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Abstract: Software effort estimation presents a significant challenge in the domain of project management. The 

Constructive Cost Model II (COCOMO II) is frequently applied to estimate the required software project effort. Our 

study proposed a Constructive Cost Model II with Fuzzy Gaussian and Hunting Grey Wolf Optimization (COCOMO 

II-FG-HGWO), which improves the accuracy of COCOMO II. Furthermore, the proposed method applies FG to obtain 

more optimal values of 11 COCOMO II effort multipliers. The GWO hunting mechanism is modified by adding 

tournament selection to obtain optimal alpha from populations by optimizing COCOMO II coefficients A and B. It 

helps each alpha explore their search abilities, thereby reducing the risk of being trapped in local optima. The 

experimental results show that the proposed method reduces MMRE by 0.01% on the NASA 60 dataset and achieves 

lower values by more than 16% compared to COCOMO II. This indicates that estimated effort is closer to actual effort, 

and the risk of error in calculating project costs becomes smaller and, in turn, improves the quality of software projects. 

Keywords: COCOMO II, Cost estimation, FG, GWO, Hunting mechanism. 

 

 

1. Introduction 

In the last ten years, there has been significant 

progress in the software industry, leading to its 

fundamental role in the achievements of numerous 

multinational corporations [1]. Effective software 

operation within cost, effort, and time limitations has 

become essential. Both software practitioners and 

academic researchers are constantly investigating 

various strategies aimed at maintaining and 

improving productivity levels in the domain of 

software development and management. The 

background of our research begins with the process 

of efficiently resolving cost, time, and labor concerns, 

which is of the highest priority during the progression 

of a novel software project. Nevertheless, there has 

been a substantial increase in the costs related to 

software development, creating substantial obstacles 

for enterprises. 

Consequently, precise estimation of project effort 

and time has become increasingly important. It is 

common for software development projects to exceed 

their initial budgets and timelines [2]. Software effort 

estimation (SEE) is a crucial methodology for 

predicting the time and resources required to create a 

software system. It plays a vital role in the success of 

software project management and other related tasks 

[3]. When estimating the effort required for a 

software project, it is important to consider various 

factors, including the project's duration, related 

expenses, and the required number of employees.  

Cost estimation is a pivotal and vital factor in any 

software development project. It can be described as 

the systematic evaluation of effort, wherein 

estimation is conducted with regard to the number of 

resources necessary to complete project tasks, 

resulting in the delivery of a product or service that 

fulfills both functional and non-functional 

specifications while also satisfying the customer's 

needs [4]. The estimation of software costs involves 

an evaluation of numerous factors related to software 

development due to the fact that each factor can 

substantially impact the cost of software 

development. During the initial stages of 

development, companies can benefit from precise 

estimates. The project management process also 
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includes the cost estimation phase as a critical 

component of software development initiatives. In 

this phase, the level of effort is assessed and the 

quantity of resources necessary to accomplish every 

software development task is estimated. Furthermore, 

it is essential to provide the consumer with the 

required functionalities or capabilities in order to 

fulfill all the requirements. 

Furthermore, the assessment of software quality 

is also possible by considering significant attributes 

associated with the static and dynamic properties of 

the system as well as the outcomes of methodical 

interactions [5]. Our research problem formulation 

includes the existence of main causes such as project 

failure, poor requirements, inadequate resources, 

unrealistic schedules, poor planning, unidentified 

risks, lack of management commitment, 

inappropriate use of technology, inappropriate 

project objectives, unrealistic or unarticulated, 

inaccurate estimates, poorly defined system 

requirements, poor reporting status, and unmanaged 

risks. In addition, specific characteristics of a project, 

organization, or external environment also contribute 

to project failure [6]. Within software projects, 

interrelated tasks occur synchronously or in 

succession. Boehm states that efforts related to 

requirements specifications occupy 5% of the time 

required to complete a project, while the allocation of 

approximately 8% of resources goes to creating 

standards documents. This implies that successful 

software development projects share common 

practices regarding allocating resources for the 

process of program requirements specification. 

Around 7-15% of available resources are allocated to 

activities that prioritize software requirements 

specification. 

Moreover, evaluating Constructive Cost Model II 

(COCOMO) II attributes provides an overview of 

project-specific characteristics. Several 

characteristics that are taken into account in prior 

models include (1) project dimensions (size, 

complexity, and duration), (2) instability in 

requirements, (3) project category, (4) safety level, 

and (5) cost limitations. A large number of inputs are 

additionally accessible for each attribute through the 

application of the COCOMO II model. However, the 

accuracy value of COCOMO II is considered less 

accurate because there is still quite a large difference 

between the actual project cost and the project cost 

estimate (MMRE) results from COCOMO II. 

Meta-heuristic algorithms are employed in an 

attempt to enhance forecasting results and obtain 

more precise estimations. Typically, genetic 

algorithms are incorporated into conventional 

optimization procedures. Integrating genetic 

algorithms and standard effort estimation models has 

yielded enhanced estimates. Khan et al. [7] 

introduced the Grey Wolf, Deep Neural Network, and 

Strawberry (GWDNNSB) algorithm to estimate 

software effort. The technique was tested using the 

NASA, COCOMO 81, Maxwell dataset. The model 

they proposed consists of Use Case Point (UCP), 

Expert Judgment (EJ), and Artificial Neural Network 

(ANN). Combines the efforts of each unique base 

model using linear combination rules. To validate the 

model's effectiveness, they applied it to a benchmark 

dataset, the International Software Benchmarking 

Standards Group (ISBSG), using three different 

variations to avoid bias. Next, the trained model will 

be applied to industrial use cases for cross-validation. 

Their research yielded better estimates. Their 

research proposed a heterogeneous ensemble effort 

estimation model that helps effective software 

development, especially in project cost and effort 

estimation [8]. The proposed model works in a two-

stage environment based on a testing stage and a 

training stage. In the BABE training stage, the most 

appropriate weights are calculated and then used in 

the testing stage to evaluate the accuracy of the 

BABE model estimates. This research uses six real 

datasets, including the performance MMRE, PRED 

(0.25), and SA. Based on the SA values calculated for 

this model, it can be concluded that the proposed 

model is more accurate than the existing development 

estimation model [9]. 

Non-heuristic approaches are classified into 

various categories: dynamic programming, integer 

programming, graph theory, etc. Hidayat et al. [10] 

tested the results using NASA datasets. Testing is 

conducted by means of parameter testing and 

accuracy testing. The computational efficiency of the 

suggested approach is compared to the Ant Colony 

Optimization (ACO) method in terms of accuracy. In 

contrast to current optimization techniques, the cost 

and effort calculations of the COCOMO II model 

were inadequate. In light of the benefits of 

optimization methods and the comprehensiveness of 

COCOMO II attributes, this study suggests 

combining COCOMO II and GWO to increase the 

accuracy of software project costs and efforts. 

Our study was mainly motivated by the following 

two research gaps. First, in relation to previous 

studies concerning optimization-based software 

effort estimation that requires better precision, it is 

important to create a COCOMO II framework that 

implements optimization techniques for achieving 

enhanced effort estimations. Results produced by the 

COCOMO II model using its original cost driver and 

effort multipliers on publicly available datasets (e.g., 

NASA and Turkish) have yet to be shown to be 
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inadequate. In addition, the cost drivers in the NASA 

60 do not match the COCOMO II cost drivers, 

affecting the results' accuracy. Modifications to the 

values of the effort multipliers of COCOMO II and 

adjustments to its cost drivers are needed. 

Secondly, in a number of past studies that 

employed the GWO algorithm, every individual was 

used in an effort to achieve the most optimal results. 

In the hunting mechanism, the best individual 

assumes the role of leader due to its position closest 

to the prey, and the other individuals will follow 

accordingly. However, this has been shown to yield 

solutions that are not optimal. Thus, research must be 

conducted in order to identify the optimal values 

displayed by the alpha individuals. 

Therefore, this research aims to improve the 

accuracy of COCOMO II in estimating software 

project costs by proposing a COCOMO II-FG-

HGWO method. The method applies Gaussian 

Membership Functions to change 11 COCOMO II 

quantitative Effort Multiplier (EM) values. Change 

the COCOMO II coefficient A and B values using the 

Gaussian Membership Function. GWO method is 

used to optimize the hunting GWO coefficient a, A, 

and C values in GWO by modifying the hunting 

mechanism using tournament selection. 

The structure of this paper is as follows: Section 

1 provides an overview of the problem's context. 

Section 2 details previous research relevant to 

software cost estimation and COCOMO II. However, 

we have enhanced our understanding through several 

studies pertaining to GWO. Section 3 elaborates on 

the experimental scenarios, datasets, proposed 

methodology, and evaluation. The results of the 

experimental investigation and performance 

comparison with previous research on COCOMO II 

and GWO are detailed in Section 4. Section 5 

analyzes the experimental results. Section 6 presents 

the conclusion. 

2. Related works 

Several studies discussing software project cost 

estimates use COCOMO II modeling combined with 

optimization methods, such as Baiquni et al. [9], 

which utilized fuzzy logic and local calibration to 

enhance the precision of COCOMO II. Fuzzy logic 

with the Gaussian Membership Function, along with 

the integration of local calibration, was implemented. 

The obtained MMRE values ranged from 34% to 

104%.   

Effendi et al. [11] calculated COCOMO II 

coefficients A and B using the Bat algorithm, in 

which the optimal bat locations were obtained as the 

A and B constants. The proposed method achieved an 

MMRE of 34.25%. To optimize the parameters of the 

COCOMO model, Nandal et al. [12] utilized a 

combination of the Bat algorithm and GSA. The 

hunting and orienting capabilities of the bats in the 

Bat algorithm were enhanced by employing random 

movements during the exploration phase. GSA 

further improves the exploration phase because 

gravitational forces affect bat movement. 

Consequently, inaccuracies may be reduced by up to 

46%. However, the Bat algorithm could be more 

effective when used to perform numerical operations 

with high precision and requires long training if the 

amount of data processed is large. 

Langsari et al. [13] utilized Particle Swarm 

Optimization (PSO) to optimize COCOMO II model 

parameters, resulting in more precise and accurate 

development effort, cost, and time estimations. The 

experimental results showed an MMRE value of 

34.19%. However, the PSO method may become 

stuck in a local optimum while trying to find a 

solution.  

Sunindyo et al. [14] integrated the COCOMO II 

model with the K-Means clustering technique to 

enhance the estimation accuracy. K-Means clustering 

is used to determine the dataset used inside the 

COCOMO II calibration procedure. The proposed 

method decreased the COCOMO II MMRE value 

from 1.32 to 0.85 and enhanced the PRED value from 

32% to 54%.  

Fadhil et al. [15] presented an optimized 

estimation model that utilized two models in 

conjunction with the COCOMO II model. The first 

model implements the Dolphin algorithm, and the 

second model utilizes a hybrid Dolphin and Bat 

algorithm. On the NASA-93 dataset, an MMRE value 

of 50.27% and 14.57% were achieved for the NASA-

93 and NASA-60 datasets, respectively. 

Suherman et al. [16] examined the 

implementation of machine learning algorithms, 

namely SVR and Random Forest Regression, to 

adjust the parameters of the COCOMO II model. The 

MMRE value was reported to be 54%. However, 

machine learning requires data mining to provide 

accurate results. The results would also be accurate if 

incorrect or incomplete data were used. Developing 

complex machine learning algorithms can take a long 

time.  

Hassan et al. [17] explored the use of a hybrid 

between the ACO and Bat algorithms to obtain 

optimized coefficients of the COCOMO II model for 

effort estimation. The obtained MMRE values were 

2.72%, 3.47%, and 4.12% on the NASA, COCOMO 

81, and KEMERER datasets. Ali et al. [18] proposed 

a model that consists of several base estimation 

models, namely Use Case Point (UCP), Expert 
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Judgment (EJ), and Artificial Neural Network (ANN). 

The efforts of each unique base model are combined 

using linear combination rules. A benchmark dataset, 

namely the International Software Benchmarking 

Standards Group (ISBSG) dataset, was applied to 

validate the model's effectiveness, using three 

different variations to avoid bias. For cross-validation, 

trained models were applied to industrial use cases. 

The proposed heterogeneous ensemble effort 

estimation model yielded enhanced estimates, which 

promotes a more effective software development 

process. However, ANN and UCP methods have 

several areas for improvement, namely inaccurate 

estimation results, ineffectiveness when used to carry 

out numerical operations with high precision, and 

long training required if the amount of data processed 

is large.  

Meanwhile, several other studies used COCOMO 

II modeling combined with the GWO method without 

modification, illustrated in Fig. 1. Khan et al. [7] 

carried out other studies and proposed the 

GWDNNSB model that optimizes weights and 

learning rates using metaheuristic algorithms. The 

GWO algorithm is utilized for initial weight 

optimization, whereas SB is employed for learning 

rate optimization. The obtained MMRE value was 

2.47%. 

 

 

 
Figure. 1 GWO Algorithm 

Al-sheikh et al. [19] applied existing GWO to 

enhance the coefficients of the basic COCOMO 

model and two COCOMO-based models with the 

NASA 18 dataset. Moreover, the performance of 

existing GWO in finding the optimal value for effort 

estimation was compared with that of metaheuristic 

algorithms, including Moth Flame Optimization 

(MFO), Zebra Optimization (ZOA), Prairie Dog 

Optimization (PDO), and White Shark Optimization 

(WSO). Several metrics, namely VAF, MSE, MAE, 

MMRE, RMSE, and R2, were used to evaluate the 

models. Based on the experimental results, it was 

established that GWO outperformed the other 

metaheuristic algorithms. They use GWO without 

modification, which can make it difficult to 

determine the best alpha individual because they also 

focus on finding solutions from beta and delta 

individuals. So, each individual's exploration is 

limited and vulnerable to being trapped in local 

optima. 

Putri et al. [20] applied existing GWO and FG to 

obtain more optimal values of nine COCOMO II effort 

multipliers to enhance the coefficients of the basic 

COCOMO II model and with the NASA 93 dataset. 

Moreover, the performance of the existing GWO in 

finding the optimal value for effort estimation. They 

use GWO without modification, which can make it 

difficult to determine the best alpha individual 

because they also focus on finding solutions from 

beta and delta individuals. Therefore, each 

individual's exploration is limited and vulnerable to 

being trapped in local optima. 

Putri et al. [21] applied extended Gamma GWO 

to enhance the coefficients of the basic COCOMO II 

model and with the NASA 93 dataset. The 

performance of extended Gamma GWO is not better 

than that of the previous population, namely alpha, 

beta, and delta. They suggested increasing the gamma 

population, which obviously did not result in a lower 

total error (MMRE). This is because the alpha 

individual, the best search agent in the GWO 

population, always achieves optimal results. 

Based on previous researches, our research aims 

to improve the accuracy of COCOMO II in 

estimating software project costs by proposing a 

COCOMO II-FG-HGWO method. The method 

applies Gaussian Membership Functions to change 

the eleven COCOMO II quantitative Effort 

Multiplier (EM) values. Using the Gaussian 

Membership Function, the method also changes the 

A and B COCOMO II coefficient values. GWO 

method is used to optimize the hunting coefficient 

values a, A, and C in GWO by modifying the hunting 

mechanism using tournament selection. Also, the 

COCOMO II model requires adjustments to its cost 
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drivers when used on the NASA 60 benchmark 

dataset, and consequently, the effort multipliers also 

need to be optimized. 

3. Materials and method 

The architectural framework presented in this 

research is assessed and verified using publicly 

available datasets. The Turkish dataset used in this 

study consists of projects from the Turkish software 

sector. In addition, two NASA datasets, namely 

NASA 60 and NASA 93, are also used. The accuracy 

of cost estimations is measured using the MMRE 

metric. The initial stage is to prepare the dataset for 

effort estimation. This process of preparing the 

publicly available software projects in the dataset 

involves determining the cost driver values, which 

include effort multipliers and scale factors based on 

the respective value of each level. This task is 

performed manually. Once the dataset has been 

prepared, the subsequent task is to choose between 

the quantitative and qualitative effort multipliers. 

This is necessary since the 11 quantitative effort 

multipliers will undergo value modifications using 

the Gaussian Membership Function method. 

Furthermore, in the proposed method, a modified 

hunting mechanism of the GWO method is applied to 

adjust the constant COCOMO II coefficient A and B 

model. The hunting mechanism involves selecting 

the alpha individual with the lowest fitness via 

tournament selection and selecting the minimum 

value among the best alpha individuals. The overall 

flow of our proposed method is illustrated in Fig. 2, 

as well as the respective values of each level. This 

task is performed manually. Once the dataset has 

been prepared, the subsequent task is to choose 

between the quantitative and qualitative effort 

multipliers. This is necessary since the eleven 

quantitative effort multipliers will undergo value 

modifications using the Gaussian Membership 

Function method. Furthermore, in the proposed 

method, a modified hunting mechanism of the GWO 

method is applied to adjust the constant values of the  
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Figure. 2 Proposed method for improving COCOMO II performance 
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COCOMO II coefficient A and B model. The hunting 

mechanism involves selecting the alpha individual 

with the lowest fitness via tournament selection and 

selecting the minimum value among the best alpha 

individuals. 

3.1 Fuzzification 

The COCOMO II Cost Driver has 25 attributes,  

which are categorized into 17 effort multipliers, 

five scale factors, and the attributes of lines of code 

(LoC) and actual effort (AE). To enhance the 

precision of COCOMO II, a novel approach was 

employed, in which 11 quantitative effort multipliers 

were subjected to fuzzy logic modeling. This process 

aims to generate more optimal values than the 

previous 11 predefined quantitative effort multipliers. 

The modeling process involves adding the 11 

quantitative effort multipliers into the fuzzy system. 

The Gaussian Membership Function is commonly 

used in fuzzy logic for modeling purposes. An 

example of a quantitative effort multiplier is LTEX, 

which represents the level of experience of the 

software development team in applying the tool for 

development over one year. The range of the newly 

obtained values of the 11 quantitative effort 

multipliers is shown in Table 1. Previously, LTEX 

had a range between 0.84% to 1.2%, which was then 

changed to possess a range between 0.85% to 1.16%. 

These changes to the range of effort multiplier values 

influence COCOMO II's accuracy. The fuzzy model 

is used to modify the effort multiplier values and uses 

the cost driver description as fuzzy logic input. For 

example, the PCAP effort multiplier has an interval 

from very low to very high, in which the input value 

for very low is 15%, for low is 35%, and so on. The 

difference between each level in PCAP is the 

percentage of the programmer's ability to work in a 

team. This research utilizes a Gaussian Membership  

 

 
Table 1. Result of fuzzy implementation on effort 

multiplier 

Cost Driver Effort Multiplier Range 

Product DATA 0.90-1.24 

Platform 

TIME 1.00-1.59 

STOR 1.00-1.45 

PVOL 0.87-1.23 

Personnel 

ACAP 0.74-1.41 

PCAP 0.76-1.34 

PCON 0.81-1.26 

LTEX 0.85-1.16 

APEX 0.81-1.11 

PLEX 0.85-1.13 

Project SCED 1.00-0.31 

Function (GMF), represented by the following in Eq. 

(1). Where 𝐶𝑖 is the center, and 𝜎𝑖 is the curve's width. 

Which contains the parameters of the center of the 

value (𝐶𝑖) and the curve's width (𝜎𝑖).  

 

𝜇𝐴𝑖 (X) = Gaussian (x, 𝑐𝑖, 𝜎𝑖) = 𝑒−(𝑥−𝑐𝑖)^2/2 σ
i
2          (1) 

 

This equation is different from the GMF carried 

out by Maleki et al.[22] in the curve width calculation 

section. 

3.2 A and B initialization 

Implementing the Gaussian Membership 

Function to COCOMO II coefficients A and B 

randomly aims to improve the effort calculation of 

the COCOMO II model by minimizing the error 

value and identifying the most optimal solution. 

3.3 Population initialization 

The COCOMO II cost driver receives initial 

values during the population initialization stage. 

These cost drivers include the 11 quantitative effort 

multipliers subjected to fuzzy logic modeling, the 

other six effort multipliers, the five scale factors, LoC, 

AE, and the new COCOMO II coefficients A and B 

values. The determination of these values occurs 

without depending on subjective factors. Next, the 

process of forming populations consisting of 30 

individuals is carried out. The values of the 

coefficient vectors of the GWO method, namely A, C, 

and a, are initialized randomly. Each individual 

consists of the COCOMO II cost drivers and hunting 

coefficients. 

3.4 Hunting modified 

Effort (E) for each individual within a population 

of 30 individuals is calculated. Then, the Person-

Months (PM), which represents the number of hours 

worked within a month for each individual, is 

calculated. Next, the individuals with the lowest PM 

values are selected. Subsequently, to obtain the error 

value, the MRE value is computed using the PM 

values of the selected individuals. Tournament 

selection determines a single candidate with the 

lowest PM value to become the alpha. To determine 

the alpha, the individual that obtains the lowest MRE 

value is selected. The location of each individual and 

the hunting coefficients are updated if the process still 

needs to be completed after the specified maximum 

number of iterations, namely 500 iterations. Until the 

specified condition is fulfilled, an alpha individual 

with the minimum MRE is obtained, and computing 

E is repeated. Once the iteration procedure is 
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complete, the MMRE value is calculated in order to 

find the Alpha individual with the lowest MMRE. 

The algorithm assigns the alpha wolf based on the 

location of the individual closest to the prey. The 

other wolves within the pack are required to obey the 

alpha wolf's lead. Initially, each individual's 

initialization process is marked as Xi. Next, it is 

necessary to initialize the coefficient hunting vectors 

a, A, and C to surround the prey. The algorithm is 

based on the assumption that the alpha wolf has 

greater knowledge compared to the other wolves on 

the location of the prey. Thus, the remaining wolves 

within the pack are required to stick to a sequential 

pattern of following the alpha wolf. Each individual 

wolf adjusts its location by considering the positions 

of all the other wolves that were picked beforehand. 

To clarify, the n-th wolf updates its position by 

considering the position of the n-1-th wolf. Therefore, 

the speed of expansion and selecting an optimal 

location for the first wolf are crucial. The next wolf 

within the pack independently adjusts its location 

based on the location of the alpha wolf, and this 

process continues iteratively, as shown in Fig. 3. 

Tournament selection is used to identify the alpha 

wolf in each iteration of the process of optimizing 

COCOMO II coefficient A and B parameters. 

Initially, several individuals are randomly picked. 

The MRE value, used as the picked individuals' 

fitness function, is calculated. Xα is determined by 

utilizing the COCOMO II coefficient A and B 

parameter values of the picked individuals, where Xα 

in Eq. (3) represents the search agent with the optimal 

MRE value. The proposed method is shown in Fig. 3. 

The method contains many parameters.  

 

�⃗�=2(1 −
𝑡𝑗

𝑇𝑗)     (2) 

 

The encircling behavior is modeled by Eq. (3) and 

Eq. (4).  Eq. (3) is the coefficient vector, namely C, is 

used to guide the wolves in hunting for the prey and 

aid the algorithm in finding the optimal solution and 

avoid being trapped in a local optimal and also 

coefficient vector A and D in Eq. (4). The impact of 

the coefficient vector �⃗� in Eq. (3) is observed in the 

amount of motion, which guides the algorithm in its 

search for a solution. The variable j in Eq. (2) is 

established to improve the number of iterations 

allocated to the exploration process optima and 

coefficient vectors A and D in Eq. (4).  

 

�⃗⃗⃗�𝛼 = |𝐶1. �⃗�α − �⃗�|      (3) 

 

𝑋𝑎= 𝑋𝑎 - 𝐴𝑎 . 𝐷𝑎                 (4) 

  

𝑋𝑛(𝑡 + 1) =
1

𝑛−1
∑ 𝑋𝑖(𝑡); 𝑛 = 2, … 𝑚𝑛−1

𝑖=1           (5) 

 

In Eq. (5), n represents the currently selected wolf, 

m represents the total number of wolves in the pack, 

t represents the iteration, and i parameter starts from 

the first wolf and progresses until before the last wolf 

has been selected and updated. A value is reduced 

from 2 to 0 by �⃗�. That demonstrates the exploration  
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Figure. 3 The process of updating each wolf's position in capturing the prey in the proposed method 
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and exploitation aspects of the hunting mechanisms. 

C parameter can generate random values in each 

repetition [23]. Those equations are different from 

those carried out by Mirjalili et al.[24] in hunting prey. 

Their research conducted alpha, beta, and delta 

individuals, who were assessed using a hunting 

procedure to identify the most proficient individuals. 

It is common knowledge that alpha represents the 

prime candidate solution within the group of 

individuals. Consequently, the scope of our study is 

primarily directed towards the pursuit of alpha 

individuals through the hunting process, aiming to 

determine the most superior alpha individual among 

various other alphas. 

4. Experimental result 

In the first experiment, an extension of 

COCOMO II, namely the COCOMO II-FG model, is 

tested, and its performance is compared to the 

original COCOMO II model. In the COCOMO II-FG 

model, the effort multiplier values are modified by 

means of the Gaussian Membership Function. The 

COCOMO II-GWO model is tested in the second 

experiment, and its performance is compared to the 

original COCOMO II model. In the COCOMO II-

GWO model, the GWO method with the proposed 

hunting mechanism is used to optimize COCOMO II 

coefficients A and B. In the third experiment, the 

proposed model is implemented. Our research 

proposes changes to the NASA 60 cost driver to suit 

the COCOMO II, Turkish, and NASA 93 datasets. In 

the NASA 60 dataset, there are only four levels of 

Effort Multiplier, which should be six levels 

according to COCOMO II: very low (VL) to extra 

high (EH). Apart from that, the LoC values in the 

NASA 60 dataset are smaller compared to the other 

two datasets. For comparison, the LoC values in the 

NASA 60 dataset are within the range of 5.5%-

177.9%. Meanwhile, the LoC values for the Turkish 

and NASA 93 23 datasets are between 1611-114280 

and 900-352000, respectively. LoC is used to 

calculate PM. Consequently, LoC affects the 

resulting MRE value. In the proposed model, the 

Gaussian Membership Function is used to optimize 

the values of quantitative effort multipliers, and the 

GWO method with the proposed hunting mechanism 

is used to optimize the COCOMO II coefficient A 

and B parameters. The performance of the proposed 

model is compared to COCOMO II. For performance 

evaluation, the MRE and MMRE metrics are used 

[15]. MRE is widely used for evaluating effort 

estimating models and is calculated using Eq. (6). 

MRE is computed for each project within the  

 

Table 2. Effect of FG and HGWO on increasing MMRE  

Method 

MMRE (%) 

Turkish NASA 

60 

NASA  

93 

COCOMO II 733.14 0.99 1243.23 

COCOMO 

II-FG 

51.08 0.99 716.85 

COCOMO 

II-GWO 

1.49 4.78 3.15 

COCOMO 

II-FG-

HGWO  

0.82 0.01 0.26 

 

 

dataset. Subsequently, MMRE is calculated using Eq. 

(7), the average of MRE over n number of projects. 

 

𝑀𝑅𝐸 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
   (6) 

 

𝑀𝑀𝑅𝐸 =
1

𝑛
∑ 𝑀𝑅𝐸𝑛

𝑖=1      (7) 

 

Based on the experimental, Table 2 shows the 

results of comparison accuracy in MMRE. The first 

trial, COCOMO II with the Fuzzy Gaussian 

(COCOMO II-FG) model, was compared with 

COCOMO II using Turkish, NASA 60, and NASA 

93 datasets. The MMRE value showed that Turkish 

decreased by 682.06%, NASA 93 decreased by 

526.38%, and NASA 60 showed no changes. This 

means there is still a less significant decrease in 

estimated values (MMRE) between COCOMO II and 

COCOMO II-FG from the Turkish and NASA 93 

datasets, except for MMRE NASA 60, where there is 

no change in value. The second trial, the COCOMO 

II-GWO model, was compared with COCOMO II 

using the Turkish datasets NASA 60 and NASA 93. 

The MMRE value showed that Turkish decreased by 

731.65%, NASA 60 increased by 3,79%, and NASA 

93 decreased by 1240.08%. This means there is a 

significant decrease in the estimated value (MMRE) 

between COCOMO II and COCOMO II-GWO. The 

proposed model was assessed using the Turkish, 

NASA 60, and NASA 93 datasets. The MMRE 

values obtained by the proposed model on the 

Turkish, NASA 60, and NASA 93 datasets were 

lower by 732.32%, 0.98%, and 1242.97%, 

respectively, compared to those obtained by 

COCOMO II. The proposed model on the Turkish, 

NASA 60, and NASA 93 datasets was lower by 

0.67%, 4.77%, and 2.89%, respectively, compared to 

those obtained by COCOMO II-GWO. The MMRE 

value obtained by the proposed model on the NASA 
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Table 3. Comparison results using Turkish and NASA datasets 

Author 
 MMRE (%) 

Method Turkish NASA 60 NASA 93  

Sheikh et al. COCOMO II-GWO - - 3.45 

Putri et al. COCOMO II-GWO - - 3.15 

Putri et al. 
COCOMO II-enhance 

gamma GWO 

- - 51.09 

Proposed COCOMO II-FG-HGWO 0.82 0.01 0.26 

 

 

 
Figure. 4 MMRE value of effort estimation applying the proposed method and other methods 

 

 

60 dataset was significantly lower than all the other 

models, which signifies that the use of Fuzzy 

Gaussian and the modified coefficient hunting 

vectors a, A, and C of the GWO method significantly 

enhanced the performance of COCOMO II. Table 2 

shows that the proposed model obtained significantly 

lower MMRE values on all the datasets compared to 

COCOMO II and COCOMO II-GWO, which are 

marked in bold.  

Two studies demonstrate similarities to our 

investigation but also highlight differences in the 

COCOMO model, GWO method, and dataset. Table 

3 compares the findings of our study and those of 

Khan et al. [7], who utilized COCOMO I-GWO 

without any modifications in addition to Deep Neural 

Network and Strawberry optimization on the NASA 

93 dataset. Their analysis produced an MMRE of 

3.45%. On the other hand, research conducted by 

Sheikh et al. [25] utilized COCOMO I and 

COCOMO II-GWO without modifications on the 

NASA 18 dataset, resulting in an MMRE of 0.13%. 

Nevertheless, their study omitted the use of Fuzzy 

Gaussian and refrained from altering any 

mechanisms within the GWO method. In contrast, 

our study incorporates FG to convert 11 COCOMO 

II quantitative EMs. It also modifies the GWO 

hunting mechanism by adjusting coefficient hunting 

vectors a, A, and C of GWO and employing 

tournament selection. 

5. Analysis 

Based on Table 2, our proposed method obtained 

a significantly lower MMRE value than other studies, 

especially on the NASA 60 dataset, namely 0.01%. 

This MMRE value is much smaller than that obtained 

by COCOMO II on the NASA 60 dataset, namely 

0.98%, and much smaller than obtained by 

COCOMO II-GWO on the NASA 60 dataset, namely 

4.78%. Furthermore, the proposed model obtained a 

lower MMRE value on the NASA 60 dataset than the 

other datasets. This is because the LoC in the NASA 

60 dataset tends to be smaller compared to that in the 

other two datasets. The experimental results indicate 

that the method proposed in this study achieved the 

best performance indicated by lower MMRE values 

on all the datasets, as shown in Fig. 4. 

In previous studies, modifications to the GWO 

algorithm are advantageous. Improvements to the 

position-updating mechanism of GWO enhanced its 

performance [26]. Furthermore, controlling the 

coefficient of GWO to balance the exploration and 

exploitation process better can also be done to 

increase the performance of GWO [27]. Modifying 

the encircling behavior and position-updating 

equation of GWO has been demonstrated to yield 

effective results and identify the optimal solution [28]. 

Moreover, the use of fuzzy sets has been shown to 

700
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COCOMO II COCOMO II-FG COCOMO II-GWO PROPOSED

733.14
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Turkish NASA 93 NASA 60
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enhance the performance of COCOMO II [17]. Fuzzy 

sets are used instead of crisp sets to quantify 

uncertainty [29]. It is able to adequately manage the 

uncertainty and imprecision associated with business 

process complexity metrics. 

6. Conclusion 

Our study aims to improve the accuracy of 

COCOMO II in estimating software project costs by 

proposing a COCOMO II-FG-HGWO method. The 

method applies Gaussian Membership Functions to 

change 11 COCOMO II quantitative Effort 

Multiplier (EM) values. And also change COCOMO 

II coefficient A and B values using the Gaussian 

Membership Function. GWO method is used to 

optimize the coefficient hunting values a, A, and C in 

GWO by modifying the hunting mechanism using 

tournament selection. The hunting mechanism is 

modified using the GWO method in the proposed 

model, and the alpha wolf is selected using the 

Tournament Selection method. As a result, optimal 

values of A and B are obtained. The performance of 

the proposed model is compared to other effort 

estimation models using the Turkish, NASA 93, and 

NASA 60 datasets. Using the Gaussian Membership 

Function to adjust the effort multiplier values and the 

modified GWO method to optimize COCOMO II 

coefficient A and B parameters, significantly lower 

MMRE values were obtained.  

Based on the experimental, our research proposal 

is compared with COCOMO II using the Turkish, 

NASA 60, and NASA 93 datasets. The experimental 

results show that the proposed model obtained 

MMRE values on the Turkish, NASA 93, and NASA 

60 datasets that were lower by 723.04%, 1241.26%, 

and 0.98%, respectively, compared to those obtained 

by COCOMO II. This indicates that the proposed 

model produces more accurate effort estimations 

compared to COCOMO II and the other estimation 

models. This is further signified by the lowest 

MMRE value obtained by the proposed model on the 

NASA 60 dataset compared to COCOMO II and the 

other estimation models. Even though adjustments to 

cost drivers were required on the NASA 60 dataset, a 

significantly low MMRE was obtained using the 

proposed method. The COCOMO II-FG-HGWO 

model obtained a lower MMRE value on the NASA 

60 dataset than the other datasets.  This is because the 

LoC in the NASA 60 dataset tends to be smaller 

compared to that in the other two datasets. For 

comparison, the smallest LoC value for the NASA 60 

dataset is 5.5 to 177.9, the smallest LoC value for the 

Turkish dataset is 1611 to 114280, and the smallest 

LoC value for the NASA 93 dataset is 900 to 352000. 

This LoC is used as one of the values for calculating 

PM and will affect whether the MRE and MMRE 

values are large or small.  

This indicates that estimated effort is closer to 

actual effort, and the risk of error in calculating 

project costs becomes smaller and, in turn, improves 

the quality of software projects. For future research, 

it is possible to enhance the performance of 

COCOMO II by modifying the dataset's attributes 

and implementing modifications to the attributes of 

COCOMO II. Additionally, further modifications can 

be made to the optimization method mechanism to 

achieve more enhanced estimations. 
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