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Abstract
Invasive fungal infections are a strong contributor to 
healthcare costs, morbidity and mortality, especial-
ly amongst hospitalized patients. Historically, Candida 
was responsible for approximately 15% of all nosocomial 
bloodstream infections. In the past 10 years, the epide-
miology of Candida species has altered, with increas-
ing prevalence of resistant species. With rising fungal 
resistance, especially in Candida spp., the demand 
for novel antifungal therapies has exponentially in-
creased over the last decade. Newer antifungal agents 
have become an attractive option for patients need-
ing long-term therapy for infections or those requiring 
antifungal prophylaxis. Despite advances in coverage 
of non-Candida pathogens with newer agents, clinical 
scenarios involving multidrug-resistant fungal patho-
gens continue to arise in practice. Combination anti-
fungal therapy can lead to a host of side-effects, some 
of which can be drug limiting. Additional antifungal 
therapies with enhanced fungal spectrum of activity 

and decreased rates of adverse effects are warranted. 
Fosmanogepix, ibrexafungerp, olorofim and rezafungin 
may help fill some of these gaps in the antifungal ar-
mamentarium.

This article is part of the Challenges and strategies in 
the management of invasive fungal infections Special 
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Introduction
Invasive fungal infections are a strong contributor to 
healthcare costs, morbidity and mortality, especial-
ly amongst hospitalized patients. In epidemiological 
studies conducted in 2014, Candida was responsible for 
approximately 15% of all nosocomial bloodstream infec-
tions.1,2 In the past 10 years, the epidemiology of Candida 
species has altered, with increasing prevalence of Can-
dida glabrata in place of the historically more suscepti-
ble Candida albicans.3

Beyond Candida, there are also increasing incidences 
of Cryptococcus and mould species such as Aspergil-
lus, Scedosporium, Mucorales, Rhizopus, Fusarium and 
others.4 Resistant invasive fungal infections have been 
associated with mortality rates of up to 60%, and dispro-

portionately affect already vulnerable or immunosup-
pressed patients.3

Currently approved antifungal therapies are limited to 
only four therapeutic classes and are plagued by toxic-
ities and resistance that limit use in some populations. 
As the concerns for resistant fungal infections grow, cli-
nicians should be familiar with the current and upcoming 
antifungal therapies to best manage their patients. The 
purpose of this review is to discuss resistance mecha-
nisms and challenges with currently available agents, 
provide evidence for combination therapy, and evalu-
ate the newly available and upcoming antifungal agents 
and their proposed place in the treatment of challenging 
fungal infections. We have chosen to focus this review on 
three of the four prominently used classes as use of flucy-
tosine is clinically limited to selected infections (predomi-
nantly combination therapy for cryptococcal meningitis).
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Methods
A systematic literature search of the PubMed, Google 
Scholar and ClinicalTrials.gov databases was performed 
with the search terms “antifungal”, “novel antifungals”, 
“resistance”, “amphotericin”, “flucytosine”, “echinocan-
din”, “azole” and “combination therapy”. References of 
relevant articles were reviewed and added as appro-
priate. English-language clinical trials, meta-analyses, 
randomized clinical trials, reviews or systematic reviews 
evaluating antifungal therapy, combinations or antifun-
gal resistance were reviewed. Relevant articles were in-
cluded in the appropriate sections below.

Review
Mechanisms of resistance to currently 
available antifungals
From a clinical perspective, understanding mechanisms 
of antifungal resistance has often proved challenging 
due to the biological diversity represented amongst the 
medically important fungi. Broadly speaking, the differ-
ing metabolic capacity, cellular machinery and repro-
duction cycles of various yeasts, moulds and dimorphic 
fungi make general trends regarding antifungal activity 
difficult to discern. This is further compounded by the 
significant amount of genetic diversity exhibited even 
within a given genus such as Candida. Haploid or-
ganisms, such as C. glabrata, can acquire resistance 
easily by simple genetic duplications, deletions or oth-
er chromosomal modifications. This contrasts with the 
development of resistance in diploid organisms like C. 
albicans, which requires genetic modifications in both 
chromosome pairs for antifungal resistance to become 
readily apparent. Molecular studies continue to define 
the differences amongst organisms, ultimately culmi-
nating in a taxonomic reclassification (Table 1) of many 
medically important fungi.5 These cases of relative ge-
netic dis-similarity amongst Candida species provide 
context to the differing susceptibility patterns amongst 
various organisms previously classified based on mor-
phological relationships.

Fungi broadly express some mechanisms of resistance 
that would be relatively familiar to those with an aware-
ness of general mechanisms of bacterial resistance. 
These mechanisms can be largely classified as (1) tar-
get-site modification, either through overexpression or 
changes to the drug target itself; (2) upregulation of 
drug transporters (largely analogous to efflux pump up-
regulation); (3) cellular changes induced by stress re-
sponse to antifungal therapy; (4) restricted access to 
the target site via biofilm production or increased chitin 

synthesis; and (5) non-target effects related to mRNA 
processing and loss of mitochondrial DNA in certain 
species. Similarly to bacteria, fungi may also express one 
or more of these resistance factors at a given time, af-
fecting the extent and degree of antifungal resistance. 
Several mechanisms are implicated in the development 
of resistance to multiple antifungal agents and may also 
result in cross-resistance.

Azole antifungals
The azole antifungal class is widely used clinically, 
ranging across pathogens and infectious syndromes 
depending on the agent selected. The primary mech-
anism for azole antifungals is the enzyme lanosterol 
14α-demethylase, which is responsible for synthesizing 
ergosterol, a component of the fungal cell membrane.

Efflux pumps
Before azole-enzyme complex binding, efflux pumps can 
effectively reduce intracellular azole concentrations.6 
The two primary drug efflux pumps responsible for azole 
resistance are the ATP-binding cassette (ABC) and ma-
jor facilitator superfamily (MFS) systems. Regulation of 
these efflux pumps is dependent on a variety of tran-
scriptional and transacting factors, several of which con-
tain drug-responsive elements that allow for efflux pump 
induction in the presence of certain drugs, including 
azoles.7 Upregulation of these drug transporters is one 
of the most common mechanisms of azole resistance in 
yeasts, particularly Candida species. Although these sys-
tems can also be found in Aspergillus species, they less 
commonly contribute to resistance in these organisms.8

Varying numbers of ABC transporters have been identi-
fied in multiple Candida, Cryptococcus and Aspergillus 
species.9–11 CDR1 and CDR2 are the primary ABC trans-

Table 1. Taxonomic reclassification of medically 
important fungi.

Previous name Current name

Candida glabrata Nakaseomyces glabrata

Candida guillermondii Meyerozyma guilliermondii

Candida krusei Pichia kudriavzevii

Rhizopus microsporus
 var chinensis
 var oligosporus
 var rhizopodiformis

Rhizopus microsporus
(varieties no longer 
recognized)

Rhizopus oryzae Rhizopus arrhizus

Rhizomucor variabilis Mucor irregularis

Data taken from ref.5
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porters responsible for azole resistance in C. albicans.6 
CgCDR1, CgCDR2 and CgSNQ2 have been associated 
with azole resistance in C. glabrata, whilst Afr1 plays a 
similar role in C. neoformans.12 Beyond CDR1B (formerly 
AfuMDR1), specific ABC transporters involved in azole 
resistance amongst Aspergillus species remain large-
ly unknown at present.13 Several MFS transporters have 
been identified in genomic studies of Candida species, 
though only MDR1 has been demonstrated to increase 
azole efflux when overexpressed in C. albicans and 
C. dubliniensis.14 Upregulation of the MFS transporter 
AfuMDR3 in Aspergillus species has been identified in 
itraconazole-resistant isolates.15

Target-site modification
Resistance to azole antifungals can occur through a va-
riety of modifications to the lanosterol 14α-demethylase 
encoding genes, particularly ERG11 in yeasts and CYP51 
in moulds. Modifications to or near the enzyme’s haeme 
moiety can block azole binding, whilst overexpression 
of ERG11 or CYP51 can reduce azole susceptibility by in-
creasing target abundance and thereby requiring larger 
amounts of drug for inhibition.16,17 ERG11 overexpression in 
C. albicans can result from atypical chromosome for-
mation, via isochromosomes or duplication, as well as 
activating mutations in the transcription factors regu-
lating ergosterol biosynthesis.18–21 Overexpression of ERG11 
has also been identified in azole-resistant isolates of  
C. glabrata, Candida parapsilosis, Candida tropicalis 
and Candida krusei.22–26 In contrast to overexpression of 
ERG11, loss-of-function mutations in the ERG3 gene can 
also reduce azole susceptibility. The loss of function in 
ERG3 and the subsequently reduced synthesis of pre-
cursor sterols used as substrates by ERG11 modify the 
sterol membrane content and allow the cell to grow in 
the presence of azole antifungals.27 Whilst this rarely re-
sults in high-level azole resistance, this modification to 
ERG3 can also provide cross-resistance to polyene an-
tifungals by depletion of target ergosterol.28 At present, 
these changes have not been observed in Aspergillus 
species.8

Mutations in the lanosterol 14α-demethylase encoding 
genes or promoters of CYP51 are the most common 
mechanisms of azole resistance in Aspergillus spe-
cies.29,30 Widespread agricultural use of azole antifun-
gals is believed to have propagated this mechanism 
in a variety of isolates.31 Over 30 mutations have been 
identified in CYP51A (one of two CYP51 isoforms) alone, 
with the position and nature of the mutations influenc-
ing cross-resistance between various azoles.32–34 All 
known mutations confer resistance to at least itracona-
zole, with various mutations imparting various degrees 
of resistance to voriconazole, posaconazole and isavu-
conazole.35–41 Overexpression of CYP51A and CYP51B with 

subsequent reductions in azole susceptibility have also 
been observed in Aspergillus species.42,43

Cellular changes induced by stress response, biofilm 
formation and indirect-target effects
Cellular stress response and signalling allow fungal cells 
to survive membrane-related stress associated with ex-
posure to azole antifungals.8 One of the primary mecha-
nisms associated with this response is heat shock protein 
90 (Hsp90), a highly conserved, global regulatory protein 
involved in cellular signalling.44 Mutations in Hsp90 or its 
upstream regulators can impact ergosterol biosynthe-
sis, reduce matrix glucan levels and modulate biofilm 
resistance.8,45–47 Compromise of Hsp90 has been spe-
cifically shown to reduce Candida species tolerance to 
azoles48 and regulate azole resistance within biofilms.49

Biofilm formation is one of the key resistance mecha-
nisms found in fungi, particularly Candida species.50 The 
formation of dense carbohydrate, protein and nucle-
ic acid networks combines with β-1,3-glucan in the cell 
wall to facilitate binding to a variety of surfaces and limit 
penetration of azoles into fungal cells. Biofilms produced 
by Candida species are particularly problematic as se-
questration of azoles in the biofilm matrix and induction 
of efflux pumps can lead to high levels of azole resist-
ance. Formation of biofilms amongst Aspergillus species 
is less well studied but has also been observed to con-
tribute to azole resistance.51

A variety of non-specific mutations can modify or com-
plement mechanisms of resistance, including efflux 
pumps and non-promoter-based transcriptional reg-
ulation. Azole resistance in C. glabrata can result from 
mitochondrial mutants, whereby partial or complete 
loss of mitochondrial DNA results in the formation of ‘pe-
tite’ mutants.52 Upregulation of transcriptional activators 
and their associated genes, such as cgPDR1 in C. gla-
brata, produces intrinsic resistance to azole antifungals 
in these petite mutants.53 Conflicting data indicate that 
these mutants may or may not be avirulent.53–55 Mod-
ifications in mRNA stability have also been implicated 
in azole resistance. Hyperadenylation of the polyA tail 
in mRNA encoding efflux pump CDR1 has been identi-
fied in an azole-resistant isolate of C. albicans. This 
post-transcriptional regulation with hyperadenylation 
extended CDR1 mRNA half-life by three times that ob-
served in azole-susceptible isolates.56,57 Similar to direct, 
promoter-based upregulation of CDR1, enhanced mRNA 
stability and half-life can contribute to increased levels 
of efflux pump and azole resistance.

Polyenes
Despite being in clinical use since the 1950s, resistance 
to polyene antifungals, specifically amphotericin B, is 
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relatively rare.57 Severe fitness trade-offs have been 
associated with acquired amphotericin B resistance, 
whilst its unique mechanism of action targeting er-
gosterol, a major protein in the fungal cell membrane, 
may also contribute to low rates of resistance develop-
ment.57,58 Nevertheless, amphotericin B resistance has 
been reported in Candida spp., with the most common 
mechanism involving modifications to the ergosterol bi-
osynthesis pathway.59,60

Intrinsic and acquired amphotericin B resistance var-
ies by species as well as broadly between pathogen-
ic yeasts and moulds. Resistance to amphotericin B in 
C. albicans isolates is rare,61–64 though loss-of-function  
mutations in ERG11 and ERG3 or ERG5 can result in sub-
stitution of ergosterol for alternative and precursor  
sterols into the fungal cell membrane.57,60,65 Simi-
lar substitution effects have also been observed with 
C. glabrata and Candida lusitaniae, though resulting 
from ERG6 and ERG2 mutations.66,67 Whilst C. glabra-
ta resistance to amphotericin B is uncommon,61,68–70 C. 
lusitaniae susceptibility rates are variably reported.71–74 
However, the development of amphotericin B resist-
ance in C. lusitaniae isolates whilst on treatment has 
been documented.75 Of increasing concern for ampho-
tericin B resistance are Candida auris and the Candida 
haemulonii complex (C. haemulonii, C. haemulonii var 
vulnera and Candida duobushaemulonii). Currently, 
mechanisms of polyene resistance in C. auris remain 
poorly understood, though mutations in ERG6 and sub-
sequent membrane sterol substitutions have been 
reported.76 Multiple ergosterol biosynthesis modifica-
tions resulting from mutations in ERG2, ERG3, ERG6 and 
ERG11 have been identified in the C. haemulonii com-
plex.77 Amphotericin B resistance has also been report-
ed in cryptococcal species, though this rarely exceeds 
6% of isolates in surveillance studies.78–81 Inactivating 
mutations in ERG2 have been described in Crypto-
coccus neoformans but non-ergosterol biosynthesis- 
related mechanisms are thought to exist.82

Attenuation of polyene-induced oxidative stress is 
thought to be an important component of amphotericin 
B resistance, particularly in moulds such as Aspergillus 
terreus.83,84 When comparing intrinsically resistant or-
ganisms such as A. terreus with amphotericin B-suscep-
tible Aspergillus fumigatus, catalase levels are signifi-
cantly elevated.85 Increased production of this enzyme 
is thought to help inactivate the reactive oxygen species 
produced on polyene exposure, thereby minimizing any 
antifungal activity.86 Mutations in cellular messengers, 
such as Hsp70 and Hsp90, may also play a role in fa-
cilitating the emergence and/or maintenance of am-
photericin B resistance, though their role remains poorly 
defined at present.87–89

Structural changes in the fungal cell wall outside of sterol 
composition are also believed to contribute to ampho-
tericin B resistance. Increased concentrations of cell wall 
protein 1,3-α-glucan conferred resistance to ampho-
tericin B in an Aspergillus flavus isolate,90 whilst increased 
1,3-β-glucan concentrations yielded a similar result in a 
C. tropicalis isolate.91 Whilst the increased glucan syn-
thesis may represent the result of upregulation due to 
amphotericin B exposure, it has also been hypothesized 
that these enlarged cell walls served to inhibit the inter-
action between amphotericin B and sterols in the fungal 
membrane.90

Echinocandins
Target-site modification
Echinocandins are currently the primary agent recom-
mended for the treatment of invasive candidiasis be-
cause of their reliable activity and improved efficacy and 
tolerability compared with other treatments.92 They also 
play an important role in the prophylaxis and treatment of 
infections caused by Aspergillus spp. Whilst echinocandin 
resistance is rare, echinocandin non-susceptibility has 
been documented and its incidence is increasing, most 
notably in C. glabrata.93,94

Echinocandins bind reversibly to the FKS subunits of the 
enzyme 1,3-β-D-glucan synthase, thereby preventing 
synthesis of β-D-glucan cell wall components and weak-
ening the cell wall structure.95,96 The FKS subunits are en-
coded by similarly named genes: FKS1, FKS2 and FKS3.97 
The primary form of developed echinocandin resistance 
in Candida species comes from point mutations that oc-
cur in these regions, with the majority occurring in FKS1. 
Additionally, the intrinsic reduced susceptibility of C. par-
apsilosis is also thought to be a naturally occurring sub-
stitution in this region.98 The effects of mutations in the FKS 
genes on echinocandin minimum inhibitory concentra-
tions (MICs) of C. glabrata and subsequent echinocandin 
treatment outcomes are well documented.99 Whilst rarer, 
similar changes have been identified in C. albicans,100,101 

and the emerging pathogen C. auris has already shown 
evidence of these mutations.99–102 The specific mutations 
vary but notable mutations include S663, S629 and P659 
in C. glabrata, S645F, S645P and S645Y in C. albicans, and 
S652 or S639F in C. auris.102,103 Echinocandin resistance 
through FKS gene mutations has been identified in A. fu-
migatus isolates but the prevalence appears low. The pri-
mary mechanism for detection of FKS mutations remains 
susceptibility testing. However, this detection method is 
limited because individual mutations do not lead to pre-
dictable changes in measured MIC, suggesting compen-
satory mutations.97 Because a relatively small number of 
mutations are present in a large share of resistant organ-
isms, rapid diagnostics may be useful in the identification 
of potentially resistant organisms.104

http://drugsincontext.com
https://doi.org/10.7573/dic.2023-7-1


REVIEW  Antifungal challenges and pipeline drugsincontext.com

Stover KR, Hawkins BK, Keck JM, Barber KE, Cretella DA. Drugs Context. 2023;12:2023-7-1. https://doi.org/10.7573/dic.2023-7-1 5 of 23
ISSN: 1740-4398

Cellular changes
Candida and Aspergillus species may also devel-
op reduced echinocandin susceptibility through a 
stress-triggered response leading to increased chitin 
production. Hsp90 appears to play a significant role 
in mediating this increase via calcineurin. Hsp90 is 
believed to be one of the key factors in the observed 
‘paradoxical effect’ or ‘eagle effect’, which describes 
the increased growth at increasingly high echinocan-
din concentrations.105 Hsp90 or other members of this 
calcineurin pathway may be future targets of antifun-
gal or combination treatments. Singh et al. showed  
that loss of function of Hsp90 led to decreased cal-
cineurin activation, which led to echinocandin sus-
ceptibility.106 Additionally, Lamoth et al. showed that  
exposure to the calcineurin inhibitor geldanamycin  
improved fungicidal activity of caspofungin against 
echinocandin-resistant A. fumigatus.107 Other stress- 
induced responses have been investigated, including 
changes in lipid composition.108

Biofilm formation
Both Candida spp. and A. fumigatus have been shown 
to produce and persist in biofilms, reducing the suscep-
tibility of echinocandins. The exact mechanism of this 
remains unclear but components include extracellular 
matrix creation, efflux activity, altered metabolic activity 
and oxygen gradients. One driver of A. fumigatus bio-
film adhesion (alaA) has been identified and its deletion 
improved echinocandin susceptibility in a murine treat-
ment model.109,110

Response to resistant infections
Current evidence and guidelines recommend suscep-
tibility testing results should be used to guide decisions 
regarding treatment selection for Candida infections.92 

Whilst not as readily available, susceptibility testing may 
also be used to guide therapy for other fungal infections. 
Although limited, there are some data that suggest that 
in vitro susceptibility testing translates to clinical activity 
or lack thereof.111,112 This may be particularly important in 
areas known to have high levels of resistance.113 Current-
ly, no specific therapeutic approach is universally rec-
ommended for infections with reduced susceptibility to 
antifungal agents. Repeated susceptibility testing may 
help identify patients in whom antifungal susceptibility 
has diminished during treatment. Re-evaluation of im-
munosuppression needs may also be appropriate for 
patients failing to respond to treatment.

Overview of antifungal combination 
therapies: difficulties and challenges
Although there have been many theoretical or in vit-
ro-proposed mechanisms for antifungal synergy and 

enhanced antifungal activity in combination with other 
antifungals or alternative agents, clinical uptake of com-
bination therapy for antifungal infections has been slow. 
One concern with combining antifungal agents is that 
indifference or even antagonism has been demonstrat-
ed in several combination evaluations.114–117 For example, 
against several Candida species in in vitro assays, am-
photericin B was demonstrated to be antagonistic in 
combination with azole antifungals, including micona-
zole, clotrimazole, ketoconazole, itraconazole and flu-
conazole.114 In animal models, amphotericin was found 
to be antagonistic or indifferent in combination with 
itraconazole, posaconazole and fluconazole.114 Caspo-
fungin and fluconazole also demonstrated antago-
nism in an in vitro evaluation of the effect against C. 
albicans biofilms.114 Amongst FDA-approved antifungal 
agents, synergy was only demonstrated in vitro be-
tween amphotericin and flucytosine for C. albicans; ter-
binafine and the azole antifungals for C. albicans and 
C. glabrata; and terbinafine and amphotericin for C. 
albicans. Against C. albicans biofilms, caspofungin and 
amphotericin were found to be additive in vitro but not  
synergistic. Given these concerns for indifference or an-
tagonism that derived from in vitro and animal models 
and the challenges of additive toxicity, antifungal mon-
otherapy is still primarily chosen for many clinically rele-
vant fungal infections.

Beyond the well-known and widely accepted antifun-
gal combination therapy of amphotericin and flucyto-
sine for cryptococcal infections116,118,119, limited evidence 
is available to support combination antifungal therapy 
with currently available agents.

Candida species
One study evaluated combination therapy of flucona-
zole and amphotericin for invasive candidiasis and in-
fective endocarditis in murine and rabbit models.120 In 
the neutropenic mouse model, survival was significantly 
prolonged with both amphotericin monotherapy and 
amphotericin–fluconazole combination therapy. In an 
invasive endocarditis rabbit model, fungal burden in car-
diac vegetations were significantly decreased with both 
amphotericin monotherapy and combination therapy. 
No antagonism was noted but the combination was not 
found to be additive or synergistic in these models.

In a study of 85 patients living with HIV, investigators 
evaluated the efficacy of fluconazole monotherapy, 
itraconazole plus flucytosine, or placebo in the treat-
ment of oesophageal candidiasis.121 Clinical cure was 
experienced by 75.8% and 72.4% in the fluconazole and 
itraconazole-flucytosine combination therapy groups, 
respectively, and both were significantly better than the 
placebo group (p<0.001). Adverse effects were compa-
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rable between groups, with no statistically significant 
difference from placebo. One limitation of this study is 
the choice of combination agents, as it is difficult to de-
termine whether the combination of fluconazole and 
flucytosine may have provided different results than 
itraconazole and flucytosine. Although the combination 
of itraconazole and flucytosine was as effective as flu-
conazole monotherapy, clinicians should be aware of 
the challenges of multiple agents and possible additive 
toxicities in the context of limited additional benefits over 
monotherapy.

Aspergillus species
In an in vitro analysis, activities of posaconazole and 
caspofungin were evaluated alone and in combination 
against four A. fumigatus isolates with varying posa-
conazole MICs.121 Isolates included one wild-type strain, 
one posaconazole-susceptible/caspofungin resistant 
strain and two posaconazole-resistant strains. Although 
combination therapy did not improve the activity for the 
two posaconazole-susceptible strains, synergistic ac-
tivity was demonstrated in the posaconazole-resistant 
strains.122 In another in vivo efficacy analysis comparing 
voriconazole monotherapy, anidulafungin monothera-
py and combination therapy for invasive aspergillosis, 
combinations were found to be synergistic in voricona-
zole-susceptible isolates and additive in resistant iso-
lates.123 Based on these data, it may be reasonable to 
use a combination of an azole plus an echinocandin for 
infections caused by azole-resistant Aspergillus spe-
cies.124

In another in vitro evaluation, ibrexafungerp (SCY-078) 
was tested in combination with amphotericin, voricona-
zole and isavuconazole against four wild-type strains of 
A. fumigatus and two azole-resistant strains.125 In these 
checkerboard tests, combinations of ibrexafungerp plus 
voriconazole or isavuconazole were synergistic for the 
wild-type tested strains (4/4 and 4/4 tested wild-type 
strains susceptible, respectively). The combination of 
ibrexafungerp plus amphotericin was also found to be 
synergistic in wild-type strains (4/4), with synergy also 
demonstrated in one of two azole-resistant strains test-
ed. Given these results and the relatively new FDA ap-
proval of this agent, the combination of ibrexafungerp 
plus amphotericin shows promise and should be inves-
tigated further in cases of azole-resistant invasive As-
pergillus.

In addition to the in vitro evaluations, a number of clinical 
studies that have evaluated the utility of combination 
therapy for invasive aspergillosis in adult haematology 
patients have been reviewed by Candoni et al.126 Many 
of these combinations were used for salvage therapy.126 
The majority of studies included in this review are retro-

spective, but three smaller prospective studies (patient 
number ranging from 30 to 454) were also included. 
Mortality rates ranged from 0% to 91%, and combinations 
of an echinocandin and liposomal amphotericin B had 
the best survival rates when used as first-line therapy 
(100% survival, n=30 patients).127 Despite this, the cur-
rent Infectious Diseases Society of America aspergillosis 
guidelines (2016) recommend monotherapy with a tri-
azole as preferred first-line therapy.128

Mucorales
Mucorales, even more than the other presented fungal 
pathogens, boasts high mortality rates, limited treat-
ment options and complicated clinical courses.129 Be-
cause of these factors, combination therapy against 
Mucorales, including several common Mucor species 
and Rhizopus species, has been studied a fair amount 
because the advent of the newest triazole antifungals. 
These data are described in detail elsewhere.126,129–131 De-
spite a relatively larger amount of data for Mucorales, 
there is still not a universally accepted combination for 
these difficult-to-treat infections, though the guidelines 
from the European Confederation of Medical Mycology 
provide helpful insight.132

Pipeline agents
With rising fungal resistance, especially Candida spp., the 
demand for novel antifungal therapies has exponential-
ly increased over the last decade.133 Despite advances in 
coverage of non-Candida pathogens with newer azole 
agents, clinical scenarios involving multidrug-resistant 
fungal pathogens continue to arise in practice, and data 
for combination therapy has been limited outside cryp-
tococcal disease.134,135

Below, new antifungal agents will be further explored. 
Specifically, focus will be placed on pharmacokinet-
ics and pharmacodynamics (PK/PD) and relevant data 
from clinical trials that have either been completed or 
are in the process of being completed. A brief summa-
tion of all agents can be found in Table 2. Of note, opel-
conazole and oteseconazole are not discussed in detail 
below, and we direct the reader to the following articles 
for further information on these agents.136–141

Fosmanogepix
Mechanism and spectrum
Fosmanogepix (APX001) is a prodrug with a novel mech-
anism that is rapidly converted to the active moiety 
manogepix.137 Once converted, manogepix targets the 
enzyme Gwt1, which is a protein involved in the catalysa-
tion of inositol acylation and ultimately trafficking and 
anchoring of mannoproteins. Blockade of the Gwt1 leads 
to an interruption in the synthesis of glycosylphosphati-
dylinositol-anchored mannoproteins, which causes dis-
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ruptions in the integrity of the cell wall. Additionally, man-
noproteins are necessary for both adhesion to host cells 
as well as evasion of the host immune response, and 
disruption of mannoprotein maturation and localization 
has numerous downstream physiological effects.142

Activity of fosmanogepix encompasses many fungal 
pathogens, including both yeasts and moulds. Specifi-
cally, fosmanogepix has shown in vitro activity against 
Candida spp. (including C. auris), Cryptococcus neofor-
mans, Coccidioides spp., Aspergillus spp., Fusarium spp., 
Scedosporium spp. and other moulds. Furthermore, fos-
manogepix retains in vitro activity against isolates of C. 
albicans, C. auris and C. glabrata that are resistant to 
both azoles and echinocandins and against azole-re-
sistant A. fumigatus.137,142 However, fosmanogepix has 
poor in vitro activity against C. krusei and some of the 
Mucorales, including Mucor and some Rhizopus spp.137,142

Early trials
Multiple studies have evaluated the PK/PD of fosmano-
gepix in animal models. In 2017, Mansbach et al. evalu-

ated the PK/PD of a single oral or intravenous dose of 
fosmanogepix in both rat and monkey models.143 Results 
from this study demonstrated the excellent tissue pene-
tration of fosmanogepix, including to lung, brain and eyes 
in both animal models regardless of the route of admin-
istration. In 2020, Alkhazraji et al. evaluated the in vivo 
activity of fosmanogepix in immunosuppressed murine 
models with haematogeneously disseminated fusario-
sis and pulmonary scedosporiosis.144 For scedosporiosis, 
treatment of mice with 78 mg/kg and 104 mg/kg of body 
weight fosmanogepix, along with 1-aminobenzotriazole 
significantly increased median survival time versus 
placebo from 7 days to 13 and 11 days, respectively. For 
fusariosis, 78 mg/kg and 104 mg/kg fosmanogepix plus 
1-aminobenzotriazole enhanced median survival time 
from 7 days to 12 and 10 days, respectively. Reductions 
in kidney and brain conidial burden were also seen with 
both scedosporiosis and fusariosis models, especially 
with higher dosing. The authors concluded that these 
results mirror those seen with high-dose liposomal am-
photericin B (10–15 mg/kg).144 Additional animal studies 
(mainly murine) have tested, either in vitro, in vivo or 

Table 2. Comparison of new and upcoming antifungal agents.

Fosmanogepix Ibrexafungerp Olorofim Rezafungin

Mechanism of 
action

Disruptions to cell 
wall via interruption 
in synthesis of 
mannoproteins

Inhibition of 
biosynthesis of β-(1,3)-
D-glucan through a 
binding site unique 
from the other 
echinocandins

Inhibition of cell 
wall synthesis via 
inhibition of uridine-50-
monophosphate and 
uridine-50-triphosphate

Inhibition of β-(1,3)-D-
glucan

Spectrum of 
activity

Yeasts and moulds, 
including those 
with resistance to 
echinocandins and 
azoles

Candida, Aspergillus, 
Pneumocystis

Moulds and dimorphic 
fungi

Candida, some 
Aspergillus species

Penetration sites Excellent tissue 
penetration, including 
brain tissue and eyes

Excellent tissue 
penetration outside the 
central nervous system 
and eyes

Excellent tissue 
penetration, including 
brain tissue

Excellent tissue 
penetration outside the 
central nervous system, 
eyes, urine

Common dosing 1000 mg twice × 1 day, 
then 600 or 700 mg 
daily IV or orally

300 mg twice daily 
orally

150 mg twice daily × 1 
day followed by 90 mg 
twice daily IV and orally

400 mg × 1, then 200 
mg weekly IV

Renally adjusted No No Unknown, currently being 
studied

No

Adverse effects Headache Gastrointestinal, 
headache

Infusion-related, 
dizziness, gastrointestinal

Pyrexia, hypokalaemia

FDA approval 
indication and 
date

NA Vulvovaginal 
candidiasis; 2021

NA Candidaemia and 
invasive candidiasis; 
2023

IV, intravenously; NA, not available.
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both, fosmanogepix against disseminated C. auris,145, 
neutropenic disseminated candidiasis (including C. au-
ris),146 cryptococcal meningitis,147 and invasive pulmo-
nary aspergillosis caused by A. fumigatus,148 with positive 
results in terms of survival and clearance of pathogen.

Numerous phase I studies have been completed eval-
uating the PK/PD data in human participants for fos-
manogepix, along with the safety and tolerability profile 
of the medication.149,150 In 2017, Hodges et al. evaluated 
the safety, tolerability and PK of both a single dose and 
multiple doses of fosmanogepix.149 Results from this 
study indicated that fosmanogepix has linear PK/PD up 
to oral doses of 1000 mg, oral bioavailability >90% and, 
after 14 days of dosing at 500 and 1000 mg, AUC0-24 val-
ues of 192 and 325 µg/mL, respectively. Additionally, ab-
sorption was not affected under fed conditions and was 
well tolerated across all doses. Another study by Hodges 
et al. in 2017 evaluated single ascending dose and mul-
tiple ascending dose-escalation strategies of fosmano-
gepix.150 Here, the authors demonstrated that doses as 
high as 600 mg a day for 14 days were well tolerated and 
led to no dose-limiting toxicities, although the maximum 
dose was never determined. In 2018, a phase Ib PK trial in 
patients with acute myeloid leukaemia was performed, 
but the results are not currently available (clinicaltrials.
gov: NCT03333005). In 2022, a phase I clinical trial was 
initiated to determine how fosmanogepix is processed in 
people with varying degrees of liver dysfunction. Results 
for this study are also pending with an estimated com-
pletion date of December 2023 (NCT05582187). Addi-
tional phase I studies have also been performed to date 
(NCT04166669, NCT04804059).

Phase II and III trials
Phase II and III trials for fosmanogepix, though limited, are 
listed in Table 3. In 2020, Pappas et al. evaluated safety 
and efficacy of fosmanogepix for first-line treatment of 
candidaemia in a multicentre, open-label, single-arm 
phase II trial.151 Patients were included if they had positive 
blood culture for Candida spp. within 96 hours before 
study entry, with ≤2 days of prior antifungal treatment. 
At end of study treatment, 80% (16/20) of patients met 
the primary outcome of treatment success. Additionally, 
30-day survival was 85% (17/20), and there were no seri-
ous adverse effects reported. Another multicentre study 
(APEX Trial), which is currently unpublished, evaluated 
the efficacy and safety of fosmanogepix for infections 
caused by C. auris (ClinicalTrials.gov; NCT04148287). Nine 
adult patients were included in the study, and all pa-
tients received fosmanogepix for up to 42 days. At end of 
study treatment, 89% (8/9) of patients met the primary 
outcome of treatment success. Additionally, 30-day all-
cause mortality was low (2/9; 22%), but serious adverse 
effects reported were higher than seen in the trial from 
Pappas et al. The AEGIS trial was terminated early in an-

ticipation of a phase III trial, but the trial start date has 
yet to be announced (NCT04240886).

Place in therapy
These results indicate that fosmanogepix is promising 
in patients with candidaemia. Although a small patient 
population, these results suggest fosmanogepix may be 
a treatment option in patients with C. auris infections. 
Additionally, fosmanogepix demonstrates broad in vitro 
and in vivo mould coverage. Although not discussed in 
detail, multiple case reports have demonstrated positive 
clinical results with combination therapy of fosmano-
gepix plus either an azole and/or liposomal ampho-
tericin B.152,153 Further studies comparing fosmanogepix to 
standard of care in these infections are needed.

Ibrexafungerp
Ibrexafungerp is a triterpenoid that shares many simi-
larities to echinocandins but has enhanced PK/PD prop-
erties, allowing for oral administration. The mechanism 
of action of ibrexafungerp resembles that of echino-
candins (inhibits biosynthesis of β-(1,3)-D-glucan within 
the fungal cell wall, leading to increased cell permea-
bility and ultimately cell lysis), but the binding site for 
ibrexafungerp is novel, limiting cross-resistance seen 
between ibrexafungerp and echinocandins.137,154,155 With 
limited cross-resistance, ibrexafungerp offers a poten-
tial agent with retained activity to Candida spp. that is 
resistant to echinocandins. Furthermore, ibrexafungerp 
demonstrates in vitro and/or in vivo activity against 
C. auris, azole-resistant Candida spp., FKS-producing 
yeast, Aspergillus spp. and the ascus form of Pneumo-
cystis spp.154

Early trials/PK/PD
In 2017, Borroto-Esoda et al. tested ibrexafungerp against 
two azole-resistant A. fumigatus isolates.156 Mice re-
ceiving orally administered ibrexafungerp 15 mg/kg or  
20 mg/kg followed by BID maintenance doses of 7.5 or  
10 mg/kg, respectively, were compared with mice re-
ceiving caspofungin and amphotericin B daily by intra-
peritoneal injection at doses of 5 mg/kg and 10 mg/kg, 
respectively. Ibrexafungerp significantly increased mean 
survival in all strains (p≤0.003). Moreover, fungal kidney 
burden was significantly reduced (p<0.05), and all doses 
were well tolerated. Collective data indicate that ibrex-
afungerp has excellent tissue penetration outside the 
central nervous system and lens of eyes with both intra-
venous and oral administration.157–159

Numerous phase I human trials have taken place eval-
uating the efficacy, safety and PK/PD of ibrexafungerp 
(SCY-078-101 through SCY-078-109).159 Ibrexafungerp is 
primarily eliminated in the faeces, has a half-life of ~20 
hours, is >99% plasma protein bound, is well absorbed 
orally without regard for food, is well tolerated with a 

http://drugsincontext.com
https://doi.org/10.7573/dic.2023-7-1


REVIEW  Antifungal challenges and pipeline drugsincontext.com

Stover KR, Hawkins BK, Keck JM, Barber KE, Cretella DA. Drugs Context. 2023;12:2023-7-1. https://doi.org/10.7573/dic.2023-7-1 9 of 23
ISSN: 1740-4398

maximally tolerated single dose of 1600 mg, and is a sub-
strate for both CYP3A4 and P-glycoprotein (P-gp). Ibrex-
afungerp is a substrate of 3A4 and P-gp but, to date, no 
dose reductions of potentially interacting medications 
have been warranted (ClinicalTrials.gov NCT04092725, 
NCT04092751).157,158 In 2020, Scynexis Inc. submitted their 

ibrexafungerp New Drug Application for the treatment of 
vulvovaginal candidiasis in women (VVC).158

Phase II and III trials
Ten phase II and III trials evaluating ibrexafungerp are 
completed or ongoing (Table 4). In VANISH 303 and VAN-

Table 3. Fosmanogepix phase II and III clinical trials.

Trial name/NCT 
number

Phase Population Intervention Primary 
outcome

Primary result Other 
demographics/
results

NCT05421858 III Adults with 
proven 
candidaemia
and/or
invasive 
candidaemia

Fosmanogepix 
IV with option to 
switch to PO

vs

Caspofungin 
with option to 
switch to PO 
fluconazole

Response to 
treatment up 
to 42 days and 
proportion of 
patients alive 

Pending Randomized trial 
with estimated 450 
participants

2:1 ratio of 
fosmanogepix vs 
comparator 

NCT03604705 II Adults with 
proven 
candidaemia 
who were non-
neutropenic

1000 mg IV BID 
on day 1, 600 
mg IV QD for 
at least days 2 
and 3, followed 
by either 600 
mg IV QD or 700 
mg PO QD for 14 
days total

Clearance 
of Candida 
from blood 
cultures with 
no additional 
antifungal 
treatment and 
survival at EOST

16/20 (80%) 
patients in mITT 
meet primary 
outcome

Average time 
to first negative 
blood culture was 
2.4 days

All-cause mortality 
was 5/21 (23%)

Serious AE in 9/21 
(42%)

NCT04148287
(APEX Trial)

II Adults with 
candidaemia 
and/or invasive 
candidiasis 
caused by 
Candida auris

1000 mg IV BID 
on day 1, 600 
mg IV QD for at 
least days 2 and 
3, followed by 
either 600 mg 
IV QD or 800 mg 
PO QD for up to 
42 days total

Percentage of 
participants 
with treatment 
success at EOST

8/9 (89%) 
patients in mITT 
meet primary 
outcome 

Average time 
to first negative 
blood culture was 
6 days

All-cause mortality 
was 2/9 (22%)

Serious AE in 2/9 
(22%)

NCT04240886
(AEGIS Trial)

II Adults with 
invasive mould 
infections 
caused by 
Aspergillus spp. 
or rare moulds

Fosmanogepic 
IV or PO

All-cause 
mortality at day 
42

Terminated Scedosporium 
spp., Fusarium 
spp., Mucor spp. 
and Rhizopus spp. 
included

Non-randomized, 
multicentre trial 
with 21 participants 
enrolled

AE, adverse events; BID, twice daily; EOST, end of study treatment; IV, intravenously; mITT, modified intent-to-treat; PO, by mouth; 
QD, once daily.
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Table 4. Ibrexafungerp phase II and III clinical trials.

Trial name/
NCT number

Phase Population Intervention Primary 
outcome

Primary result Other demographics/
results

NCT03363841
(CARES Trial)

III Adult patients 
with infections 
caused by 
Candida auris

Single-arm IBX up 
to 90 days

Global 
success at EOT 

Pending 42 and 84 days 
survival

Percentage of patients 
with AE

30 participants

NCT04029116
(CANDLE Trial)

III Adults with 
recurrent VVC

3 days of 
fluconazole 
followed by IBX or 
placebo given BID 
q4 weeks for six 
total dosing days

Clinical 
success at 
week 24

Submitted 
February 8th, 
2023 

Week 24 and 36 
recurrence

Discontinuation due 
to AEs

440 participants 

NCT03059992
(FURI Trial)

III Adults with 
fungal 
disease that 
is refractory to 
SOC or SOC is 
not tolerated

Single-arm IBX up 
to 180 days

Global 
response at 
day 180

Pending Day 42 and 84 survival

Recurrence up to 
42 days post IBX 
treatment

200 participants 

NCT03987620
(VANISH 306 
Trial)

III ≥12 years of 
age with acute 
VVC

300 mg IBX BID for  
1 day vs placebo

Clinical cure at 
TOC (mITT)

63% IBX (n=188) 
vs 44% placebo 
(n=84)
p=0.007

Mycological 
eradication at TOC in 
mITT: 59% IBX (n=188) 
vs 29% placebo (n=84)
p=0.022

All-cause mortality: 
0% IBX (n=298) vs 0% 
placebo (n=151)

455 participants

NCT03734991
(VANISH 303 
Trial)

III ≥12 years of 
age with acute 
VVC

300 mg IBX BID for  
1 day vs placebo

Clinical cure at 
TOC (mITT)

51% IBX (n=188) 
vs 29% placebo 
(n=98)
p=0.001

Mycological 
eradication at TOC in 
mITT: 50% IBX (n=188) 
vs 19% placebo (n=98)
p<0.001

All-cause mortality: 
0% IBX (n=247) vs 0% 
placebo (n=124)

376 participants

NCT05178862
(MARIO Trial)

III Adults with 
invasive 
candidiasis

Echinocandin 
followed by either 
PO fluconazole or 
IBX 

30-day 
all-cause 
mortality

Pending 14 days global 
response

220 participants

(Continued)
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Table 4. (Continued)

NCT03672292
(SCYNERGIA 
Trial)

II Adults with 
invasive 
pulmonary 
aspergillosis 

Voriconazole plus 
IBX 500 mg BID 
days 1–2 then 
500 mg daily vs 
voriconazole alone

AE, DC or 
death at study 
completion 
(~19 weeks)

Pending Days 42 and 84 
survival

Days 42 and 84 global 
response

60 participants 

NCT03253094
(DOVE Trial)

II Adults with 
acute VVC

Fluconazole 150 mg 
day 1

IBX 750 mg day 1

IBX 300 mg BID day 1

IBX 450 mg BID day 1

IBX 150 mg BID days 
1–3

IBX 300 mg BID days 
1–3

Clinical cure at 
TOC (mITT)

58% 
fluconazole 150 
mg (n=24)

35% IBX 750 mg 
(n=26)

52% IBX 300 mg 
BID (n=27)

62% IBX 450 mg 
BID (n=21)

48% IBX 150 mg 
BID (n=29)

58% IBX 300 mg 
BID (n=26)

All-cause mortality 
was 0% in all treatment 
groups

Serious AEs were not 
reported in any of the 
treatment groups

186 participants 

NCT02679456 II Adults with 
VVC

PO fluconazole

IBX dosing regimen 1

IBX dosing  
regimen 2

Therapeutic 
cure at TOC

None posted 4-month recurrence

96 participants

NCT02244606 II Adults with 
invasive 
candidiasis

All participants 
received IV 
echinocandin 
initially then 
switched to

PO fluconazole 
400 mg per day or 
micafungin 100 mg 
per day

PO IBX 1000 mg day 
1 followed by 500 
mg per day

Po IBX 1,250 mg day 
1 followed by 750 
mg per day 

Safety and 
tolerability 
and IBX dose 
that achieves 
target drug 
exposure

Submitted 
February 8th, 
2023

2 and 6 week relapse 
after EOT

27 participants

AE, adverse effects; BID, twice daily; DC, discontinuation; EOT, end of treatment; IBX, ibrexafungerp; mITT, modified intention-to-
treat; PO, oral; q, every; SOC, standard of care; TOC, test-of-cure; VVC, vulvovaginal candidiasis.
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ISH 306 ibrexafungerp was compared with placebo in 
a 2:1 fashion for the treatment of acute VVC in over 500 
patients.160,161 Baseline demographics were similar in both 
trials, and the predominant pathogen seen with VVC was 
C. albicans. The primary outcome for each study was 
clinical cure at test-of-cure (TOC) clinic visit on day 11–14. 
Clinical cure was defined as the complete resolution of 
signs and symptoms of vulvovaginal infection without 
need for further antifungal treatment along with a vulvo-
vaginal signs and symptoms score (VSS) of zero at TOC 
visit. In the VANISH 303 trial, 51% of patients met the prima-
ry outcome versus 63% in the VANISH 306.160,161 Both results 
were considered statistically significant when compared 
with placebo. Patients in both trials also had statistically 
significant higher percentages of mycological eradica-
tion and complete resolution of signs and symptoms at 
TOC when compared with placebo. Together, these re-
sults demonstrated the superiority of ibrexafungerp ver-
sus placebo for the treatment of acute VVC.

In 2021, Nyirjesy et al. compared ibrexafungerp with oral 
fluconazole in a randomized trial (DOVE) for the treat-
ment of VVC in adults at least 18 years of age.162 Although 
five dosing strategies of ibrexafungerp were compared 
with fluconazole, doses higher than 300 mg twice daily 
did not respond to increases in efficacy and were ex-
cluded from primary results. To qualify for inclusion, pa-
tients had to have a VSS of at least 7, which was higher 
than the baseline of four in the VANISH 303 and 306 tri-
als.160,161 Other baseline characteristics were similar be-
tween the dosing groups. The primary endpoint was the 
percentage of patients with a clinical cure (complete 
resolution of signs and symptoms; VSS, 0) at TOC. Clinical 
cure (ibrexafungerp 51.9% versus fluconazole 58.3%) and 
mycological eradication (ibrexafungerp 63.0% versus 
fluconazole 62.5%) rates at TOC were similar. Additionally, 
no serious adverse effects or deaths were reported with 
the use of ibrexafungerp for any treatment group, includ-
ing those who received higher doses of ibrexafungerp. 
The authors concluded that ibrexafungerp is a novel an-
tifungal with comparable efficacy to fluconazole in the 
treatment of moderate-to-severe VVC. Additional trials 
are also under way evaluating the role of ibrexafungerp 
in patients with infections involving C. auris (CARES), re-
current VVC (CANDLE), refractory fungal disease (FURI), 
invasive candidiasis (MARIO) and invasive pulmonary 
aspergillosis (SCYNERGIA), but full data are not available 
for these trials to date (ClinicalTrials.gov: NCT05178862; 
NCT03672292).163–165

Place in therapy
Ibrexafungerp was approved by the FDA for VVC in adults 
and postmenarchal paediatric patients in 2021.155 To 
date, ibrexafungerp usage is restricted to VVC; however, 
its utility could be expanded in the future as results from 

multiple trials that are pending. Unfortunately, PK/PD do 
not support ibrexafungerp usage for infections involving 
the central nervous system, which could limit its usage 
in clinical practice. Nonetheless, invasive candidiasis in-
volving C. auris remains a focal point of discussion, and 
ibrexafungerp may have utility in fungaemia involving C. 
auris in the future.

Olorofim
Olorofim (formerly F901318), an orotomide, is a novel class 
antifungal. Olorofim is a reversible inhibitor of dihydro-
orotate dehydrogenase (DHODH), an oxidoreductase 
that catalyses the fourth step in the de novo synthesis 
of pyrimidine, which results in inhibition of the formation 
of uridine-50-monophosphate and uridine-50-triphos-
phate, which are key for cell wall synthesis. Through 
this mechanism, cell lysis occurs.166 Olorofim PKs have 
been assessed in healthy volunteers. Bioavailability is 
high, ranging up to 82%, and it has high protein bind-
ing (>99%) and a large volume of distribution, including 
plasma, lungs, kidneys and the central nervous system.167 
Unlike previously mentioned antifungals, olorofim lacks 
appreciable activity against yeasts.167 Similarly, activity 
against Mucorales is not present.168 Olorofim does have 
a spectrum of activity against various other moulds and 
dimorphic fungi. Olorofim displays high in vitro activity 
against A. fumigatus isolates (n=332), with MICs ranging 
from 0.008 to 0.125 mg/L, and was not impacted by the 
presence of resistance to other antifungals, including  
either azoles or amphotericin B.169 Against 160 other inva-
sive moulds, including Microascus/Scopulariopsis, Ras-
amsonia, Penicillium and Talaromyces species, olorofim 
activity was observed, again, irrespective of resistance 
to other antifungals.170

Phase II and III trials
Two olorofim studies are actively recruiting (ClinicalTri-
als.gov: NCT03583164; NCT05101187). An open-label, sin-
gle-arm, phase II study (FORMULA-OLS) plans to assess 
olorofim for adult patients with invasive fungal infections 
caused by Lomentospora prolificans, Scedosporium 
spp., Aspergillus spp. and other resistant fungi with lim-
ited treatment options (NCT03583164). Patients includ-
ed in this study will receive olorofim 30 mg tablets, with 
dosage adjustments based upon plasma concentra-
tions, up to doses of 300 mg. The primary outcome for 
this study is overall response comprised of clinical, my-
cological and radiological response at day 42. The OASIS 
study, a phase III adjudicator-blinded, randomized trial, 
will assess the efficacy and safety of olorofim versus li-
posomal amphotericin B followed by standard of care 
in patients with invasive aspergillosis (NCT05101187). Pa-
tients will receive either olorofim 150 mg twice daily fol-
lowed by 90 mg twice daily or liposomal amphotericin 
B 3 mg/kg daily followed by standard of care according 
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to guidelines. The primary outcome of this study is all-
cause mortality. Secondary outcomes include adjudi-
cated assessed outcomes and safety assessments.

Place in therapy
Olorofim has a potential place in therapy for invasive 
mould infections, particularly where resistance to cur-
rently approved agents is present. However, more data 
are needed, particularly from phase III studies.

Rezafungin
Rezafungin (formerly CD101) is a new-generation echi-
nocandin that invokes its fungicidal activity via inhib-
iting cell wall synthesis, specifically 1,3-β-D-glucan.171 
Whilst it is structurally similar to anidulafungin, a mod-
ified choline anima ether replaces the hemiaminal 
region, ultimately increasing solubility and stability.171 
Similar to other echinocandins, rezafungin displays ac-
tivity against Candida spp. In an in vitro susceptibility 
study of nearly 2000 Candida isolates, rezafungin in-
hibited 99.8% of C. albicans, 95.7% of C. glabrata, 97.4% 
of C. tropicalis, 100% of C. krusei and 100% of C. dublin-
iensis isolates.172 Interestingly, rezafungin displayed the 
most potent activity against 19 strains of C. auris, with 
MICs ranging from 0.03 to 0.25 mg/L when compared 
with the other echinocandins.173 However, limited activ-
ity is exhibited against Cryptococcus spp., with MIC50/
MIC90 values of >2/>4 mg/L.174 Additionally, rezafungin 
activity was assessed against 186 A. fumigatus and 28 
Aspergillus section flavi isolates.174 Rezafungin inhibited 
all A. fumigatus isolates at an MEC90 value of 0.06 mg/L 
and Aspergillus section flavi isolates at an MEC90 value 
of 0.03 mg/L, which was comparable to other echino-
candins. Low potential for resistance development was 
observed against rezafungin in Candida spp.175

Phase II and III trials
Rezafungin has undergone two phase II clinical trials.176,177 
In the first trial, 99 patients with VVC were included to 
assess both efficacy and safety.176 Patients were ran-
domized into three groups: rezafungin vaginal gel (3%), 
rezafungin vaginal ointment (6%) and oral fluconazole 
(150 mg). Clinical cure rates at day 7 were 37%, 40% and 
47.45%, respectively. There were no differences in thera-
peutic cures when stratified by recurrent VVC or baseline 
severity. Most treatment-emergent adverse events were 
mild or moderate and unrelated to study drugs, and no 
serious events were reported in any group. The STRIVE tri-
al, a phase II randomized, double-blind study, assessed 
rezafungin versus caspofungin for invasive candidiasis.177 
Included patients were randomized in a 1:1:1 ratio to receive 
rezafungin IV once weekly for 2–4 weeks at either 400 mg 
or 400 mg on week 1 followed by 200 mg on subsequent 
weeks, or caspofungin once daily (70 mg loading dose 
followed by 50 mg daily with an optional oral stepdown 

available after day 3). The primary efficacy outcome was 
overall response (with overall cure defined as resolution 
of clinical signs of candidaemia/invasive candidiasis 
plus mycological eradication) at day 14 (±1 day). Sec-
ondarily, overall, mycological and investigator-assessed 
clinical response at day 5 were compared. A total of 207 
patients were randomized: 81 to rezafungin 400 mg, 57 to 
rezafungin 400 mg once, followed by 200 mg on subse-
quent weeks, and 69 to caspofungin daily. The majority of 
patients were White men with a mean age of ~60 years. 
Candidaemia accounted for nearly 80% of the diagno-
ses. The most common pathogen isolated was C. albi-
cans (49.7%) followed by C. glabrata (20.2%). In the three 
groups, overall cure was observed in 60.5%, 76.1% and 
67.2%, respectively. Drug-related serious adverse events 
were reported in 1.2%, 1.9% and 2.9% of patients.

In the ReSTORE trial, rezafungin was compared with 
caspofungin for the treatment of invasive candidia-
sis and candidaemia.178 This multicentre, double-blind, 
double-dummy, phase III trial randomized patients in a 
1:1 ratio to receive either intravenous rezafungin once a 
week (400 mg in week 1, followed by 200 mg weekly, for 
a total of two to four doses) or intravenous caspofungin 
(70 mg loading dose on day 1, followed by 50 mg) daily 
for no more than 4 weeks. A total of 199 participants were 
randomized: 100 to treatment with rezafungin and 99 to 
treatment with caspofungin. Most patients were White 
males ~60 years old diagnosed with candidaemia only. 
The most common pathogen identified was C. albicans, 
and susceptibility to both drugs was >99%. The FDA pri-
mary outcome of 30-day all-cause mortality occurred 
in 24% of rezafungin-treated patients compared with 
21% of caspofungin-treated patients. Cure at day 14 was 
observed in 59% of rezafungin-treated patients and 61% 
of caspofungin-treated patients, respectively. The most 
common treatment-emergent adverse events were 
pyrexia (14%) and hypokalaemia (13%). Serious adverse 
events occurred in 56% and 53% of patients overall, and 
these were deemed to be related to the study drug in 
two patients versus three patients in the rezafungin and 
caspofungin groups, respectively.

A phase III clinical trial (NCT04368559) assessing the 
safety and efficacy of rezafungin compared with stand-
ard regimens to prevent invasive fungal disease in  
patients undergoing allogeneic blood and marrow trans-
plant (ReSPECT) is currently recruiting. This multicentre, 
randomized, double-blind study has an anticipated en-
rolment of 462 patients. Patients in the rezafungin group 
will receive 400 mg loading dose in week 1, followed by 
200 mg once weekly, for a total of 13 weeks. The compar-
ator group will receive either fluconazole, posaconazole 
or trimethoprim/sulfamethoxazole. The primary outcome 
is non-inferior fungal-free survival at 90 days.
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Place in therapy
Rezafungin was approved by the FDA for candidaemia 
and invasive candidiasis in adults in 2023.179 In patients 
with access difficulties to healthcare facilities, peo-
ple who inject drugs or those with a history of cath-
eter-associated bloodstream infections, rezafungin 
could be an alternative therapy to avoid intravenous  
catheters.

Conclusion
With rising fungal resistance, especially in Candida spp., 
the demand for novel antifungal therapies has exponen-
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tially increased over the last decade. Newer antifungal 
agents have become an attractive option for patients 
needing long-term therapy for infections or those re-
quiring antifungal prophylaxis. Despite advances in cov-
erage of non-Candida pathogens with newer agents, 
clinical scenarios involving multidrug-resistant fungal 
pathogens continue to arise in practice. Combination 
antifungal therapy can theoretically lead to a host of 
side-effects, some of which can be drug-limiting. Addi-
tional antifungal therapies with enhanced fungal spec-
trum of activity and decreased rates of adverse effects 
are warranted. Fosmanogepix, ibrexafungerp, olorofim 
and rezafungin may help fill some of these gaps in the 
antifungal armamentarium.
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