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Abstract: Traffic modeling is crucial for designing and evaluating active queue management (AQM) methods used in 

network routers to control congestion. The Bernoulli process (BP), commonly used to model the traffic, falls short in 

capturing the burstiness of Internet traffic. Besides, the Markov Modulated Bernoulli Process (MMBP) with multiple 

states and varying probabilities allows the determination of each state’s load independently but does not set specific 

overall traffic loads. This limitation hinders the establishment of a baseline for evaluating AQM methods. To address 

these issues, this paper introduces an enhanced traffic modeling approach using the stationary distribution of the 

Markov Modulated Bernoulli Process (MMBP-SD). This new model calculates the stationary distribution to match the 

required traffic load while varying its burstiness, enabling a fair comparison with the Bernoulli process of a predefined 

traffic load and facilitating the assessment of AQM behaviors. The proposed approach was tested under various traffic 

loads and evaluated using the burstiness factor (BF) and the maximum burstiness duration (MBD). The results showed 

that the MMBP-SD improved the BF by 6.2% and the MBD by 118% compared to the BP. Evaluating Random Early 

Detection (RED) was conducted using MMBP-SD and based on delay, loss, and packet dropping. This evaluation 

revealed that the RED performance in terms of packet loss degrades when using a 4-state MMBP-SD (e.g., packet loss 

increased by 28.5%) as RED maintains the same dropping rate as in the single-state model, highlighting a limitation 

of the RED method. 
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1. Introduction 

Managing network congestion is a significant 

challenge in computer networking, where continuous 

and efficient data transmission is essential. As data 

traffic nears network capacity limits, effective 

congestion control mechanisms become increasingly 

critical. Active Queue Management (AQM) is a key 

solution in this context. AQM employs proactive 

techniques and algorithms within network routers to 

regulate data packet flow, especially during high 

traffic load and congestion. The primary goal of 

AQM is to balance efficient network utilization with 

the prevention of congestion, which can degrade 

overall network performance. AQM accomplishes 

this by actively monitoring network traffic and queue 

lengths within buffers, dynamically discarding or 

marking packets to prevent packet loss and excessive 

queuing delays [1]. 

The Random Early Detection (RED) algorithm 

stands out as a pioneering and widely utilized method 

for Active Queue Management (AQM). By 

continuously monitoring the length of the queue, 

RED offers early indications of potential network 

congestion. Unlike conventional drop-tail 

mechanisms that only discard packets when the 

queue is fully occupied, RED takes a proactive stance. 

RED employs stochastic packet drops as the queue 

length increases, thereby acting before the queue 

reaches its maximum capacity. This approach 

effectively mitigates the risk of abrupt congestion and 
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substantially lowers packet loss, enhancing network 

stability and overall quality of service [2]. 

The packet-dropping mechanism in RED is 

governed by a dropping probability (Dp) parameter, 

calculated based on the average queue length and 

specific thresholds. This mechanism stochastically 

signals data sources to adjust their transmission rates 

once the average queue length surpasses these 

thresholds. RED’s ability to forecast congestion 

trends and adjust to dynamic network conditions 

makes it a crucial tool in modern network 

management [3]. 

However, one notable challenge with RED is its 

sensitivity to parameter configuration, often leading 

to an elevated packet-dropping rate [4]. Furthermore, 

RED’s dependence on the average queue length 

(AQL) as an indicator for packet dropping may not 

always accurately reflect imminent congestion. 

These limitations are particularly evident when RED 

is paired with the Bernoulli traffic model in 

simulations. With its simplistic and idealized 

representation of traffic patterns, the Bernoulli traffic 

model fails to capture the complexities of real-world 

network traffic [5]. 

Traffic modeling is crucial for Active Queue 

Management (AQM) methods, influencing their 

behavior. Two widely used techniques for traffic 

modeling are the Bernoulli Process (BP) and the 

Markov Modulated Bernoulli Process (MMBP), 

often employed with AQM methods like RED. The 

BP is a fundamental stochastic model that describes 

packet arrivals in a network, where events occur 

randomly and independently at a constant rate λ. 

While the BP can capture basic traffic characteristics 

and specific load rates, it fails to represent the 

complexity of real-world network traffic, which often 

exhibits variations in arrival rates [6]. 

The MMBP incorporates a Markov chain to 

address the BP limitations, introducing complexity 

into the traffic generation probability. In the MMBP, 

the packet arrival probability varies according to the 

state of the underlying Markov chain. This allows the 

MMBP to model traffic with varying characteristics 

over time, providing a more realistic representation 

of network behavior. The variability in probabilities 

is particularly useful for capturing traffic patterns 

transmitted between different states, such as bursty 

and non-bursty periods. However, it does not allow 

for setting a precise traffic load, as different states 

correspond to different load rates [7]. These models 

are represented as given in Fig. 1. 

Combining the ability to generate variable load 

with a predefined rate can be implemented using the 

stationary distribution of the Markov model (MMBP- 
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Figure. 1 Traffic modeling using BB and MMBP 

 

 

SD), as proposed in this paper. MMBP’s ability to 

model diverse traffic characteristics aligns 

seamlessly with the AQM goal of proactive 

congestion management. Additionally, MMBP 

facilitates a more effective and adaptable AQM 

design by configuring AQM methods to dynamically 

adjust their behavior based on the traffic patterns 

modeled by MMBP. MMBP-SD addresses the 

limitation in network simulation of imprecise load, 

resulting in relatively undefined arrival probability 

modeling. 

This paper introduces a novel approach to traffic 

modeling using MMBP-SD and employs it to assess 

the performance of RED compared to BP. The key 

contributions of this work are outlined as follows: 1) 

Propose a traffic model grounded in the stationary 

distribution of the MMBP. 2) Demonstrate the 

feasibility and accuracy of the MMBP-SD by 

evaluating the generated model to validate the 

MMBP-SD concept. 3) Evaluate the RED’s 

performance using the MMBP-SD and BP models.  

The proposed MMBP-SD model offers new 

features over traditional traffic models. Firstly, it 

accurately captures traffic’s burstiness, which is 

crucial for realistic performance evaluations of AQM 

methods. Secondly, the model allows for a predefined 

overall traffic load while varying burstiness, enabling 

fair and comprehensive comparisons with 

conventional models such as BP. The main 
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advantages include a better representation of real-

world traffic dynamics and improved evaluation of 

RED’s performance under diverse traffic conditions. 

The model will be evaluated based on its brustiness. 

Besides, evaluating the RED using the proposed 

model will reveal the true characteristics of RED that 

are not apparent with simpler models, thus providing 

deeper insights into congestion control mechanisms. 

The structure of this paper is organized as 

follows: Section 2 presents a comprehensive review 

of the literature on AQM and traffic modeling 

techniques. Section 3 details the proposed approach, 

including developing the RED model and the traffic 

modeling process. Section 4 discusses the outcomes 

of the MMBP-SD model and evaluates RED’s 

performance using this model. Finally, the 

conclusions and future work are outlined in Section 

5. 

2. Literature review 

Queue modeling techniques, such as Renewal 

Traffic and Bernoulli Processes, have been widely 

used to evaluate and validate the performance of 

congestion control algorithms in networking and 

traffic management [5]. These models offer a 

mathematical framework to represent traffic patterns 

and provide insights into system behavior under 

various conditions. However, these traditional 

models often fail to capture real-world traffic’s 

discrete, bursty, and correlated characteristics. To 

overcome these limitations, the MMBP is utilized. 

The MMBP effectively captures network traffic’s 

discrete, bursty, and correlated nature, making it a 

valuable tool in congestion control analysis and 

optimization.  

MMBP’s ability to represent variable traffic 

states and transitions between these states aligns well 

with the needs of congestion control evaluations. For 

instance, Alsaaidah, et al. [8] implemented the BLUE 

method with two-state and four-state MMBP models 

to prove that MMBP best suits the congestion control 

evaluation. Despite these findings, the question of 

whether the BLUE method performs optimally under 

MMBP conditions remains unproven, given the 

disparity in arrival rates between BP and MMBP 

models. This indicates a need for further comparative 

analysis to determine the efficacy of congestion 

control algorithms under different traffic modeling 

scenarios.  

Duran, et al. [9] presented a novel discrete 

dynamical model of RED employing a beta 

distribution to manage bifurcations and chaos in 

internet congestion control. This model incorporates 

the unique characteristics of chaotic networks, 

proposing a generalized RED-based framework with 

two additional control parameters for the nonlinear 

packet drop probability function. In another study, Li, 

et al. [10] introduced a congestion control technique 

for Wireless Sensor Networks (WSNs) that utilizes a 

dual-threshold cache state in the router buffer to 

mitigate congestion. This method extends the RED 

algorithm by adjusting packet dropping based on a 

degree threshold. However, as the number of 

connections increases, the RED algorithm’s reliance 

on average queue length often leads to increased 

transmission delays and unstable network 

performance. Although these approaches address the 

chaotic behavior of internet traffic, they do not 

incorporate the MMBP in their simulations. 

Sunitha, et al. [11] explored the effectiveness of 

using a two-state MMBP for RED evaluation and 

analysis. Through the experiments, the MMBP was 

found to improve the fairness and stability of the 

network, as well as reduce packet loss and delay. 

Smiesko, et al. [12] focused on advancing traffic 

modeling with MMBP, assessing its performance in 

congestion control scenarios. Their findings 

indicated that the MMBP-based model offers a more 

precise depiction of bursty and correlated traffic 

patterns, thereby improving congestion management 

in router buffers.  

Mahawish and Hassan [6] evaluated the RED 

algorithm’s performance using a four-state MMBP. 

Their findings indicated that MMBP effectively 

captures traffic burstiness and correlation, enhancing 

congestion control in router buffers. Guan, et al. [13] 

conducted network simulations to implement RED 

with a two-state MMBP with a state of highly 

generated traffic and another for variable traffic 

volume with probability in the range from 0 to 1. The 

results were used to set the optimal value for the 

thresholds used in RED. In another study, Guan, et al. 

[14] proposed an AQM method tested and optimized 

using the MMBP-2 framework. Two states of low-

generated traffic were used with probabilities in the 

range of 0.20 to 0.25. Guan, et al. [15] introduced an 

alternative AQM method to manage congestion and 

delay within router buffers, simulating traffic using a 

two-state MMBP with arrival probabilities between 

0.20 and 0.25. Lim, et al. [16] developed an AQM 

approach to handle multiple aggregated and 

correlated traffic flows. They created a simulation 

environment featuring N overlapping flows, modeled 

with two-states MMBP under various settings to 

replicate moderate and heavy traffic conditions. 

Saaidah, et al. [17] optimized the performance of 

the BLUE method using two-state MMBP, which 

resulted in optimized parameters and improved 

overall performance. Besides, Alsaaidah, et al. [8] 
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compared the performance of the BLUE and Gentle 

BLUE methods using two-state MMBP. Their 

findings corroborated those obtained with the 

Bernoulli Process (BP), demonstrating that Gentle 

BLUE outperforms the BLUE method. Abu-Shareha, 

et al. [5] assessed the RED method’s performance 

under different traffic models, including BP, MMBP-

2, and MMBP-4. Their results indicated that MMBP-

4 provides superior traffic modulation, accurately 

reflecting the RED method’s performance across 

multiple evaluation metrics during heavy congestion. 

This highlights the potential of MMBP-4 as an 

effective tool for evaluating and enhancing 

congestion control mechanisms. Accordingly, three  
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Alsaaidah, et 

al. [8] 

BLUE √ √ √ χ 

Duran, et al. 

[9] 

RED √ χ χ χ 

Li, et al. [10] Ext.RED √ χ χ χ 

Sunitha, et al. 

[11] 

RED √ √ χ χ 

Smiesko, et 

al. [12] 

RED √ √ χ χ 

Mahawish 

and Hassan 

[6] 

RED √ √ √ χ 

Guan, et al. 

[13] 

RED √ √ χ χ 

Guan, et al. 

[14] 

Proposed 

AQM 

√ √ χ χ 

Guan, et al. 

[15] 

Proposed 

AQM 

√ √ χ χ 

Lim, et al. 

[16] 

Proposed 

AQM 

√ √ χ χ 

Saaidah, et al. 

[17] 

BLUE √ √ χ χ 

Abu-Shareha, 

et al. [5] 

RED √ √ √ χ 

Proposed RED √ √ √ √ 

different approaches are used to simulate traffic in: 

BP, MMBP-2, and MMBP-4, which will be used for 

comparison. Table 1 summarizes the discussed 

literature. 

3. The Proposed work 

The proposed framework leverages the stationary 

distribution of MMBP to simulate bursty traffic 

patterns for evaluating and benchmarking the RED 

algorithm. By providing deeper insights into RED’s 

performance across various network conditions, this 

approach contributes to the ongoing refinement of 

congestion control strategies in modern computer 

networks. Utilizing MMBP offers flexibility in 

modeling traffic burstiness through multiple states. 

While MMBP is typically configured with two states 

(congested and non-congested), employing four 

states allows for finer granularity in congestion 

control. Moreover, the stationary distribution ensures 

precise traffic load settings, enhancing the accuracy 

of performance evaluations. 

In modeling the network traffic, the packet arrival 

in slot k is modeled as a binomial distribution, with a 

probability α for a successful packet arrival. The time 

gap between two consecutive arrivals follows a 

geometric distribution. The arrival process remains in 

the same state with a probability of p and is 

transmitted into other states with collective 

probabilities equal to the complementary of p (i.e., 1-

p). During these processes, RED is implemented to 

decide on the accommodation of the packets. The 

performance evaluation is conducted after running 

through all the slots as determined.  

In network traffic modeling, packet arrival in slot 

k is represented by a binomial distribution, α denoting 

the probability of a successful packet arrival. The 

time interval between consecutive arrivals follows a 

geometric distribution. The arrival process remains in 

the same state with a probability p and transitions to 

other states with collective probabilities summing to 

1-p. Throughout these processes, the RED algorithm 

is applied to decide on the accommodation of packets. 

Performance evaluation is conducted after processing 

all the predetermined slots. Fig. 2 illustrates the 

proposed framework for comparing the performance 

of RED using the designed MMBP-SD model. 

 

 
Figure. 2 MMBP-based Framework 
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3.1 Traffic modeling 

Using the MMBP, the occurrence of packet 

arrivals depends on the probability associated with 

the model’s current state. Specifically, the proposed 

MMBP model employs four distinct states (s1, s2, s3, 

s4), each characterized by unique packet arrival 

probabilities (α1, α2, α3, α4), and transition 

probabilities of ({p11, p12, p12, p14}, { p21, p22, p23, p24}, 

{p31, p32, p33, p34}, {p41, p42, p43, p44}). The model 

begins in the initial state, s1. The packet arrival in the 

first slot depends on the probability α1 associated with 

this state. In subsequent time slots, packet arrivals 

depend on either the probability of remaining in the 

current state or transitioning to a different state, as 

determined by the transition probabilities. These 

dynamics are governed by Eqs. (1) to (4). 

 

𝑃𝑠1
=  𝛼1 ∗ 𝑝11 + (𝑝21 ∗ 𝛼2) + (𝑝31 ∗ 𝛼3) +

(𝑝41 ∗ 𝛼4)                      (1) 

 

𝑃𝑠2
=  𝛼1 ∗ 𝑝12 + (𝑝22 ∗ 𝛼2) + (𝑝32 ∗ 𝛼3) +

(𝑝42 ∗ 𝛼4)                                  (2) 

 

𝑃𝑠3
=  𝛼1 ∗ 𝑝13 + (𝑝23 ∗ 𝛼2) + (𝑝33 ∗ 𝛼3) +

(𝑝43 ∗ 𝛼4)                               (3) 

 

𝑃𝑠4
=  𝛼1 ∗ 𝑝14 + (𝑝24 ∗ 𝛼2) + (𝑝34 ∗ 𝛼3) +

(𝑝44 ∗ 𝛼4)                      (4) 

 

The proposed MMBP model is characterized by  

α, αs, and Ps, where α represents the overall target 

traffic load, αs denote the probabilities of traffic load 

at different states, and Ps signifies the transition 

probabilities between these states. The combination 

of αs and Ps ensures that the overall traffic load α is 

achieved while accurately representing traffic 

burstiness. This integration allows the model to 

simulate realistic traffic patterns, capturing both the 

average load and its variations. 

First, the transmission probabilities of the model 

are established, combining random and 

predetermined values. These probabilities are defined 

by Eqs. (5) to (7).  

 

𝑝𝑖𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ (0 𝑡𝑜 1)                (5) 

 

𝑝𝑖𝑗, 𝑝𝑖𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ ((0 𝑡𝑜 (1 − 𝑝𝑖𝑖)/3))   (6) 

 

𝑝𝑖𝑙 = 1 − (𝑝𝑖𝑖 +  𝑝𝑖𝑗 + 𝑝𝑖𝑘)                (7) 

 

where i represents a specific state; thus, pii 

represents the probability of remaining in the same 

state i. The parameters j, k, and l denote the transition 

probabilities to other states within the model, 

determined randomly. The transition probability pil is 

calculated such that the sum of transition 

probabilities from each state equals 1. 

The calculated transition probabilities form the 

transmission matrix represented in Eq. (8). 

 

𝐴 = [

𝑝11 𝑝12

𝑝21 𝑝22

𝑝13 𝑝14

𝑝23 𝑝24
𝑝31 𝑝32

𝑝41 𝑝42

𝑝33 𝑝34

𝑝43 𝑝44

]                            (8) 

 

In order to set αs, the constructed model uses the 

stationary distribution of the Markov chain. The 

stationary distribution refers to the long-term 

behavior of a stochastic process, indicating where it 

tends to settle over time. The stationary distribution 

is computed based on the transition matrix, A. The 

transpose of the matrix is calculated, and then the 

eigenvalues and eigenvectors of the transpose are 

calculated—next, the eigenvector corresponding to 

the eigenvalue one is selected and normalized to 

obtain the stationary distribution. 

For a Markov chain, the stationary distribution is 

represented by a vector v, calculated using the 

transition matrix A and satisfies Eq. (9). 

 

𝐴𝑣 = 𝑣      (9) 

 

Solving Eq. (9) is eased through Eqs. (10) to (13).  

 

𝑣1 = (𝑣1 ∗ 𝑝11) + (𝑣2 ∗  𝑝21) + (𝑣3 ∗  𝑝31) +
(𝑣4 ∗  𝑝41)                             (10) 

 

𝑣2 = (𝑣1 ∗ 𝑝12) + (𝑣2 ∗ 𝑝22) + (𝑣3 ∗ 𝑝32) +
(𝑣4 ∗  𝑝42)                   (11) 

 

𝑣3 = (𝑣1 ∗ 𝑝13) + (𝑣2 ∗ 𝑝23) + (𝑣3 ∗ 𝑝33) +
(𝑣4 ∗  𝑝43)                   (12) 

 

𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 = 1               (13) 

 

Finally, to achieve the overall probability α, the 

stationary distribution is used to calculate the 

probabilities for each state α1, α2, α3, and α4, as shown 

in Eq. (14). 

 

[𝑣1 𝑣2 𝑣3 𝑣4] ∗ [

𝛼1

𝛼2
𝛼3

𝛼4

] = 𝛼 →  [

𝛼1

𝛼2
𝛼3

𝛼4

] =

[𝑣1 𝑣2 𝑣3 𝑣4]−1 ∗ 𝛼                (14) 

 

As such, the arrival probabilities at different 

states, (α1, α2, α3, α4) are calculated by multiplying the 
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Figure. 3 RED Operations 

 

 

inverse v vector with the overall probability α. 

3.2 AQM modeling 

RED is depicted in Fig. 3, operating through a 

series of defined procedures. Primarily, it determines 

packet-dropping probability (Dp) by comparing it 

with two thresholds. The Average Queue Length 

(AQL) is computed using Eq. (15) when the queue is 

empty and Eq. (16) when it’s not. 

 

AQLt =  (1 −  w)𝑖𝑑𝑙𝑒 ∗  AQLt−1            (15) 

 

AQLt =  (1 −  w) ∗ AQLt−1 + w ∗ qt          (16) 

 

where w is the queue weight, which is determined 

empirically or initialized by experts, and idle is the 

time of idleness of the queue.  

 AQL is a critical metric for assessing queue 

congestion levels, guiding the calculation of Dp and 

the extent of packet-dropping measures. The 

comparison of AQL with the Minimum and 

Maximum Thresholds determines the course of 

action: if AQL falls below the minimum, Dp is set to 

0, indicating no packet drops. In cases where AQL 

lies between the two thresholds, Dp is computed as a 

function of AQL’s position relative to these 

thresholds. Lastly, if AQL surpasses the maximum 

threshold, signaling severe congestion, Dp is set to 1, 

dropping all incoming packets. 

The implementation of RED employs an IF-Then 

approach, leveraging pre-initialized thresholds, max 

parameters, and counters set to specific and 

consistent values. 

3.3 Performance measures 

The delay (D), the dropping rate (DR), and the 

packet loss rate (PL) are used to evaluate the 

compared AQM methods. The D is calculated using 

Little’s law, as given in Eq. (17), while DR and PL 

are represented in Eqs. (18) and (19), respectively. 

 

𝐷 =  𝑀𝑄𝐿/𝑇                          (17) 

 

𝐷𝑅 =  𝐷𝑟𝑜𝑝𝑝𝑒𝑑/𝐴𝑟𝑟𝑖𝑣𝑒𝑑                        (18) 

 

𝑃𝐿 =  𝐿𝑜𝑠𝑡/𝐴𝑟𝑟𝑖𝑣𝑒𝑑                          (19) 

 

where N is the router capacity, i is a value 

between [0, N], indicating specific queue length, and 

pi is the probability (i.e., the occurrences) of each 

length during the simulation. T is the throughput. PL 

is the ratio of lost packets to the number of packets 

that arrive at the router, while DR is the ratio of the 

dropped packets.  

To evaluate the burstiness factor of the proposed 

approach, two burstiness factors are utilized; these 

are the Burstiness Factor (BF) and the Maximum 

Burstiness Duration (MBD),  as given in Eqs. (20) 

and (21).   

 

𝐵𝐹 = 𝜎𝑖𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝜇𝑖𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙⁄               (20) 

 

𝑀𝐵𝐷 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑠. 𝐴𝑟𝑟𝑖𝑣𝑎𝑙)      (21) 

 

where σinterArrival is the standard deviation of the 

inter-arrival times between each pair of consecutive 

packets, while μinterArrival is the mean of the inter-

arrival times. MBD is the maximum length of the 

burst packets. 

4. Simulation and results 

The simulation components are illustrated in Fig. 

4. RED and the network are simulated using the Java 

programming language. The network setup consists 

of a single router with a defined buffer capacity, 

where the underlying AQM method is executed. 

Performance evaluation is conducted through 

experiments utilizing a discrete-time queue model. 
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Figure. 4 Implementation details  

 
Table 2. Parameter Settings 

Parameter Values 

Overall Arrival Rate 

(α) 

0.18-0.93 

Departure Rates (β) 0.5, 0.3 

Capacity 20 

w 0.002 

max-parameter 0.1 

Minimum Threshold 3 

Maximum Threshold 9 

 

4.1 Parameter initialization 

To evaluate RED effectively, it’s essential to 

initialize specific parameters to predetermined values. 

These parameters include the arrival rate, departure 

rate, and capacity, which are pertinent to the 

simulated network. Additionally, parameters such as 

w, max-parameter, and the two thresholds are crucial 

for RED. It’s worth noting that a series of 

experiments are conducted using various arrival and 

departure rates to simulate loads akin to congested 

and non-congested networks. Table 2 provides an 

overview of the parameters utilized in the 

experiments and their corresponding values. 

4.2 MMBP-SD concepts validation 

The arrival rates for each state in the different 

models can be found in Table 3. For a comprehensive 

understanding, the complete set of parameters, 

including transition and v values, are provided in 

Appendices A and B, respectively. It’s important to 

note that all models exhibit variation in  

 

Table 3. Arrival Rates of the Generated Models  

α 

BP MMBPSD-2 MMBPSD-4 

α1 α1 α2 α1 α2 α3 α4 

0.3 0.3 0.0408 0.3319 0.1398 0.0944 0.1503 0.4446 

0.35 0.35 0.4225 0.1716 0.3528 0.0006 0.0010 0.0012 

0.4 0.4 0.3340 0.4491 0.0965 0.0865 0.1880 0.5691 

0.45 0.45 0.5056 0.3750 0.4257 0.0604 0.5308 0.4290 

0.5 0.5 0.4223 0.5587 0.1534 0.7300 0.1689 0.1891 

0.55 0.55 0.4818 0.6044 0.3297 0.8210 0.2473 0.2494 

0.6 0.6 0.4131 0.7089 0.3261 0.8234 0.5160 0.4968 

0.65 0.65 0.3206 0.7846 0.2223 0.9327 0.5149 0.2442 

0.7 0.7 0.1807 0.8151 0.2272 0.1413 1.0000 0.2730 

0.75 0.75 0.0539 0.7971 0.0190 0.8019 0.0204 0.0176 

0.8 0.8 0.0308 0.8286 0.4837 0.6357 0.8876 0.9829 

0.85 0.85 0.4644 1.0000 0.7010 0.7650 0.8162 1.0000 

0.9 0.9 0.1652 1.0000 0.0507 1.0000 0.1615 0.2497 

0.95 0.95 0.6573 1.0000 1.0000 0.3850 0.6282 0.7281 

 

 
(a) 

 

 
(b) 

Figure. 5 Number of Packets Generated and Arrived by 

the Compared Models: (a) Arrival at β=0.5 and (b) 

Arrival at β=0.3 
 

rates across different states, contributing to 

generating burst traffic using MMBP-SD-2 and 

MMBP-SD-4. Furthermore, to demonstrate the  

 

Packet Departure 

AQM Control 

Transition Matrix 

Stationary Distribution 

Arrival Probabilities 

Initialization 

Packet Accommodation 

Packet Arrival 
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Table 4. Results of the burstiness evaluation  

α BP MMBP-SD-4 MMBP-SD-4 

BF MBD BF MBD BF MBD 

0.3 190.8 9 190.9 12 191.0 13 

0.35 195.8 10 196.0 15 195.9 15 

0.4 197.9 10 197.9 13 197.1 21 

0.45 197.1 11 197.1 18 197.1 25 

0.5 193.8 15 193.7 18 194.3 18 

0.55 187.6 18 187.3 21 187.4 23 

0.6 179 22 179.0 27 178.3 46 

0.65 167.3 25 167.0 46 166.8 36 

0.7 152.9 33 152.8 41 152.9 39 

0.75 135.6 40 135.3 40 136.5 63 

0.8 115.3 53 115.1 72 136.4 141 

0.85 92.1 79 97.6 67 112.8 213 

0.9 65.4 122 82.7 106 108.7 663 

0.95 34.7 195 65.5 151 82.1 85 

Average 150.4 45.9 154.1 46.2 159.8 100.1 

Improve. - - 2.5% 1% 6.2% 118% 

 

 

efficacy of the developed model in achieving an 

overall packet arrival rate, the number of arrival 

packets at different α values was evaluated, as 

depicted in Fig. 5. It’s worth noting that while the 

arrival rates of the models may appear similar, 

attaining identical values is inherently impossible, 

even with the re-implementation of the same model 

due to the stochastic nature of the packet-generating 

process. These results underscore the importance of a 

fair comparison between the evaluated models (i.e., 

BP and MMBP-SD). 

The results, as given in Table 4, illustrate that the 

MMBP-SD generates more realistic and burstiness 

traffic, which outperformed BP under all the arrival 

rates. The results showed that the MMBP-SD 

generates an improvement of BF by 6.5% and MBD 

by 118%. As such, based on the results for burstiness 

and arrival stability, the proposed approach achieved 

the desired property of modeling the burstiness of the 

traffic and allowed the overall arrival rate to be set 

concisely. 

4.3 Experimental results 

The experimental results assess the performance 

of RED using BP, MMBPSD-2, and MMBP-SD-4 

across various arrival and departure probabilities. 

Fig. 6 presents the evaluation results in terms of 

packet loss, depicting different load conditions 

ranging from low to high traffic, covering scenarios 

from non-congestion to heavy congestion. The  

 

 
(a) 

 

 
(b) 

Figure. 6 Packet Loss-based Performance Comparison: 

(a) Loss at β=0.5 and (b) Loss at β=0.3 

 

 

departure rate (β) remains consistent at values of 0.5 

and 0.3.  

Notably, RED exhibits an average packet loss of 

0.8% with β equal to 0.5 and 1.4% with β equal to 0.3. 

However, these percentages significantly deviate in 

the MMBP-SD-4 model, where packet loss reaches 

1.3% and 1.8% for β, equal to 0.5 and 0.3, 

respectively. On average, RED loses 28.5% more 

using MMBP-SD-4.The disparities in packet loss 

become more pronounced in highly congested 

networks. Consequently, it is suggested that 

evaluating RED using single or double states may not 

fully capture its characteristics. Additionally, the 

performance gap becomes evident as the arrival rate 

surpasses certain thresholds [α= 0.65, β= 0.5] and [α= 

0.4, β= 0.3]. 

Fig. 7 displays the evaluation outcomes regarding 

packet dropping. It is observed that, on average, RED 

drops 20% of the packets with β equal to 0.5 and 47% 

with β equal to 0.3, indicating its limited ability to 

respond to sudden fluctuations in network traffic load. 

Furthermore, the performance of BP and MMBP-SD- 
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(a) 

 

 
(b) 

Figure. 7 Packet Dropping-based Performance 

Comparison: (a) Dropping at β=0.5 and (b) Loss at β=0.3 

 

 

 
(a) 

 

 
(b) 

Figure 8. Delay-based Performance Comparison: (a) 

Delay at β=0.5 and (b) Delay at β=0.3 

2 exhibits nearly identical behavior, implying that 

employing MMBP-SD-4 provides deeper insights 

into the AQM characteristics compared to the other 

models. 

In Fig. 8, the evaluation results based on delay are 

depicted. It is noteworthy that the delay values are 

consistent across both models. Consequently, it can 

be concluded that while the dropping and delay 

behaviors are similar, packet loss stems from the 

sudden congestion generated in the MMBP-SD 

model, indicating RED’s inadequate handling of such 

scenarios. 

5. Conclusion 

This study leverages the stationary distribution 

property of Markov chains to emulate the traffic load 

in network simulations. The results showed that the 

MMBP-SD generates an improvement of BF by 6.2% 

and MBD by 118% compared to BP. Besides, the 

results showed that using MMBP-SD-4 outperformed 

MMBP-SD-2 under all the arrival rates. Besides, the 

results of using MMBP-SD-4 indicate that RED’s 

packet loss increases by 28.5% under the 4-state 

MMBP-SD model compared to the BP model, 

highlighting RED’s limitations in handling burst 

traffic. Our findings illuminate distinct 

characteristics of RED when confronted with a 4-

state Markov chain compared to single and 2-state 

models. Specifically, the results indicate increased 

packet loss in the 4-state model while the dropping 

behavior remains consistent. This disparity 

underscores RED’s limitations in effectively 

managing burstiness and fluctuations in traffic load, 

nuances that are often overlooked in Bernoulli or 2-

state models. Expanding on these insights, it becomes 

evident that traditional traffic modeling approaches 

fail to capture the intricacies of real-world network 

behavior, particularly when faced with dynamic and 

unpredictable traffic patterns. The adoption of the 

MMBP, especially in multi-state configurations, 

offers a more nuanced representation of traffic 

dynamics, allowing for a more accurate evaluation of 

congestion control mechanisms like RED. 

 
Notation list 

Symbol Description 

α Overall Arrival Rate 

β Departure Rate 

w Queue Weight 

max Maximum Parameter for RED Algorithm 

AQL Average Queue Length 

Dp Packet Dropping Probability 



Received:  May 22, 2024.     Revised: June 13, 2024.                                                                                                       966 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.72 

 

qt Queue Length at Time t 

qt−1 Queue Length at Previous Time t−1 

idle Time of Idleness of the Queue 

v Stationary Distribution Vector 

pij Transition Probability from State i to j 

v1,v2,v3,v4 Stationary Distribution Components 

α1,α2,α3,α4 Arrival Probabilities in Different States 

BF Burstiness Factor 

MBD Maximum Burstiness Duration 
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Appendix A. The Parameters of the MMBP-SD-2 Model 

α 
Arrival Rate v 

Transition Matrix (A) 
α1 α2 v1 v2 

0.3 0.0408 0.3319 0.1094 0.8906 
0.1753 0.8247 

0.1013 0.8987 

0.35 0.4225 0.1716 0.7111 0.2889 
0.9460 0.0540 

0.1330 0.8670 

0.4 0.3340 0.4491 0.4265 0.5735 
0.0307 0.9693 

0.7208 0.2792 

0.45 0.5056 0.3750 0.5741 0.4259 
0.6403 0.3597 

0.4850 0.5150 

0.5 0.4223 0.5587 0.4305 0.5695 
0.4207 0.5793 

0.4379 0.5621 

0.55 0.4818 0.6044 0.4435 0.5565 
0.4068 0.5932 

0.4728 0.5272 

0.6 0.4131 0.7089 0.3682 0.6318 
0.3401 0.6599 

0.3846 0.6154 

0.65 0.3206 0.7846 0.2901 0.7099 
0.8418 0.1582 

0.0646 0.9354 

0.7 0.1807 0.8151 0.1814 0.8186 
0.3357 0.6643 

0.1472 0.8528 

0.75 0.0539 0.7971 0.0634 0.9366 
0.3568 0.6432 

0.0435 0.9565 

0.8 0.0308 0.8286 0.0358 0.9642 
0.1296 0.8704 

0.0324 0.9676 

0.85 0.4644 1.0000 0.3119 0.6881 
0.3053 0.6947 

0.3149 0.6851 

0.9 0.1652 1.0000 0.1395 0.8605 
0.6637 0.3363 

0.0545 0.9455 

0.95 0.6573 1.0000 0.3695 0.6305 
0.6522 0.3478 

0.2038 0.7962 
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Appendix B. The Parameters of the MMBP-SD-4 Model 

α 
Arrival Rate v 

Transition Matrix (A) 
α1 α2 α3 α4 v1 v2 v3 v4 

0.3 0.1398 0.0944 0.1503 0.4446 0.1686 0.1139 0.1813 0.5362 0.4161 0.1869 0.0696 0.3274 

         0.5844 0.2737 0.0709 0.0710 

         0.0387 0.1462 0.7360 0.0790 

         0.0464 0.0461 0.0523 0.8552 

0.35 0.3528 0.0006 0.0010 0.0012 0.9920 0.0018 0.0028 0.0034 0.9995 0.0001 0.0001 0.0003 

         0.1648 0.7418 0.0686 0.0247 

         0.0416 0.0965 0.8466 0.0153 

         0.0141 0.0214 0.0710 0.8934 

0.4 0.0965 0.0865 0.1880 0.5691 0.1026 0.0920 0.2000 0.6054 0.5880 0.0401 0.0271 0.3449 

         0.3694 0.0004 0.3322 0.2980 

         0.0183 0.4315 0.4823 0.0679 

         0.0076 0.0027 0.1159 0.8738 

0.45 0.4257 0.0604 0.5308 0.4290 0.2944 0.0418 0.3671 0.2967 0.8851 0.0024 0.0029 0.1095 

         0.4890 0.3606 0.1389 0.0115 

         0.0021 0.0688 0.9041 0.0249 

         0.0425 0.0025 0.0962 0.8589 

0.5 0.1534 0.7300 0.1689 0.1891 0.1236 0.5880 0.1360 0.1524 0.7055 0.0071 0.0591 0.2283 

         0.0587 0.9048 0.0221 0.0144 

         0.0093 0.3346 0.5959 0.0602 

         0.0040 0.0627 0.2276 0.7057 

0.55 0.3297 0.8210 0.2473 0.2494 0.2001 0.4984 0.1501 0.1514 0.4911 0.0499 0.0300 0.4290 

         0.1617 0.7620 0.0525 0.0239 

         0.0745 0.4798 0.2534 0.1923 

         0.0666 0.2419 0.5278 0.1636 

0.6 0.3261 0.8234 0.5160 0.4968 0.1508 0.3808 0.2386 0.2297 0.1946 0.0326 0.1353 0.6375 

         0.1575 0.6642 0.0898 0.0884 

         0.0987 0.4435 0.3601 0.0977 

         0.1652 0.0745 0.4269 0.3334 

0.65 0.2223 0.9327 0.5149 0.2442 0.1161 0.4873 0.2690 0.1276 0.3097 0.0242 0.1186 0.5475 

         0.1038 0.8303 0.0114 0.0546 

         0.0630 0.2752 0.5709 0.0909 

         0.0991 0.0460 0.7533 0.1016 

0.7 0.2272 0.1413 1.0000 0.2730 0.1382 0.0859 0.6098 0.1661 0.4570 0.0981 0.0279 0.4171 

         0.5235 0.1653 0.1864 0.1247 

         0.0135 0.0760 0.8898 0.0207 

         0.1316 0.0711 0.2850 0.5123 

0.75 0.0190 0.8019 0.0204 0.0176 0.0221 0.9336 0.0238 0.0205 0.0112 0.2541 0.0504 0.6844 

         0.0145 0.9797 0.0049 0.0009 

         0.3081 0.4948 0.0552 0.1419 

         0.0484 0.0793 0.8167 0.0557 

0.8 0.4837 0.6357 0.8876 0.9829 0.1618 0.2126 0.2969 0.3287 0.1452 0.1469 0.1075 0.6004 

         0.5127 0.2513 0.0069 0.2291 

         0.0036 0.4431 0.3565 0.1968 

         0.0857 0.0118 0.5238 0.3787 

0.85 0.7010 0.7650 0.8162 1.0000 0.2110 0.2303 0.2457 0.3130 0.2321 0.1631 0.2462 0.3586 

         0.3744 0.4233 0.1608 0.0415 
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         0.2580 0.3823 0.2255 0.1342 

         0.0398 0.0142 0.3238 0.6222 

0.9 0.0507 1.0000 0.1615 0.2497 0.0309 0.7180 0.0986 0.1524 0.0842 0.0703 0.1409 0.7046 

         0.0275 0.9571 0.0045 0.0109 

         0.0452 0.2835 0.6680 0.0033 

         0.0270 0.0043 0.1650 0.8037 

0.95 1.0000 0.3850 0.6282 0.7281 0.4409 0.1236 0.2017 0.2338 0.8097 0.0571 0.0112 0.1220 

         0.3794 0.3080 0.1178 0.1948 

         0.1069 0.2024 0.6191 0.0716 

         0.0661 0.0836 0.2453 0.6050 

 


