
International Journal for Quality Research 17(2) 313–324

ISSN 1800-6450

1
 Corresponding author: Vladimir Milićević

 Email: vladimir.milicevic@metropolitan.ac.rs

 313

Nikola Dimitrijević

Nemanja Zdravković

Vladimir Milićević
1

Article info:

Received 09.04.2022.

Accepted 11.12.2022.

UDC – 37.018.43:004

DOI – 10.24874/IJQR17.02-01

AN AUTOMATED GRADING FRAMEWORK

FOR THE MOBILE DEVELOPMENT

PROGRAMMING LANGUAGE KOTLIN

Abstract: With the recent rise of the Kotlin programming

language as the main contender for Android mobile

development, very few courses in Higher Education Institutions

exist which incorporate Kotlin as one of the main languages. In

addition, various online course platforms which offer learning

Kotlin are still very low in number, and the ones that do exist are

expensive. In this paper, an e-learning framework for the Kotlin

programming language is presented, supporting automatic

grading of given assessments. This framework is aimed at

students who already have basic knowledge of Java (or similar)

programming languages, and want to switch to mobile

development. The solution focuses on the development of an

interactive course in Kotlin. Furthermore, to compare our

solution with commercially available ones, we point out the

disadvantages of currently available Kotlin courses, such as the

level of previous knowledge needed, or a need for a specific

development environment.

Keywords: autograders, e-Learning, Java, Kotlin, mobile

development

1. Introduction

In the wake of the COVID-19 pandemic,

many Higher Education Institutions (HEIs)

are switching from the traditional

classrooms, to blended and/or completely

online learning. The ad- vantages of online

learning includes more flexibility in student

participation, and easy scaling to a large

number of enrollments (Galan et al., 2019).

In addition, web-based learning, especially

in the fields of Computer Science (CS),

Information Technology (IT) and Software

Engineering (SE) require innovative tools to

support new teaching and learning

methodologies, such as automatic graded

systems, virtual and augmented reality

systems, and an overall gamification of

learning (European Commision, 2021). The

shift from in-classroom learning to learning

from home has impacted CS, IT, and SE

students perhaps the most, as they needed to

rely on a home computer for learning

assignments and tasks.

Since its inception over a quarter of a

century ago, the Java programming language

is still among the most popular programming

languages for general use (IEEE Spectrum,

2021, TIOBE index, 2021, Gavrilović et al.,

2018). As a general-purpose language, Java

has gained its popularity by being platform-

independent, attributable to the Java Virtual

Machine (JVM). The use of JVM has led to

new programming languages, such as

Groovy, Scala, and most notably Kotlin

(Urma, 2014). Since Google announced

Kotlin as one of the officially supported

languages for Android development in 2017

due to its properties of being concise,

expressive, null-safe, the ever-increasing

Dimitrijević et al., An automated grading framework for the mobile development programming language Kotlin

314

popularity of Kotlin is evident (Oliveira et

al., 2020).

In this paper, we present a web-based

application for learning the Kotlin language

with autograding support, suitable to follow

a mobile development course offered to CS,

IT, and SE students. The rest of the paper is

organized as follows: Section 2 presents our

motivation and literature overview on

autograders, and points as the main

advantages of Kotlin for mobile

development, with highlighted similarities

and differences to Java. In Section 3, we

present our autograder-supported system,

provide a proposed course curriculum, as

well as details on assessment design. Section

4 presents results and discussion regarding

students’ experience using our system for

learning Kotlin. Finally, Section 5 concludes

the paper and gives plans for future research.

2. Motivation

Courses in mobile application development

offered to CS, IT, and SE students are

gaining more popularity, due to the

pervasive availability of devices such as

smartphones, tablets, and similar smart

portable devices, and their extensive use of

different Internet-based services (Bruzual et

al., 2020, Burd et al., 2012). In addition, this

trend is supported by a high demand in

industry, resulting in opportunities to both

students and institutions which offer these

courses (Fenwick et al., 2011). The authors

of this paper are motivated to firstly

investigate published works regarding

courses for mobile development offered by

HEIs and commercial platforms, as well as

the rising popularity of the Kotlin

programming language, in order to better

understand the need of a specifically-

designed course for Kotlin with autograder

support.

The number of portable smart device users is

increasing every year, as shown in Figure 1

(Riadi, 2017, Swidan et al., 2021). Following

this trend, HEIs, as well as other learning

platforms, such as Massive Open Online

Courses (MOOCs) and Small Private Online

Courses (SPOCs), have started to

incorporate mobile development courses in

their offers. For instance, Coursera offers

more than 300 results when searching for

mobile development (Coursera, 2021).

Figure 1. Number of smartphone users

worldwide from 2014 to 2020.

2.1. Related work

The idea of systems that can automatically

grade students’ input, referred to autograders

throughout the paper, is not new, especially

in STEM universities. In these universities,

as the majority of the assignments are in the

form of writing a computer program to run a

specific task. Indeed, the first paper can be

traced down to over fifty years ago (Forsythe

& Wirth, 1965). Autograders help teaching

staff by reducing the work load of having to

manually grade all students’ assignments.

Furthermore, the bias of the teaching staff is

also removed. Although present for over half

a century, autograders have evolved with the

emergence of new technologies and

programming languages (Caiza et al., 2013,

Douce et al., 2005, Shah, 2003). We can

distinguish three generations of autograders.

The first generation of these systems was

simple, and were mostly tied to lower-level

programming languages. By checking a

strict set of successive instructions written

by a student, the autograder would yield

”right” or ”wrong” as an answer. These early

International Journal for Quality Research, 17(2), 313–324, 2023, doi: 10.24874/IJQR17.02-01

315

programs were able to check only simple

programming assignments, and supported

mostly the procedural programming

paradigm. The second generation employed

operating system tools, and programming

languages such as C, C++ and Java were

used to build these systems (Deldago-Perez

et al., 2020, Insa et al., 2021). In turn, these

systems could also check problems in their

respective languages. Finally, the third

generation of autograders emerged with the

rise of the high- speed Internet and modern

web and mobile development technologies.

In these systems, used in HEIs and

MOOC/SPOC platforms alike, a web

application is hosted on a server. A learner

can write their program in a browser,

without the need of an interpreter or

compiler or an Integrated Development

Environment (IDE) installed on their home

computer. In addition, this generation of

autograders often supports different

programming languages with several

programming paradigms, such as object-

oriented programming or functional

programming.

As was pointed out in (Krusche & Seitz,

2018), many existing autograder tools exist

today, both as stand-alone commercial

platforms or as a part of an HEI’s Learning

Management System (LMS). The majority

of these systems are usually custom-tailored

for specific programming languages and

specific requirements as well. Furthermore,

autograders still suffer from technical and

pedagogical issues. Technical issues include

over- all security and protection from

potential malicious code written in the

assignment, as well as integration problems,

while pedagogical issues include a non-

uniform grading system, often set by each

autograder’s developers. Some autograders

still use the same correct/incorrect system,

while others may use a step- by-step per test-

case grading system (Bruzal et al., 2020). As

of writing this paper, the authors could not

find a uniform model or recommendation for

grading.

2.2. The Kotlin programming language

As was stated in (Urma R. G., 2014), the

extensive use of Java and its JVM produced

several new Java-based programming

languages, such as Kotlin, which began its

development by JetBrains in 2010, releasing

a stable version in 2016. In this subsection,

the authors of this paper will highlight the

differences of Java and Kotlin, and highlight

the reasons Google mentioned it is ”concise,

expressive, and designed to be type and null-

safe” (Oliveira et al., 2020).

As Kotlin is based on Java, it is a statically

typed language, with full support for object-

oriented and functional programming

paradigms. Indeed, Kotlin can be used both

in object-oriented and in functional

programming style, or in a mix of both styles

(Kotlin Language Documentation, 2021).

Although Kotlin uses JVM, it can also be

compiled into JavaScript, and into machine

code as well. Due to Java interoperability, it

is fairly easy to use any existing Java

framework and/or library. Other than mobile

application development, Kotlin is

increasingly being used for backend

development, and even older frameworks,

such as Spring, provide support for Kotlin

(Arhipov, 2020). In addition, Kotlin’s

support for coroutines helps build server-side

applications that scale to massive numbers of

clients with modest hardware requirements.

Whereas static methods are used for function

declaration outside classes in Java, Kotlin

allows the declaration of function outside the

classes. The approach in Java results in

classes whose instances are never created,

and static methods are called instead

(Gotseva et al., 2019). The main feature of

Kotlin is the support for non-nullable types,

making applications less susceptible to the

so-called null point dereference, i.e.

NullPointerException.

Regarding data types, Java and Kotlin share

more similarities than differences. The main

difference is the base class. Namely, the base

class in Java is Object, while Kotlin uses

Any. Kotlin types are further divided into

Dimitrijević et al., An automated grading framework for the mobile development programming language Kotlin

316

nullable and non-nullable. In Java, primitive

types cannot be used as generic types, as

they do not support method calls, and hence

cannot obtain a null value. To overcome

these restrictions, each primitive type is

paired with a wrapper class. Primitive data

types in Kotlin are stored on the stack, and

they exist only in their field of view. In

reference types, an address (reference) is

stored in the stack, in the heap of which is

the object itself. In Kotlin, the super-type for

all types is called Any; however, it cannot

contain a null value of null. Kotlin uses the

Any? type when a null value is necessary.

This applies for all data types – a question

mark after the type name explicitly allows

that variable to contain a null value.

Similarly, when accessing an object of

nullable types, the question-mark operator is

used instead of the dot operator. An

overview of data types in both languages is

summarized in Table 1 (Gotseva et al.,

2019). In addition, primitive and reference

data types are differently organized in the

memory. Kotlin does not use the keyword

new for new object creation, whereas Java

dedicates memory space for this newly

created object. In Kotlin, an object is created

by calling the constructor just like any

ordinary function in the language.

Constructors are used in both languages to

create objects as instances of a class. In

addition, both languages support the

declaration of multiple constructors.

However, in Kotlin, a primary constructor

exists, which is declared outside the class

body, while other constructors which are

therefore secondary are declared in the class

body. The role of the primary constructor is

to initialize the class, while the secondary

constructor(s) help to include additional

logic while initializing the class (Gotseva et

al., 2019). A more detailed analysis of the

similarities and differences can be found in

(Gotseva et al., 2019), where the authors

highlight not only data types, but also

operations and expressions, main statements,

functions and subroutines, and a more

detailed comparison in classes and objects.

Table 1. Data type similarities between

Kotlin and Java (Gotseva et al., 2019).

Data Type Kotlin Java

Integer

Integer Byte,

Short, Int,

Long

byte, short, int,

long

Floating point Float, Double float, double

Boolean Boolean boolean

Alphanumeric

character
Char char

Alphanumeric

string
String string

Null object null null

Base class Any Object

The authors of this paper highlight the

properties of Kotlin which Java does not have

in Table 2, in a similar manner as conducted

in (Dimitrijević et al., 2021).

Table 2. Features of Kotlin programming

language which are different from Java

(Dimitrijević et al., 2021).

Feature Available? Kotlin Java

Lambda expressions and

Inline functions
Yes No

Extension functions Yes No

Checked exceptions No Yes

Null-safety and smart casts Yes No

Primary constructors Yes No

First-class delegation Yes No

Type inference for variable

and property types
Yes No

Wildcard types No Yes

Declaration-site variance

and Type projections
Yes No

Range expressions Yes No

Operator overloading Yes No

Ternary operator No Yes

Data classes
Requires

less code

Requires

more

code

Static members No Yes

Coroutines Yes No

International Journal for Quality Research, 17(2), 313–324, 2023, doi: 10.24874/IJQR17.02-01

317

3. System model

The constant increase of mobile device use,

the gamification of education in all levels

has led to an increase of student motivation,

engagement and achievements throughout

their studies, as was pointed out in (Garcia et

al., 2020, Hursen & Bas, 2019, Khaleel et

al., 2015, O’Connor & Cardona, 2019).

Therefore, a new paradigm in distance

learning, namely mobile learning, or M-

learning, has emerged. M-learning, which is

a subset of distance education, provides

learners opportunities to learn through

educational mobile applications (Kayaalp &

Dinc, 2021). All this has led to the increase

of courses in mobile development, offered

by both commercial learning platforms and

HEIs alike (Modesti, 2021).

In this paper, we present an autograder-

supported framework for learning the Kotlin

programming language, intended for mobile

software development.

Our proposed system is based on a

previously implemented autograder used for

the purpose of learning basic programming

concepts, but also objective- oriented

programming. These UI components are

shown in Figure 2. The upper part of the UI

screen is divided into three areas. The upper

right area presents the lesson, the lower right

area presents the assignments, while the left

side represents the code editor.

According to the given assignment, a learner

can append existing code, edit existing code,

or write new code from scratch. Every

assignment consists of a group of tests to

check the correctness of the learner’s

solution.

Finally, the lower part of the screen is the

output of the autograder, which runs multiple

tests after the student submits their code. For

this purpose, we have applied the JUnit

framework for Kotlin (Test code using Junit

in JVM, 2021).

Figure 2. User Interface for the Kotlin

autoautograder system.

Our application supports both web-and

mobile interfaces. The application’s

architecture is given in Figure 3. The client-

side application is entirely reliant on the set

of services which are implemented as a

separate project. The application itself has a

monolithic architecture due to performance

reasons. The server-side is comprised of the

following components. The role of the Java

Spring Book application with REST services

is to run tasks, which client applications

communicate using HTTP protocol. The

MySQL relational database and file system

are used for data storage, and the SMTP

server is an external component used for

email notifications.

Figure 3. Architecture diagram.

Dimitrijević et al., An automated grading framework for the mobile development programming language Kotlin

318

The component diagram is shown in Figure

4. The Public compo- nent are used by

learners for their activities such as access to

lessons. The Administration component is

used for management, and it uses Lesson

Management and User Management, both

implementing CRUD operations. The

RDBMS server component is used for data

storage, and is implemented as a relation

model using JPA ORM framework. The

Kotlin Compiler and Runner are used for

compiling code inputs into executable code

and executing and verifying assessment

results, respectively. Finally, Figure 5 shows

a sequence diagram of running an

assessment.

Figure 4. Component diagram

Figure 5. Sequence diagram

International Journal for Quality Research, 17(2), 313–324, 2023, doi: 10.24874/IJQR17.02-01

319

3.1. Assessment design

The proposed curriculum includes topics and

assessments with different levels of

complexity, paired with different

functionalities needed for the realization of

the given topic. Furthermore, some of the

software components developed in the

earlier assessments could be reused for later

ones. This process of completing a given

topic consists of four stages, and is shown in

Figure 6.

Figure 6. Components of the learning

system model.

Baseline: The learner firstly completes a

self-assessment in order to build a baseline.

This self- assessment can be in the form of a

short quiz, or multiple-choice questions.

Theoretical part: The learner is presented a

given topic for the Kotlin programming

language in written, video and/and animated

form.

Assessment type 1: An easy-to-medium

difficulty assignment is given to the learner.

Afterwards, the learner inputs code within a

text editor in-browser, with part of the code

given to the learner.

Assessment type 2: A medium-t-hard

assignment is given to the learner, with no

code previously given, i.e. the learner writes

from scratch. In both assessment types, the

JUnit for Kotlin test framework is running as

a server-side application, using multiple test

cases in a step-by-step grading system. After

each of the topics’ assessments, the

autograder informs the learner if they have

passed the current topic successfully, and

can only continue with the next topic if the

previous is passed. At the end of the whole

course, the learner completes the same (or

similar) baseline test to self-assess their

progress.

3.2. Curriculum proposal

Following the established curricula for Java

and/or mobile development courses, we have

designed a curriculum for this course which

has four sections. A summary is given in

Table 3, with sub-topics omitted. As of

writing this paper, the authors included only

general topics for learning the Kotlin

language, and we plan to expand the topics

with the emphasis on mobile development.

As an example, in Figure 7 we can see the

screenshots of our application, in web and

mobile formats, where the assessment is the

evaluation of the Binomial Coefficient. The

code listing for the autograder is given in

Listing 1.

Listing 1. Test case listing for Binomial

Coefficient task.

var result : List < SimpleResult > =

ArrayList ()

var actual = C(6, 2)

var isSuccess = actual == 15L

result += SimpleResult ("C(6, 2)",

isSuccess , 15, actual)

actual = C(3, 3)

isSuccess = actual == 1L

result += SimpleResult ("C(3, 3)",

isSuccess , 1, actual)

actual = C(7, 5)

isSuccess = actual == 21L

result += SimpleResult ("C(7, 5)",

isSuccess , 21, actual)

actual = C(13 , 7)

isSuccess = actual == 1716 L

result += SimpleResult ("C(13 , 7)",

isSuccess , 1716 , actual)

Dimitrijević et al., An automated grading framework for the mobile development programming language Kotlin

320

Table 3. Curriculum proposal.

Basics Intro to OOP Functional Advanced OOP

Hello, World! Creating Classes Lambdas Extension Functions

Data Types Properties Collections Overloading

String Templates Constructors Member References Data Classes

Expressions Constraining Visibility Higher-Order Functions Interfaces

Loops Packages Manipulating Lists Complex Constructors

Functions Lists Building Maps
Secondary

Constructors

Nullable Types
Variable Argument

Lists
Sequences Inheritance

Non-Null Assertions Sets Local Functions Abstract Classes

Exception Handling Maps Folding Lists Composition

The Nothing Type Property Accessors Recursion Class delegation

Figure 7. Screenshot of the web app client (a) and mobile client (b). Mobile client screenshot

was taken in an emulator.

4. Results and discussion

The authors of this paper have firstly

conducted a short three-question survey

regarding a career in mobile software

development, as well as students’ knowledge

about the Kotlin programming language.

Students of 1st and 4th years of IT and SE

bachelor studies were questioned. There was

a total of 60 students that answered in the 1st

year, and 24 students in the 4th year. The

results are given in Fig. 8. Furthermore, the

authors asked 4th year students to evaluate

their experience using our solution,

compared with literature found online, and

the results are in Fig. 9. These students were

already familiar with a similar language such

as Java. Results show that 1st year students

are still not sure about their career path, and

only 37% have heard of Kotlin, whereas 4th

year students have a better understanding of

what Kotlin is used for. Interestingly, a

higher percentage of 1st year students would

like to learn Kotlin, even if some of them

have not heard of the language previously.

International Journal for Quality Research, 17(2), 313–324, 2023, doi: 10.24874/IJQR17.02-01

321

Figure 8. Survey regarding mobile

development careers and Kotlin. Students of

1st and 4th year were questioned

The second set of graphs shows 4th year

students’ experience using our autograder

framework, and the results are favorable

compared to learning using only a book.

Furthermore, 83% of students questioned

would recommend this approach to learning

a new programming language.

In particular, the importance of the

application of the observed solution is

reflected in the increase in passability in

course CS330 - Development of mobile

applications, which focuses on the Android

operating system with a strong support in the

Kotlin programming language. The

following table follows three generations of

students, all with the aim of introducing this

learning tool into the course learning system.

Figure 9. Survey after using the Kotlin

autograder framework. Students of 4th year

were questioned.

Table 4. Course: CS330 – Mobile

Application Development passing progress.

Course: CS330 – Mobile Application

Development

School year 2017 - 2028 2018-2019 2019 -

2020

Number of

students

74 64 97

Passed exam 37 38 60

Pass

percentage

50.00 59.37 61.85

From the table it is possible to follow the

progress of success in exam passing in

course CS330 - Mobile Application

Development over three consecutive school

years. In the first year, there was no learning

support in the form of an autograder-

supported system. In the second year, the

mentioned support is introduced with partial

acceptance by the students. The third school

year marks a significant interest of students,

based on the positive experiences and

Dimitrijević et al., An automated grading framework for the mobile development programming language Kotlin

322

recommendations of students from the

previous school year.

In coming years, the goal is to affirm

students to use the created tools more

intensively in order to achieve the projected

pass rate of 66.6%.

5. Conclusion

This article presented an autograder-

supported system for Kotlin exercises, aimed

at those already familiar with Java. The

proposed system and course curriculum

shown to be effective in terms of student

learning based on an analysis of exercise

submissions and a 4th year student feedback

survey, offering a simpler learning curve

than courses encountered online.

Furthermore, with the inclusion of detailed

theoretical knowledge, clips and/or

animations, the offered lessons would feel

less like a step-by-step tutorial, but rather

like a full course for CS and IT students. The

addition of an advanced autograder allows

our solution to hide the answers,

encouraging students to think about the

problem and not getting the right solution for

the specific test or tests. in particular, the

paper presented the progress in passing the

course Mobile Application Development

after the introduction of support in the form

of autograder-supported system.

As the mobile development continues, it is

planned to add more specific learning topics

for Kotlin Android developers, and to further

expand this type of system for multiple

programming languages such as Python and

Java (basic, intermediate and advanced

topics).

Acknowledgment: This paper was

supported in part by the Blockchain

Technology Laboratory at Belgrade

Metropolitan University, Belgrade, Serbia,

and in part by the Ministry of Education,

Science and Technological Development,

Republic of Serbia (Project III44006).

References:

Arhipov, A. (2020). Server-Side Development with Kotlin: Frameworks and Libraries.

Available at https://blog.jetbrains.com/kotlin/2020/11/server-side-development-with-kotlin-

frameworks-and-libraries/.

Bruzual, D., Montoya Freire, M. L., & Di Francesco, M. (2020, June). Automated assessment

of Android exercises with cloud-native technologies. In Proceedings of the 2020 ACM

Conference on Innovation and Technology in Computer Science Education (pp. 40-46).

Doi: 10.1145/3341525.3387430

Burd, B., Barros, J. P., Johnson, C., Kurkovsky, S., Rosenbloom, A., & Tillman, N. (2012).

Educating for mobile computing: addressing the new challenges. In Proceedings of the final

reports on Innovation and technology in computer science education 2012 working groups

(pp. 51-63). Doi: 10.1145/2426636.2426641

Caiza, J. C., & Álamo Ramiro, J. M. D. (2013). Programming assignments automatic grading:

Review of tools and implementations. International Journal of Engineering Education,

29(5), 1183-1192.

Coursera (2021). Mobile App Development Courses. Available at https://www.coursera.org/.

Dimitrijević, N., Milićević, V., Zdravković, N., Cvijanović D. (2021). Learning the Kotlin

programming language using an autograding system. Proc. of the 12th International

Conference on e-Learning. (pp. 137–141).

International Journal for Quality Research, 17(2), 313–324, 2023, doi: 10.24874/IJQR17.02-01

323

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of

programming: A review. Journal on Educational Resources in Computing (JERIC), 5(3), 4-

es. Doi: 10.1145/1163405.1163409

Fenwick Jr, J. B., Kurtz, B. L., & Hollingsworth, J. (2011, March). Teaching mobile computing

and developing software to support computer science education. In Proceedings of the 42nd

ACM technical symposium on Computer science education (pp. 589-594).

Doi: 10.1145/1953163.1953327

Forsythe, G. E., & Wirth, N. (1965). Automatic grading programs. Communications of the

ACM, 8(5), 275-278.

Galan, D., Heradio, R., Vargas, H., Abad, I., & Cerrada, J. A. (2019). Automated assessment of

computer programming practices: the 8-years UNED experience. IEEE Access, 7, 130113-

130119. Doi: 10.1109/ACCESS.2019.2938391

Garcia, I., Pacheco, C., Méndez, F., & Calvo‐Manzano, J. A. (2020). The effects of game‐

based learning in the acquisition of “soft skills” on undergraduate software engineering

courses: A systematic literature review. Computer Applications in Engineering Education,

28(5), 1327-1354. Doi: 10.1002/cae.22304

Gavrilović, N., Arsić, A., Domazet, D., & Mishra, A. (2018). Algorithm for adaptive learning

process and improving learners’ skills in Java programming language. Computer

Applications in Engineering Education, 26(5), 1362-1382. Doi: 10.1002/cae.22043

Gotseva, D., Tomov, Y., & Danov, P. (2019, October). Comparative study java vs kotlin. In

2019 27th National Conference with International Participation (TELECOM) (pp. 86-89).

IEEE. doi: 10.1109/TELECOM48729.2019.8994896

Hursen, C., & Bas, C. (2019). Use of gamification applications in science

education. International Journal of Emerging Technologies in Learning (iJET), 14(01), 4.

https://doi.org/10.3991/ijet.v14i01.8894

IEEE Spectrum (2021). Top Programming Languages. Available at https://spectrum.ieee.org/

top-programming-languages/.

Insa, D., Pérez, S., Silva, J., & Tamarit, S. (2021). Semiautomatic generation and assessment of

Java exercises in engineering education. Computer Applications in Engineering Education,

29(5), 1034-1050. Doi: 10.1002/cae.22356

Kayaalp, F., & Dinc, F. (2022). A mobile app for algorithms learning in engineering education:

Drag and drop approach. Computer Applications in Engineering Education, 30(1), 235-250.

Doi: 10.1002/cae.22453

Khaleel, F. L., Ashaari, N. S., Meriam, T. S., Wook, T., & Ismail, A. (2015, January). The

study of gamification application architecture for programming language course. In

Proceedings of the 9th international conference on ubiquitous information management and

communication (pp. 1-5). Doi: 10.1145/2701126.2701222

Kotlin Language Documentation 1.6.10 (2021). Available at https://kotlinlang.org/docs/

home.html/.

Krusche, S., & Seitz, A. (2018, February). Artemis: An automatic assessment management

system for interactive learning. In Proceedings of the 49th ACM technical symposium on

computer science education (pp. 284-289). Doi: 10.1145/3159450.3159602

Modesti, P. (2021). A script-based approach for teaching and assessing Android application

development. ACM Transactions on Computing Education (TOCE), 21(1), 1-24. Doi:

10.1145/3427593

Dimitrijević et al., An automated grading framework for the mobile development programming language Kotlin

324

O’Connor, P., & Cardona, J. (2019). Gamification: A pilot study in a community college

setting. Journal of Education, 199(2), 83-88. Doi: 10.1177/0022057419848371

Oliveira, V., Teixeira, L., & Ebert, F. (2020, February). On the adoption of kotlin on android

development: A triangulation study. In 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER) (pp. 206-216). IEEE. doi:

10.1109/SANER48275.2020.9054859

Riadi, I. (2017). Forensic investigation technique on android's blackberry messenger using nist

framework. International Journal of Cyber-Security and Digital Forensics, 6(4), 198-206.

Shah, A. R. (2003). Web-cat: A web-based center for automated testing (Doctoral dissertation,

Virginia Tech).

Test code using JUnit in JVM (2021). Available at https://kotlinlang.org/docs/ jvm-test-using-

junit.html/, 2021.

TIOBE index (2021). Available at https://www.tiobe.com/tiobe-index/java/.

Urma, R. G. (2014). Alternative languages for the JVM a look at eight features from eight JVM

languages. Available at https://www.oracle.com/technetwork/articles/java/ architect-

languages-2266279, 2014.

Nikola Dimitrijević
Faculty of Information

Technologies, Belgrade

Metropolitan University,

Belgrade, Serbia

nikola.dimitrijevic@metrop

olitan.ac.rs

Nemanja Zdravković
Faculty of Information

Technologies, Belgrade

Metropolitan University

Belgrade, Serbia.

nemanja.zdravkovic@metrop

olitan.ac.rs

Vladimir Milićević
Faculty of Information

Technologies, Belgrade

Metropolitan University

Belgrade, Serbia

vladimir.milicevic@metrop

olitan.ac.rs

