Therefore, it took the air bubbles more time to pass 
through the detection zone, which resulted in the maximum peaks 
of the acquired signals lasting longer.

Fig. 6. The acquired resonant frequency of the system with 1 M NaCl 
droplet-air bubble experiments with LRs of 1:1 and 1:5.

With each LR value, the influence of solution concentration 
was studied. Specifically, five concentrations of the NaCl solution, 
including 0.01, 0.05, 0.1, 0.5, and 1 M, were investigated. 
The resonant frequencies reached a minimum when the NaCl 
droplets passed through the sensor. This passage corresponds 
to the minimum peaks of the acquired resonant frequency. Fig. 
7A shows the dependence of the resonant frequency minima 
on the concentration of NaCl solution with LRs of 1:1 and 1:5, 
respectively.

In the case of LR=1:1, the passage of 0.01 M NaCl droplets 
resulted in a resonant frequency of 49.419 MHz. As the NaCl 
droplet concentration increased, the minimum peak values also 
decreased on a logarithmic scale with a rate of 0.041 MHz/decade. 
The minimum was approximately 49.338 MHz with the passage of 
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1 M NaCl droplets. Similarly, the passage of 0.1 M NaCl droplets 
with LR=1:5 resulted in a minimum peak of 49.504 MHz, while 
the 1 M NaCl droplets resulted in a resonant frequency of 49.5043 
MHz with the declining rate being 0.048 MHz/decade. In contrast, 
when the concentration of NaCl increased, the resonant frequency 
maxima corresponding to the passage of air bubbles through 
the detection zone increased as well, as shown in Fig. 7B. The 
maximum peak value for LR=1:1 was 49.8259 MHz with 0.01 
M NaCl droplets. As the NaCl concentration grew to 1 M, the 
resonant frequency increased to 49.864 MHz with a rate of 0.0192 
MHz/decade. Meanwhile, the maximum resonant frequency also 
increased with the NaCl concentration, but at a higher rate of 
0.0237 MHz/decade in the case of LR=1:5. It can be seen from both 
Fig. 7A and Fig. 7B that the increase of resonant frequency with 
molar concentration is less significant when measuring maximum 
peaks. This is because peak maxima represent the appearance of 
air bubbles, as illustrated in Fig. 5, thus, if the air bubble already 
occupies a large area of the detection region, the concentration of 
NaCl does not have much influence.  

Fig. 8. Difference between maximum and minimum peaks of the 
resonant frequencies according to the passage of NaCl droplets 
at different LRs.

Figure 8 shows the difference between maximum and minimum 
peaks (Δfres) of the resonant frequencies according to the passage 
of NaCl droplets at different LRs. As can be seen from the graph, 
the differences, given by Δfres, for LR=1:1 and 1:5 seem to be quite 
clear. The frequency gap between the signal of LR=1:1 and LR=1:5 
is approximately 0.18 MHz. As the NaCl concentration increased, 
Δfres also increased in both cases. At the same time, the frequency 
gap broadened but not significantly. It can be implied that Δfres 
certainly indicates the ratio between the length of droplets and air 
bubbles as well as the conductivity of the droplets. Although the 
proposed system is currently limited in characterizing different 
substances in the fluidic flow, the difference in Δfres in these 
experiments has demonstrated that implementation of the resonant 
frequency of the proposed sensing structure comprising the C4D 
structure coupled with a coplanar inductor can detect not only 
the conductivity of the solution but also the size and electrical 
conductivity of the particles or objects inside the fluidic channel.

5. Conclusions
This paper proposed and developed a PCB-based PC4D sensor 

for fluidic flow detection. The sensing structure integrates a C4D 
structure with a coplanar inductor to form a detection path with its 
resonant frequencies varying with fluid flow. The obtained results 
show that the conductivity of the fluidic flow can be determined by 
measuring the resonant frequency of the detection path utilizing 
the reflection coefficient S11. The resonant frequency experiences 
a linear increase according to the increase in the electrical 
conductivity of the fluidic flow. Experiments were also carried 
out to investigate droplet-air bubble detection. The frequency 
gap between the case of LR=1:1 and LR=1:5 was approximately 
0.18 MHz. The experimental results indicated that by using the 
proposed method, the size and electrical conductivity of the 
particles or objects inside the fluidic flow could be estimated. The 
results show this scheme has great potential for use in various 
applications in biomedical and chemical fields but especially in 
biomedical applications.

                                                                                 
Fig. 7. Dependence of minimum (A) and maximum (B) peaks on the concentration of NaCl with the LR of 1:1 and 1:5.
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