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Abstract—Autonomous Mobile Robots, known as AMRs,
are used in the internal logistics of many types of industries
and production sectors. This type of robots replaces the
traditional Automated Guided Vehicles (AGVs). In the case
of AGVs, the path to follow is previously defined, and these
robots do not have the ability to choose a different path.
On the other hand, AMRs are more flexible, safe, and
precise, due to the incorporation of technologies reserved
until recently for research, such as autonomous navigation,
computer vision systems, and Simultaneous Localization and
Mapping (SLAM) technology, among others. Many of these
technologies are implemented using the Robot Operating
System (ROS). ROS is a set of free and open-source software
libraries and tools for building robot applications. Its new
version, ROS 2, was developed to be applied to production
environments. This paper describes the development of a
controller for a differential-drive AMR with support for
ROS 2 using its implementation for embedded systems,
micro-ROS. This controller is the evolution of a previous
version that was used in different mobile robots for over 10
years at CIII (UTN). It is worth clarifying that this work
is mainly focused on hardware development. However, some
preliminary software tests have been carried out, mainly
to evaluate the correct functioning of the differential-drive
robot controller. Firstly, the design requirements are defined,
and a microcontroller with native support for micro-ROS is
selected. Then, the development of each controller stage is
described, such as the power supply, the USB communication,
the battery voltage sensing, the debugging port, and the
final PCB design. Finally, the initial software tests that
allow verifying the correct operation of the controller and the
improvements compared to the previous version are mentioned.

Keywords: autonomous mobile robot; differential drive;
embedded controller; ROS 2; micro-ROS

Resumen—Los robots conocidos con el nombre de AMR
(Autonomous Mobile Robots) se utilizan en la logı́stica interna
en muchos tipos de industrias y sectores de la producción. Este
tipo de robots sustituyen a los tradicionales AGVs (Automated
Guided Vehicles) en los cuales el camino a seguir está definido
previamente y no tienen la capacidad de elegir un camino
diferente. Por otro lado, los AMRs resultan más flexibles,
seguros y precisos, debido a la incorporación de tecnologı́as
que hasta hace poco estaban reservadas al ámbito de la
investigación, tales como: navegación autónoma, sistemas de
visión por computadoras, tecnologı́a de SLAM (Simultaneous
Localization and Mapping), entre otras. Muchas de estas
tecnologı́as se implementan utilizando ROS (Robot Operating

System). ROS es un conjunto de bibliotecas de software y
herramientas de código abierto y libre para el desarrollo de
aplicaciones de robots, cuya nueva versión ROS 2 tiene como
uno de sus objetivos ser aplicable a entornos de producción. El
presente trabajo describe el desarrollo de un controlador para
robots de tracción diferencial tipo AMR con soporte para
ROS 2 utilizando la implementación para sistemas embebidos
micro-ROS. Este controlador es la evolución de una versión
anterior utilizada en diferentes robots por más de 10 años en
el CIII (UTN). Vale aclarar que este trabajo está enfocado
principalmente en el desarrollo de hardware. Sin embargo,
se han realizado algunas pruebas preliminares de software,
principalmente, para evaluar el correcto funcionamiento
del controlador de tracción diferencial. En primer lugar,
se definen los requerimientos de diseño y se selecciona un
microcontrolador con soporte nativo para micro-ROS. Luego
se describe el desarrollo de cada etapa del controlador, tales
como: la alimentación, la comunicación USB, el sensado de
tensión de baterı́a, el puerto de depuración y el diseño final
del PCB. Por último, se hace mención a las pruebas iniciales
de software que permiten verificar el correcto funcionamiento
del controlador y las mejoras respecto a la versión anterior.

Palabras clave: robot móvil autónomo; tracción diferencial;
controlador embebido; ROS 2; micro-ROS

I. INTRODUCTION

Automated Guided Vehicles (AGVs) [1] are a key com-
ponent in the internal logistics in many types of industries
and production sectors in their implementation of Flexible
Manufacturing Systems (FMSs) [2]. AGVs provide the
ability to move products and parts efficiently in relation to
handling time. The first AGVs were guided by electrical
conductors that were mounted on the ground, known as
inductive guidance [3]. Currently, the navigation [4] of
AGVs is based on magnetic and laser scanning sensors for
safety reasons [5]. However, the routes or paths to follow are
previously defined and the AGV does not have the ability
to choose a different path.

Recently, there have been important advances in au-
tonomous vehicles and their application as a service robotics
platform [6] known as Autonomous Mobile Robot (AMR)
or Autonomous Intelligent Vehicle (AIV), mainly focused
on promoting the flexibility of relocation of tasks within
factories and boosting the implementation of Industry 4.0
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technologies. AMRs are more flexible than AGVs in respect
of programming and configuring the tasks they have to carry
out and the ability to work precisely and collaboratively
with human workers or other automatic platforms. Their
ability to adapt to different navigation scenarios can be
applied to reduce the kilometers that plant personnel cover
every day pushing carts to distribute products [7]. AMRs
are capable of moving from one place to another safely and
without human intervention, applying different technologies
that until a few years ago were reserved only for the
academic and research field [7], [8], such as: a) autonomous
navigation [9], map creation [10] c) 2D laser scanning
sensors, d) computer vision systems [11], e) Simultaneous
Localization and Mapping (SLAM) technology [12], among
others. Many of these technologies are implemented using
ROS [13].

ROS is a set of free and open-source software libraries
and tools (process monitoring, communication introspection,
visualization, etc.) to build robot applications [14], [15].
The ROS project began in 2007 at Stanford University
under the name Switchyard, and from 2008 onwards it
was run by a robotics research company called Willow
Garage, which developed most of the libraries and tools. In
2013, Willow Garage researchers formed the Open Source
Robotics Foundation (OSRF), which is currently in charge
of maintaining ROS.

The core of ROS is the message-passing middleware
for the communication between processes that allows data
exchange even when it is run from different computers. ROS
also provides a hardware abstraction layer on which devel-
opers can build robotics applications without worrying about
the underlying hardware. Using the hardware abstraction
layer and this message-passing middleware, different robotic
capabilities can be created, such as mapping, localization,
navigation, etc.; which are generally agnostic to the robot.

While ROS solves many of the complex problems inher-
ent in robotics, it also has some shortcomings. One of its
main limitations is that it was not developed as production
software. In addition, it has problems when working with
data networks with connection loss (e.g. in WiFi networks);
it has a main point of failure which is the ROS Master;
it does not incorporate any network security mechanism; it
is not natively supported to embedded systems; etc. These
limitations gave rise to the ROS 2 [16] [17] project. ROS 2
was built as a parallel set of packages that can be installed
alongside and interoperate with ROS 1 (for example, via
message bridges) [18].

The following use cases were taken into consideration in
the design of ROS 2: i) multi-robot teams, ii) application
in embedded systems, iii) real-time systems, iv) non-ideal
networks, v) production environment, and vi) prescribed
patterns for building and structuring systems.

It is important to note here that the architecture of a
robotic system generally includes a network of one or more
microprocessors with high computing power and multiple
microcontrollers. The latter are processing units with low
performance and computing capabilities, generally used to
access sensors and actuators, for low latency control func-
tions, to save energy (particularly in consumer applications),
and for security functions. This is why the second use case
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Fig. 1: New design of the differential-drive robot controller
(DDRC-ESP32) board with ROS 2 support.

considered is of great relevance, which allows microcon-
trollers to be included as “first-class participants” in the ROS
environment, instead of being segregated to interact through
a device driver. This implies that robotics software must be
developed on microcontrollers using the same ROS concepts
as on powerful microprocessors (CPUs). This demands that
the software on the microcontroller (µC) must be accessible
with the same development tools used in CPUs to carry
out introspection, monitoring, and configuration tasks at
runtime.

ROS 1 is built on communication middleware created
specifically by ROS developers. Its functionality involves
node discovery, definition, serialization, and communication
of messages, etc. On the other hand, to cover this function-
ality, ROS 2 adopts the DDS (Data Distribution Service)
standard [19], which is an open standard for communications
used in critical infrastructures, such as military, space, and
financial systems. DDS allows ROS 2 to obtain: i) an
improvement in the security and integrity of information,
ii) support for embedded and real-time systems, iii) com-
munication between multiple robots, and iv) operations in
non-ideal network environments.

In order to integrate ROS 2 into embedded devices
with low hardware resources, the micro-ROS project was
developed [20]. This considers the following objectives: i)
seamless integration of microcontrollers with ROS 2, ii) easy
portability of ROS 2 code to microcontrollers, and iii) ensure
long-term maintenance of the micro-ROS stack. To achieve
these goals, the founding partners of micro-ROS designed
a software stack that uses the layered architecture of the
standard ROS 2 stack and integrates seamlessly with DDS.
The micro-ROS stack reuses as many packages as possible
of the standard ROS 2 stack. On the middleware layer, it
uses an open-source implementation of the eProsima’s eX-
tremely Resource Constrained Environments DDS (XRCE-
DDS) standard, named Micro XRCE-DDS [21]. On the
client library layer, micro-ROS extends the rcl (ROS 2
Client Library) using the rclc (ROS Client Library for C
language) packages to form a feature-complete client library
in C.

The present work describes the design of a control board
for a differential-drive mobile robot compatible with ROS 2
through micro-ROS (see Fig. 1). The project is license
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Fig. 2: Block diagram of a differential-drive robot.

free and is available in a public repository [22]. This
development is the evolution of a previous design that did
not have native support for ROS [23]. The purpose of having
an embedded controller with support for micro-ROS is to
serve as a basis for the development of AMR-type robots
where their autonomous navigation and control algorithms
are developed entirely using ROS 2. It is worth mentioning
that the development was focused mainly on the hardware
design, although some programs were carried out to verify
the correct operation of the board.

The article is organized as follows: Section II describes
the architecture of a differential-drive robot and its main
characteristics, together with the embedded controller for
differential-drive robots used until now at the CIII research
center, which was replaced by the controller presented in the
following section. Section III describes the development of
the new controller for differential-drive robots, including the
design requirements, the selection of components, a general
description of the controller and its main characteristics, and
the tests carried out to verify the correct functioning. Finally,
section IV mentions the conclusions and future work.

II. DIFFERENTIAL-DRIVE MOBILE ROBOT

A differential-drive mobile robot, also known as a uni-
cycle, has two independently-controlled drive wheels along
with one or more non-drive wheels that serve as support.
This architecture is appropriate for indoor environments
since it can rotate around its odometric center, which means
a change of orientation without displacement.

A. Robot architecture

Fig. 2 shows the block diagram of a differential-drive
robot. The gearmotors and incremental optical encoders that
serve to measure the rotation speeds of each wheel can
be observed. The differential-drive controller (indicated in
the light blue box) operates in conjunction with two power
boards in H-bridge configuration for the excitation of each
of the gearmotors (left and right). The figure also shows
the energy system composed of batteries and the onboard
computer to process the information from the sensors and
to implement the robot’s autonomous navigation algorithms.

This type of robot is controlled by linear speed v and
angular speed ω commands, expressed in a local coordi-
nate system. From these commands, the robot’s internal
controller generates the angular velocity of each of the

wheels. On the other hand, the information obtained from
the incremental optical encoders coupled to the drive wheels
is used to perform the odometry calculation. Odometry
is a method for estimating the robot’s pose given by the
rotation of the wheels, being the robot’s pose its position
and orientation in the operating plane; that is, (x, y, θ).

B. Embedded controller

Fig. 3 shows a previous development of a controller for
a differential-drive robot.

The main functions of this controller are:

1) Communicating with the robot’s onboard PC to re-
ceive speed commands and communicate the robot’s
states.

2) Reading the information from the optical encoders
coupled to the drive wheels.

3) Adjusting the speeds of the drive motors using PID
controllers to meet the desired setpoints for the linear
and angular speeds of the robot.

4) Performing the odometry calculation with the infor-
mation from the incremental optical encoders coupled
to the wheels.

This version of the controller is currently being used by
the RoMAA-II robot and the AMR Aimu robot (see Fig. 4),
both with differential drive, developed at the Research
Center on Informatics for Engineering (CIII) from National
Technological University (UTN).

The Open Architecture Mobile Robot, named RoMAA,
was developed as a platform to carry out experiments in
the research areas of mobile robotics and computer vision.
Its development began as an internal CIII project and
concluded with the manufacturing of the first prototype
presented in [24], on which the constructive, functional and
manufacturing cost characteristics were evaluated. With the
experience acquired, the new and current version, named
RoMAA-II, was designed [25] [26] [27]. On the other hand,
the Aimu robot is an AMR-type robot developed through a
specific agreement between the UTN-FRC and the company
Caima-Segal S.R.L. [28]. Aimu has been operational for
three years in the Denso Manufacturing company in the city
of Córdoba and has been recently replaced by a new version.

Fig. 3: Old version of the differential-drive robot controller
based on a µC without ROS 2 support.
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(a) RoMAA-II research robot.

(b) Aimu industrial AMR.

Fig. 4: Robots that use the controller.

C. Using ROS with the current driver

RoMAA-II and Aimu AMRs (Fig. 4) use ROS through a
node [29] which acts as a device driver for the embedded
controller used (Fig. 3). This driver allows the autonomous
navigation programs of these robots to be developed using
ROS and thus to take advantage of the large number
of software packages available in the ROS ecosystem. In
addition, this environment can be used as a development
and evaluation tool for the generation of new robotics
algorithms. The driver node is responsible for translating
the high-level information managed by ROS (messages)
into low-level commands of the robot’s embedded control
system [30].

It is worth mentioning that the current version of the
controller is based on the NXP LPC2114 microcontroller,
which has a 32-bit ARM7TDMI-S processor. This micro-
controller is not recommended for new developments and is
not supported by micro-ROS. To overcome these drawbacks
it is necessary to have a new controller based on a more
modern microcontroller and supported by micro-ROS to be
able to run applications based on ROS 2.

III. DEVELOPMENT OF THE MOBILE ROBOT
CONTROLLER

This section details the design of the new controller for
differential-drive robots.

A. Design requirements

One of the main requirements of the new design was to
maintain the same Printed Circuit Board (PCB) size and the
same type and layout of connectors for direct replacement of
the previous controller. Moreover, some additional improve-
ments were required, such as incorporating battery status
sensing and reducing overall energy consumption, which are
described later.

In relation to the processing capacity and number of
available peripherals, the µC to be selected must meet the
following characteristics:

• Support micro-ROS.
• Ability to drive two Pulse Width Modulation (PWM)

outputs.
• Pulse reading for incremental optical encoders.
• Analog to Digital Converter (ADC).
• Universal Serial Bus (USB) or Universal Asynchronous

Receiver-Transmitter (UART) communication module.
The micro-ROS is supported by some mid-range 32-bit

microcontroller families and the official website [31], until
August 2023, provides a list of different development boards
supported. From this list, the Espressif family was chosen
because it is suitable for this application and is available in
the local market.

The selected model that meets the mentioned characteris-
tics is the ESP32-WROOM-32E module (see Fig. 5), which
has a System on Chip (SoC) model ESP32-D0WD-V3.

The main features of the module are:
• µP Xtensa dual-core 32-bit LX6 with a working fre-

quency up to 240 Hz.
• 448 KB ROM memory and 520 MB SRAM.
• 16 MB SPI Flash Memory.
• 40 MHz oscillator.
• Peripherals such as UART, SPI, I2C, PWM Motor,

Pulse Counter, GPIO, ADC, etc.
• Communication via WiFi and Bluetooth.
• Antenna integrated into the PCB.

B. Controller description

With the ESP32 SoC chosen and taking into account the
requirements, the schematic and the PCB of the new con-
troller were designed. The final differential-drive controller

(a) PCB. (b) Block diagram.

Fig. 5: Espressif module model ESP32-WROOM-32E.
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includes the following improvements over the previous
version:

• Switching power supply to increase energy efficiency.
• Robot battery status sensing circuit.
• General purpose inputs and outputs.
• Wireless communication via WiFi or Bluetooth.
The most relevant design characteristics of the blocks that

make up the controller are detailed below.
1) Voltage supplied and current consumption: The con-

troller was designed so that it can be powered by the robot’s
battery pack and can support up to 40V of continuous
voltage. According to the selection of the different integrated
circuits that make up the controller, it is necessary to have
continuous voltages of 5V and 3.3V. The maximum current
consumption is determined considering that each block is
operating in the worst-case scenario. The Table I presents
the consumption of each block that makes up the controller
and the total consumption.

TABLE I: Controller current consumption.

Block Components Consumption (in mA)
per unit per block

ESP32
ESP32-WROOM-32E 240

260.89General outputs (LEDs) 19.24
Inputs (pushbuttons) 1.65

USB FT232RL 15 24.62Activity LEDs 9.62

I/Os Operational Amplifiers 4 8.81Power LED 4.81
Total 294.32

One of the requirements of the new design was to reduce
the power consumption of the board. For this reason, it
was decided to use an integrated switching power supply
in combination with a linear regulator. Such power supply
must provide an output current greater than 300mA.

For the input stage, the LM2596-5 integrated circuit (IC)
was selected. It provides the function of a 5V switching
regulator of the Step-Down type. This IC allows up to 40V
of input voltage and can deliver up to 3A to the load
allowing a maximum power of 15W. Requiring a minimum
number of external components, these regulators are easy
to use and include internal frequency compensation and a
fixed frequency oscillator. This series operates at a switching
frequency of 150KHz, allowing for smaller filter compo-
nents than those required with lower frequency switching
regulators. It has a surface-mount TO-263 package, which
reduces the size and cost of the PCB.

An AMS1117-3.3 linear regulator with a SOT-223 SMD
package was selected to obtain the voltage of 3.3V nec-
essary for the different blocks of the controller. Its output
provides a current of up to 1A and operates with at least a
drop-out voltage of 1V.

2) USB Communication: The board has a type-B USB
connector to connect an external PC. This controller block
is responsible for establishing the communication between
a computer and the ESP32 module. The ESP32 SoC does
not have a native USB module, but it does have a UART
serial communication module. Thus, it is necessary to use
a USB-UART interface circuit. The integrated circuit used
for this purpose is the FT232RL, which is compatible with

USB 2.0, does not require an external oscillator, and allows
transfer rates from 300 baud to 3 Mbaud at TTL levels. A
pair of data transmission and reception indicator LEDs were
added.

One of the fundamental requirements is that the microcon-
troller can be programmed via USB, for which it is necessary
to be able to enter in Boot mode of the ESP32. This is
achieved by placing 0V on the GPIO0 pin at the Reset time
of the microcontroller. To solve it, the DTR and RTS outputs
of the FT232RL were connected through a circuit to the EN
and Boot pins of the ESP32 module.

3) Battery voltage sensing: The board has two indepen-
dent inputs for sensing the charge level of up to two 12V
batteries. For this measurement, a battery voltage sensing
circuit was set up using one of the two ADC converters
available in the ESP32 module. The ADC is a 12-bit
successive approximation converter multiplexed on up to 16
channels, with a VRef ≈ 1, 100mV. It was configured to
allow an input voltage in the range of 150mV to 2, 450mV.
The circuit for conditioning the battery charge level signal
was designed to measure voltages within the range of 9V
to 15V for each input and adapt those levels to the values
of the input range of the ADC.

For this purpose, a circuit with two operational amplifiers
that adjust the input voltage values to those required for the
ADC input was designed. Both amplifiers were connected in
cascade and in differential configuration, with the addition
of an anti-alias filter. The gain was configured to achieve the
voltage ranges as shown in Table II. The table also shows
the ADC counts equivalent to the input voltage range. The
MPC6002 dual operational amplifier was used, which has
very low current consumption (IQ = 100µA typical) and a
supply voltage in the range of 1.8V to 6V.

TABLE II: Voltage range and ADC counts.

Battery voltage ADC input voltage ADC counts
9V 680mV 1,137
15V 2, 250mV 3,761

4) Debug Port: The board has a Joint Test Action Group
(JTAG) port for debugging and execution control of the
firmware that runs on the ESP32 module. More details
regarding the debug port will be given later.

5) PCB Design: For the design of the schematic and the
PCB, the free CAD design tool, KiCAD, was used. The
PCB was designed based on the technical specifications
required for compatibility with the previous version and
those imposed by the use of the ESP32 module, which
requires being located on one of the edges of the PCB. The
following list shows the main characteristics of the PCB:

• Dimensions: length = 105mm and height = 75mm.
• Material: FR4, thickness = 1.6mm.
• Designed in two layers with metalized holes and anti-

soldering mask.
Fig. 6 shows the arrangement of the blocks that make up
the controller and the corresponding connectors.

C. Main features
The main characteristics of the developed controller are

detailed below.
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Fig. 6: Layout of the controller blocks on the PCB.

Inputs:

• Power supply: 40V DC max. (Terminal block).
• 2 incremental optical encoders (RJ14).
• 2 analogues for measuring battery voltage (Terminal

block).

Outputs:

• 2 PWM signals of 5V for H-type bridges (Molex).
• Regulated voltage output of 5V for general purposes

(Molex).

Pushbuttons and LED indicators:

• Reset and boot pushbuttons.
• LED indicator for power supply.
• 2 LEDs indicating the status of USB transmission and

reception.
• 3 pushbuttons and 4 general-purpose LEDs.
• Front panel connector that extends the reset and boot

buttons and signaling LEDs (Header).

Communication ports:

• USB to flash the µC and communication (Type-B).
• JTAG for program debugging (Header).

Fig. 7 shows the PCB of the new controller with all
its components mounted, and Fig. 8 shows the controller
mounted on the RoMAA-II robot.

Fig. 7: New differential-drive robot controller board based
on ESP32 SoC (DDRC-ESP32).

Fig. 8: New differential-drive robot controller mounted on
RoMAA-II robot.

D. Software

Software development is mainly focused on checking the
correct functioning of the different parts that make up the
differential-drive robot controller.

The repository of the differential-drive robot controller
includes some example codes and documentation that enable
the user to start up the tools for software development. The
current content of the repository is:

1) An application based on the ESP-IDF framework to
evaluate the correct functioning of all controller com-
ponents. This application generates an HTTP server
that allows the user to interact with all the controller
components to verify their correct functioning. The
documentation to build and flash the application in the
controller using a Docker container is also included.

2) A document to install and start up a Docker container
with the software development tools (framework) for
the ESP32 based on ESP-IDF (IoT Development
Framework), along with the building and flashing of
the blink example on the board developed. From this
installation, other examples included in the ESP-IDF
framework can be evaluated to study the different
microcontroller peripherals that will be used in the
final robotics application.

3) A document to install the development environment
for ROS 2 with micro-ROS support for the ESP32
architecture using Docker. It contains the building,
running, and verification of the correct functioning of
an example node. This environment will allow the user
to develop the final micro-ROS node that will run on
the controller of the final robotics application.

1) JTAG Debug Port: The Espressif software develop-
ment framework, ESP-IDF (IoT Development Framework),
is based on the FreeRTOS real-time operating system which
facilitates the programming of applications for multiple
cores, as is the case of the SoC used in the controller. This
type of application entails the difficulty of discovering errors
in programming, due mainly to the running subprocesses,
which can be corrected by using a debugging port such as
JTAG [32].

On the other hand, Espressif has ported OpenOCD
(Open On-Chip Debugger) [33] to support ESP32 processors
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that run applications developed with FreeRTOS, and has
also developed additional tools that provide functions that
OpenOCD does not support natively. One of the applications
developed by Espressif is useful to write the program in the
Flash memory of the µC and monitor its functioning through
diagnostic messages (logging) using a serial terminal.

The developed controller includes the necessary con-
nections for debugging using JTAG, which must work in
conjunction with a JTAG-to-USB adapter that has OpenOCD
support. On the Espressif webpage, the users can find the
design of an adapter board (ESP-Prog) that meets this
objective. ESP-Prog [34] is a development and debugging
hardware from Espressif which connects to a PC via a USB
cable.

E. Experimental evaluation

In a first stage, the design of each of the circuits that
make up the controller was validated independently. After
the design and final manufacturing of the controller PCB,
the corresponding integration tests were carried out.

The controller was mounted on the RoMAA robotic
research platform for the functional verification. In the
uploaded video1, the operation of the robot controlled from a
mobile phone through web access can be observed. Jointly,
an application that runs on the microcontroller to test the
functioning of each component of the board was developed.
This program was uploaded to the project repository. As
mentioned, the test program generates an HTTP server and
configures a WiFi network using the communication module
included in the SoC, allowing it to be accessed from a
web browser running on an external PC connected to said
network.

This program generates a web user interface whose main
functionalities are:

1) Actuating on each of the robot motors, adjusting their
speeds.

2) Actuating on the controller indicator LEDs.
3) Reading the pulse counters of the incremental optical

encoders.
4) Reading the battery voltages.
5) Reading the state of the controller pushbuttons.
6) Communicating via WiFi.
Furthermore, as mentioned, the correct functioning of

the micro-ROS environment with support for ESP32 was
evaluated by building and flashing in the controller an ex-
ample of a ROS node. This node is built using the ESP-IDF
framework and makes use of FreeRTOS. The node publishes
a standard message over a ROS topic and communicates
through a WiFi network. In a remote PC with connection to
the same network, the correct reception of the messages is
verified by running a ROS 2 agent that executes in a Docker
container.

IV. CONCLUSION AND FUTURE WORK

As a final result of the presented development, the
hardware of a controller for differential-drive robots was
obtained. It replaces a previous design used for more than
10 years at CIII. This new controller is based on a modern

1https://www.youtube.com/watch?v=9FsznQ60jsQ

SoC that has native support for ROS 2 through its version for
embedded systems, micro-ROS; which was one of the main
design requirements. The new controller also presents some
improvements compared to the previous version: it uses a
switching power supply to optimize energy consumption,
it has a conditioning circuit for measuring the voltage
of the robot’s battery, it has general-purpose inputs and
outputs, and has the possibility of wireless communication
via WiFi. Along with the hardware development, some test
applications of the Expressif ESP32 SoC that the controller
has were carried out.

To validate the correct functioning of the controller, a test
application–based on an HTTP server–that allows actuating
and monitoring the correct functioning of all the components
of the controller was developed. This test application was
uploaded to the project repository. In addition, the necessary
documentation to setup up the software development frame-
work for the ESP32 SoC, provided by Espressif, as well as
the software for the implementation of micro-ROS nodes in
said SoC, are included. In both cases, Docker containers are
used, which makes installation and startup easier. This will
allow to carry out the software development stage that will
implement the final robotics application of the controller as
a micro-ROS node.

Future work will include the development of applications
for the evaluation and characterization of the operation
of each component of the controller in an independent
way, such as wheel speed measurement using incremental
optical encoders, battery voltage measurement, and other
subsystems. The aim is to finally develop an integrated
application for controlling a robot based on micro-ROS, in
order that those robots that use the controller have direct
support for ROS 2.
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[23] M. Baudino and S. Pérez, “Hardware de Control de Plataforma
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[24] D. A. Gaydou, G. F. Pérez Paina, G. M. Steiner, and J. Salomone,
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aplicación en robótica,” in Proceedings of the Argentine Conference
on Embedded Systems (CASE), 2011.

[28] Convenio de transferencia tecnológica: CIII-UTN-FRC y Caima
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