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Abstract: Currently, in electrical power systems, economic load dispatch (ELD) combined with reducing the emission 

of units is a vital issue for allocating power generation through dispatch strategies to minimize fuel costs while also 

considering environmental issues. Thus, two objective functions, fuel cost and emission level are employed 

simultaneously in order to meet the requirements of the ELD for power generation. The economic dispatch problem 

has been solved using a variety of metaheuristic techniques. In this study, the problem has been solved using the 

modified particle swarm algorithm (MPSO) and hybrid grey wolf-particle swarm optimization (GWO-PSO).  The 

Grey Wolf optimization, based on social and hunting behaviors is applied to achieve the best possible results. This 

algorithm requires no information about the gradient of the objective function during the optimization search. The 

work offers efficient cost values with a shorter execution time while meeting all the various constraints of the ELD 

problem. The three tunable parameters of the original PSO are dynamically adjusted. The GWO algorithm, which has 

two adjustable parameters, is also used in this study with hybrid PSO. Simulation results for the standard IEEE 30-bus 

6-generator test system and Iraqi power grid have been provided in order to demonstrate the effectiveness and 

practicality of the suggested method. The outcome results are contrasted with results in the latest literature. The 

obtained results for the ELD problem using GWO-PSO compared with ABC algorithm indicate a promising 

performance in terms of minimizing fuel cost, emissions effects and power losses which are reduced to 2093.2 $/h, 

22.4423 kg/h and 22.7672 MW respectively for the first case system with 700 MW load demand, satisfying all the 

constraints within their limits. As well as, for the second scenario with 900 MW, compared with NHPSO indicates a 

reduction in fuel cost which is 3664.25 $/h and when compared with SOS method obtained a promising reduction in 

terms of minimizing emissions effects and power losses which are reduced to 38.9566 kg/h and 34.1195 MW 

respectively. Moreover, the results demonstrate that the suggested algorithm offers a reliable, good, and efficient 

solution to the ELD problem. 
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1. Introduction 

Power systems plants are vastly connected to 

transfer power from generators to loads in an 

economical and reliable way. One of the main targets 

of these systems is to meet load requirements while 

reducing total operating costs through the scheduling 

of different types of generation units with minimum 

cost [1-2]. Basically, the main source of generation 

units is based on the fuel consumed in the centralized 

generation stations, e.g., fossil fuels that produce 

greenhouse gases (CO2, NOx, SOx, etc.) in the 

atmosphere [3]. An Economic Load Dispatch (ELD) 

can be utilized to express a cost minimization 

problem in power system operation, aiming to obtain 

the lowest total fuel cost for generating units. In 

general, the main goal of ELD is to schedule power 

generation to meet load demand within operational 

constraints [4, 5]. 

In this context, to be motivated for a clean and 

protection of the environment, it is possible to 

dispatch electric power at minimum possible price 

with minimum levels of pollution by reducing the 

emission of units. So, the single objective of ELD for 
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obtaining a minimum total fuel cost can no longer be 

considered alone. Previously, the ELD problem has 

been studied and many researchers have presented 

and proposed various mathematical algorithms to 

formulate and solve the ELD issue. Algorithms such 

as the lambda iteration algorithm [6], the dynamics 

programming method [7], and linear programming 

were used in [8-10]. 

However, these algorithms showed a vast 

shortcoming in solving the problem of ELD because 

extensive computational requirements were needed 

to tackle the problem, and they failed in the local area 

solution when taking into consideration more system 

constraints. Thus, to overcome these limitations, 

some optimization techniques have been 

implemented for the ELD to achieve reasonable and 

satisfactory results. In this context, the latest 

metaheuristics optimization algorithms such as 

simulated annealing (SA) [11],  the genetic algorithm 

(GA) [12], particle swarm optimization (PSO) [13-

14], ant colony optimization (ACO) [15], Artificail 

dance bee colony [1, 16], firefly algorithm [17], 

bacterial foraging algorithm (BFA) [18], a Symbiotic 

organisms search algorithm (SOS) [5] and swarm 

space hopping algorithm (SSHA) [19] have been 

proposed to obtain an optimizing solution for 

generation units scheduling in an acceptable way. 

Comprehensive reviews of metaheuristic 

optimization methods for solving economic dispatch 

ED problems have been proposed by some 

researchers. According to the studies, PSO and ACO 

approaches are more often used to solve ELD 

problems because of their ease of use, simplicity, 

quick rate of convergence, and increased flexibility in 

finding the best global points. 

Nevertheless, all evolutionary strategies needed 

to make an appropriate balance between local and 

global search. Convergence time, tuning optimal 

parameters, premature convergence, and others have 

received little research attention. In [20-21], authors 

have employed different approaches to address these 

problems, including hybridization of algorithms and 

modified evolutionary techniques. The PSO 

technique has been used by [22-23] to address 

economic load dispatch as well as environmental 

emission issues. To prevent premature convergence, 

the authors have adjusted the PSO technique for the 

overall search. However, nonconvex, multimodal, 

and discontinuous optimization problems that are 

unsolvable with conventional methods are 

increasingly being addressed by the proposed 

techniques. In order to solve the ED problem, [20] 

used the Exchange Market Algorithm (EMA) in 

combination with the PSO approach.  [24] employed 

ant colony optimization (ACO), one of the newest 

metaheuristic approaches for optimization methods, 

to solve the ELD. The [25] adapted and applied an 

efficient variant, called Dance Bee Colony with 

Dynamic Step Size, to solve the multi-objective 

environment economic dispatch problem while 

taking into account generator constraints. The 

effectiveness and resilience of the suggested 

technique were confirmed on numerous real- test 

systems, taking into account the impact of valve 

points and overall active power losses. 

However, the main drawbacks of these 

metaheuristic approaches still to be their extreme 

sensitivity to the initial value of the control 

parameters or for specific points like trapping into 

local optima and premature convergence. As a result, 

it is challenging to find workable and acceptable 

solutions for nonlinear optimization issues with 

multi-objective functions and constraints.  

The main goal of this study is to utilize and apply 

grey wolf-particle optimization GWO and modified 

PSO to provide an accurate and workable solution for 

the ED issue. Falling with local optima and possibly 

not providing the optimal solution are the main 

drawbacks of classical approaches. Also, while the 

practical power system is more complicated, all 

classical methods operate under the premise that the 

objective function they must handle is continuous and 

differentiable. Modern intelligent methods have the 

benefit of being adaptable when managing qualitative 

constraints. However, their primary disadvantage 

remains the exponential growth in computational 

time with increasing problem size and the 

unpredictable time to convergence (although 

convergences are assured). 

To deal with these drawbacks, metaheuristic 

techniques (PSO and GWO) have been cooperated.  

Some steps of the algorithms are adjusted or new 

points are added, to improve the algorithms 

performance in terms of convergence speed, accuracy, 

and robustness. The main benefit of the proposed 

GWO-PSO algorithm for dealing with the ELD issue 

is its capacity to identify superior solutions in contrast 

to the original algorithms. Where, the PSO algorithm 

is incorporated into the GWO algorithm in order to 

improve population diversity and prevent premature 

convergence. This combination of the two methods is 

an enhanced method for choosing and updating 

personal and global best positions for the GWO 

algorithm with automatic weight adjustment. 

Additionally, the research compares the outcomes 

achieved through the modified PSO and GWO-PSO. 

The remaining parts of the article are organized 

as follows: Section 2 describes the mathematical 

problem formulation with two objective functions: 

fuel cost and emission effect. Section 3 presents 



Received:  April 21, 2024.     Revised: May 27, 2024.                                                                                                      740 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.56 

 

details of the proposed hybrid optimization algorithm. 

The outcome simulation results and comparison with 

other results are given in Section 4. Finally, the 

conclusions are stated in the last section. 

2. Problem formulation 

The conventional approach to solving the 

classical economic dispatch problem has been to 

minimize fuel costs. However, a solution based solely 

on the reduction of the economic cost is no longer 

acceptable and must take emissions minimization 

into consideration due to growing public concerns 

about the environmental impact of fossil fuel-fuelled 

electric power plants. In this instance, the economic 

dispatch problem is restated while accounting for fuel 

prices and emissions. This leads to the treatment of 

the problem as a multi-objective optimization 

assignment with competing goals [1]. 

A multi-objective making decision (MOMD) is 

the challenge of determining a vector of decision 

variables that maximizes or minimizes a vector 

function whose elements represent the objective 

functions while satisfying constraints. A MOMD 

issue is expressed mathematically as the optimization 

of k distinct objective functions, most of which are at 

conflict with one another, under the restrictions of the 

system [26, 27]. 

 

Minimize   f(x) = (f1(x), f2(x), …… . fk(x))  (1) 

 

Subject to x = (x1, x2, … . . xn) 

 

Gj(x) ≥ 0      j = 1,2,… . , J 

 

where: f1,f2, f3 …… . fk indicate the objective 

functions that need to be minimized. 

x is a decision variable and known as the decision 

space or search space which arrange                 in an 

aray vector 

Gj , j =1,2,...,J are inequality constraints. Any two 

solutions, x1 and x2, for a problem with more than 

one objective function, let's say, ( f, j = 1,2,…… J) 
can have one of two outcomes: either one dominates 

the other or the other non-dominates. One solution x1 

is said to dominate the other x2 if both of the 

following conditions hold true: 

 

1.for every j = 1,2,… J  objectives, fj(x1) < fj(x2)  or 

the solution x1 is not less than to x2 in all objectives. 

 

2. for at least one of j ∈ 1,2,……k, the              fj(x1) <

fj(x2) ,  or the solution x1 is strictly superior to x2 in 

at least one objective. 

The formulation of the general multi-objective 

function (MOF) and its conversion into a single 

objective using the weight (wi) sum method is given 

by: 

 

Minimize (F) =  Min(w1 ∗ f1 + w2 ∗ f2 + w3 ∗
f3 + ⋯)                              (2) 

 

where: ∑ wi
n
i=1 = 1 

In this study, fuel cost and emission objectives are 

the two competing functions that make up the 

economic emission load dispatch problem. It is 

possible to formulate the issue is as follows: 

 

• Fuel Cost Objective 

Basically, the economic dispatch problem is 

represented by determining the best mix of power 

generation to minimize overall fuel costs while 

meeting all required demand, which can 

mathematically be represented as follows [26]: 

 

𝐹𝑐 = ∑ (𝑎𝑖 + 𝑏𝑖 ∗ 𝑃𝐺𝑖 + 𝑐𝑖 ∗ 𝑃𝐺𝑖
2 )𝑁

𝑖=1            (3) 

 

where: -  

𝐹𝑐: total fuel cost ($/hr). 

ai, bi, ci: fuel cost coefficients of generator. 

PGi: power output by generator. 

 n: number of generators 

 

• Emission Objective 

The standard ED problem can be solved by 

scheduling the power generation units at the lowest 

possible fuel cost, however, the amount of emissions 

released during the burning of fossil fuels is not taken 

into account. The sum of a quadratic function is used 

to represent the amount of emissions, such as SO2 or 

NOx as a function of generator output as bellows: 

 

𝐹𝑒 = ∑ (𝐶𝑖 + 𝐵𝑖 ∗ 𝑃𝐺𝑖 + 𝐴𝑖 ∗ 𝑃𝐺𝑖
2 )𝑁

𝑖=1          (4) 

 

where: 𝐹𝑒 , total emissions.  𝐴𝑖 , 𝐵𝑖  𝑎𝑛𝑑 𝐶𝑖  are 

emission coefficients of the Gith generating unit. [28] 

 

• Combined Economic Emission Dispatch 

The environmental and economic dispatches that 

separately constitute distinct single problems can be 

combined to form a multi-objective problem known 

as combined economic Emission Dispatch (CEED). 

At this point, it is necessary to transform this multi-

objective problem into a single-objective form in 

order to obtain optimization solution. One way to 

accomplish the conversion process is by applying the 

price penalty factor. Nonetheless, the formulation of 
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the single-objective CEED can be demonstrated by 

following equations [9, 23]. 

 

𝑚𝑖𝑛 𝐹𝑇 = ∑ ((𝑎𝑖 + 𝑏𝑖 ∗ 𝑃𝐺𝑖 + 𝑐𝑖 ∗ 𝑃𝐺𝑖
2 )𝑁

𝑖=1 +

 ℎ𝑖(𝐶𝑖 + 𝐵𝑖 ∗ 𝑃𝐺𝑖 + 𝐴𝑖 ∗ 𝑃𝐺𝑖
2 ))($/ℎ)                        (5) 

 

The following is the formula forℎ𝑖, which denoted for 

the price penalty factor 

 

ℎ𝑖 = 
𝑎𝑖+𝑏𝑖∗𝑃𝐺𝑖𝑚𝑎𝑥+𝑐𝑖∗𝑃𝐺𝑖𝑚𝑎𝑥

2

𝐶𝑖+𝐵𝑖∗𝑃𝐺𝑖𝑚𝑎𝑥+𝐴𝑖∗𝑃𝐺𝑖𝑚𝑎𝑥
2                  (6) 

 

where: PiG max  is the ith unit's maximum power 

generation. 

 

• Constraints 

It is necessary to satisfy three constraints:  

1. Power balance 

The entire power produced must meet the entire load 

demand in addition to the transmission losses 

demonstrated as [22, 29]: 

 
∑ 𝑃𝐺𝑖 = 𝑃𝑑 + 𝑃𝑙𝑜𝑠𝑠

𝑛
𝑖=1                    (7) 

 

where:  

Pd: total load demand  

Ploss: transmission losses can be formulated as: 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑛
𝑗=1

𝑛
𝑖=1                (8) 

 

where: Bij are the elements of loss coefficient matrix 

B. 

 

2. Generator constraint 

Each generator's power output P is limited by the 

following minimum and maximum limits: 

 

𝑃𝐺𝑖
𝑚𝑖𝑛 < 𝑃𝐺𝑖 < 𝑃𝐺𝑖

𝑀𝑎𝑥                   (9) 

 

3. Security constraints 

For safe operation, the transmission line loading is 

constrained by its maximum limit as follows [24]: 

 

𝑆𝐿𝑖 < 𝑆𝐿𝑖
𝑀𝑎𝑥                   𝑖 = 1,… . . 𝑛𝐿       (10) 

 

n: The number of transmission lines. 

3. Proposed hybrid optimization algorithm 

This section explains the basic ideas behind the 

particle swarm optimization (PSO) and grey wolf 

optimizer (GWO) methods, as well as the hybrid 

GWO-PSO approach that is being suggested, along 

with the method's flowchart. 

Particle swarm algorithm: 

The main idea of inspiration for the fundamental 

judgment was based on social behaviour of 

organisms, like fish schools and bird flocks [R. 

Eberhart and J. Kennedy in 1995] [30, 31]. A swarm 

is a population that is created at random and is made 

up of individuals known as particles. Each particle 

within the swarm represents a likely reason for the 

optimization issue. Every particle changes its 

position in a D-dimensional search space at a random 

velocity. Eq. (11) describes the particle (𝑿𝒊) which is 

the position representation of each individual with an 

N-dimensional search space [19, 30, 32]. 

 

𝑿𝒊  =  (𝑿𝒊𝟏 , 𝑿𝒊𝟐 , 𝑿𝒊𝟑 . . . 𝑿𝒊𝑵)            (11) 

 

Eqs. (12) and (13) are used to update the PSO 

technique, which finds each partner's position in the 

crowd for searching the space globally. 

 

𝑣𝑖
𝑘+1 = 𝒗𝒊

𝒌 + 𝒄𝟏𝒓𝟏(𝒑𝒊
𝒌 − 𝒙𝒊

𝒌) + 𝒄𝟐𝒓𝟐(𝒈𝒃𝒆𝒔𝒕 − 𝒙𝒊
𝒌) 

(12) 

 

vi
k: is the velocity vector of particle  

xi
k: is particle′svector postion  

pi
k: is personal bet postion of particle  

gbest ∶ is the global best position of particle t is the 

           time of initialization  

c1, c2 : are individual and group acceleration  

             coefficients respectively 

r1r2:  are random values of numbers. 

 

The next position𝑥𝑖
𝑘+1 of the particle is calculated 

based on the previous particle position 𝑥𝑖
𝑘 and its 

velocity 𝑣𝑖
𝑘+1,  is as shown in the Eq. (13). 

Depending on the particle's previous position 𝑥𝑖
𝑘 

and its velocity 𝑣𝑖
𝑘+1 , the next position 𝑥𝑖

𝑘+1 is 

determined, as displays in Eq. (13). 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                     (13) 

 

Grey Wolf Optimization technique:  

Mirjalili and Lewis [33] suggested GWO 

technique. Grey wolves are social creatures with a 

rigid social structure. Within the GWO algorithm's 

leadership structure, there are four different kinds of 

grey wolves. The wolves in equation are alpha, delta, 

beta, and omega. Alpha wolves stand for the best-

performing solution in the GWO algorithm. The 

second and third best options of solution are 

represented by beta and delta wolves. The finest 

potential solutions are represented by omega wolves 

[30, 34]. 
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Grey wolve's social structure and hunting habits 

represent as the bases structure of the mathematical 

modelling of GWO. The hunting strategies employed 

by grey wolves consist of three primary components 

as follows:  

 

(1) Following, pursuing, and getting close to the prey.  

 

(2) Challenging, encircling, and irritating the victim 

until it gives up. 

 

(3) Attacking the prey. The mathematical modelling 

of the GWO can be based on the following equations: 

 

𝐷 = |𝐶 ∗ 𝑥𝑝(𝑡) − 𝑥(𝑡)|                   (14) 

 

𝑥(𝑡 + 1) = 𝑥𝑝(𝑡) − 𝐴 ∗ 𝐷                  (15) 

 

where: D is the encircling behaviour of each agent, t 

is the current iteration,  𝑥𝑝(𝑡) is the prey’s position 

vector, 𝑥 is the location of the grey wolves in vector. 

A and C are the coefficients for the vectors, the 

mathematical formulation of the vectors A and C is 

demonstrated by Eqs. (16) and (17). 

 

𝐴 = 𝑎 ∗ (2𝑟1 − 1)                    (16) 

 

𝐶 = 2 ∗ 𝑟2                             (17) 

 

where, as the number of iterations decrease, the 

number of a decreases linearly from 2 to 0. Uniformly 

chosen random numbers between [0, 1] are 

represented by r1 and r2. 

 

Hybrid GWO-PSO approach: 

A hybrid low-level co-evolutionary functionality 

is produced by the hybridization between the GWO 

and PSO algorithms. The hybrid optimization process 

reduces performance because it combined the two 

variants with inferior functionalities. In light of these 

adjustments, the exploration into PSO is conducted in 

GWO in order to generate variant strengths that will 

enhance the mode's benefits [30, 35]. 

During the hunting task of a grey wolf, beta and 

delta are supposed to be aware of the potential 

location of the prey, while alpha is thought to be the 

best candidate for the task. Consequently, the three 

good solutions are retained until a particular iteration, 

at which point other solutions (like omega) are 

compelled to adjust their locations in the decision 

space so that they align with the optimal location. 

The first three good agent's positions in the search 

space were used by the proposed Hybrid GWO-PSO. 

In the search space, inertia constant 𝑤 governs the 

 
Figure. 1 flowchart of the proposed algorithm GWO-PSO 

 

 

grey wolf's exploration and exploitation. Eqs. (18)-

(20) are the updated set of controlling equations. 

 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ ∗ 𝑥𝛼⃗⃗ ⃗⃗ − 𝑤 ∗ 𝑥 |                  (18) 

 

𝐷𝛽
⃗⃗⃗⃗  ⃗ = |𝐶2

⃗⃗⃗⃗ ∗ 𝑥𝛽⃗⃗⃗⃗ − 𝑤 ∗ 𝑥 |                  (19) 

 

𝐷𝛿
⃗⃗⃗⃗  ⃗ = |𝐶3

⃗⃗⃗⃗ ∗ 𝑥𝛿⃗⃗⃗⃗ − 𝑤 ∗ 𝑥 |                  (20) 

 

where: x⃗   is the vector position, 𝐷𝛼
⃗⃗⃗⃗  ⃗ , 𝐷𝛽

⃗⃗⃗⃗  ⃗, and  𝐷𝛿
⃗⃗⃗⃗  ⃗ are 

the three agent positions, C3  is the positive 

acceleration constant. Eqs. (21) and (22) propose the 

velocity and updated equation that can be used to 

combine the GWO and PSO variants. 

𝑣𝑖
𝑘+1 = 𝑤 ∗ (𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑥1 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝑥2 −

𝑥𝑖
𝑘) + 𝑐3𝑟3(𝑥3 − 𝑥𝑖

𝑘))                   (21) 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                    (22) 

 

The hybrid GWO-PSO technique was introduced 

to enhance convergence performance. In order to 

achieve their optimal strengths, it has combined the 

capabilities of both approaches and explored PSO 

with the ability to exploit GWO through the use of 

GWO-PSO. The proposed hybrid GWO-PSO 
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updates the positions of the first three agents in the 

search space rather than using the conventional 

mathematical equations, and the inertia constant (w) 

controls the grey wolf's exploration and and 

exploitation. Fig. 1 shows the overall flowchart for 

applying the GWO-PSO method to solve the 

combined emission and economic dispatch problem. 

4. Simulation results 

The effectiveness of PSO and GWO-PSO 

algorithms has been investigated using two power 

systems (IEEE 30-bus system and the Iraqi power 

grid). 

To validate the usefulness and resilience of the 

suggested algorithms, three scenarios with various 

goal functions (fuel cost and emission level) are 

simulated separately and simultaneously in order to 

meet the requirements of the ELD for power 

generation. Comparisons have been made between 

the PSO and GWO-PSO algorithms' performances 

and the overall results have been compared with 

results from other optimization methods, including 

the Simulated Annealing Algorithm (SA) [11], 

Symbiotic organisms search algorithm (SOS) [5], 

multi-objective adaptive real coded quantum-

inspired evolutionary algorithm (MO-ARQIEA) [2], 

artificial bee colony algorithm (ABC) [16], 

chameleon swarm algorithm (CSA) [23] and New 

Heuristic particle swarm (NHPSO) [23]. 

 

• Case study I 

In this case, a standard IEEE 30-bus, 6-generator 

test system, as shown in Fig. 2 [1], has been tested 

based on the PSO and GWO-PSO search methods. 

The accuracy and correctness of these methods are 

assessed by simulating multiple generator limits and 

the system's overall operating cost.  Table 1 displays 

the cost coefficient, emission coefficient, and 

generating limits of the six-generator test system. 

Tables 2 ,3 and 4 presents the results obtained for the 

load demand (700 MW), take into consideration the 

minimum fuel cost, best emission effect and multi-

objective function for the ELD problem respectively, 

and they are compared with results from other 

optimization methods.  Table 2 presents the optimal 

fuel cost (for 700 MW) obtained from the MPSO and 

GWO-PSO approaches, which contrasted with other 

algorithms such as SA [11], SOS [5], and MO-

ARQIEA [2]. 

According to Table 2, the GWO-PSO algorithm 

offers a lower fuel cost value with 1423.468 $/h than 

the MO-ARQIEA [2] approach, as well as a fewer 

value of emission with 31.259 kg/h than the MO-

ARQIEA approach, as indicated in Table 3. 

 
Figure. 2 30-bus system configuration [1] 

 

 

The outcome results considering the best fitness 

function solution, including cost and emission effects 

simultaneously, for the CELD problem with a 

loading demand of 700 MW are shown in Table 4. 

The results compared also with other optimization 

techniques. The obtained results for the ELD problem 

using GWO-PSO compared with the ABC [16] 

algorithm indicate a promising performance in terms 

of minimizing fuel cost, emissions effects, and power 

losses, which are reduced to 2093.2 $/h, 22.4423 kg/h, 

and 22.7672 MW, respectively, satisfying all the 

constraints within their limits. 

For C1 and C2, the starting values are 1.8 and 0.2, 

respectively. After 100 iterations for each algorithm, 

the results are finalized. It is obvious from the 

outcomes that all constraints are satisfied within their 

limits. The outcomes illustrated in Table 2 

demonstrate the superiority of the GWO-PSO 

technique over the PSO and SA techniques. 

Compared to PSO and SA, GWO-PSO has lower 

generation costs and less power losses. 

Table 5 and 6 displays the best fuel cost and 

emission level results for the 900-MW loading 

condition respectively as determined by the proposed  
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Table 1. Generator capacity limits, fuel cost and emission coefficients for IEEE 30-bus test system 

 

 
Table 2. Best fuel cost for 6-generator system (PD = 700 MW) 

PD (power demand) 700 (MW) 

Method SA [11] SOS [5] MO-ARQIEA [2] MPSO GWO-PSO 

P1 (MW) 76.0897  73.9386 74.0686 29.7427 31.7364 

P2 (MW) 49.0586  50.3639 50.7264 20.7243 21.5309 

P3 (MW) 45.3525  45.8163 46.4357 169.6988 222.9965 

P4 (MW) 102.7347  104.023 103.7366 108.8165 171.1479 

P5 (MW) 266.3914  270.8317 268.9035 223.5929 130.7094 

P6 (MW) 191.3422  189.6709 190.6674 162.7953 133.6086 

Fuel Cost ($/h) 38207.591  38364.4273 38359.468 37477 36936 

Emissions (Kg/h) 532.6970  543.4094 541.0329 568.2978 496.8566 

Power losses (MW) 30.9692  34.6444 34.5382 15.3706 11. 7297 

Total Capacity (MW) 730.9692  734.6444 734.5383 715.3706 711.7297 

 

 
Table 3. Best emission effects for 6-generator system (PD = 700 MW) 

PD (power demand) 700 (MW) 

Method SA [11] SOS[ 5] MO-ARQIEA [2] MPSO GWO-PSO 

P1 (MW) 105.329  104.3456 103.645 83.3517 79.1520 

P2 (MW) 76.408  77.8036 77.4020 89.2773 81.2419 

P3 (MW) 92.920  95.5137 93.5958 114.2754 120.2149 

P4 (MW) 109.834  110.8788 111.4225 117.7737 113.9356 

P5 (MW) 183.192  185.6437 186.0831 171.6605 162.9585 

P6 (MW) 170.013  169.8192 169.8602 141.2178 160.2172 

Fuel Cost ($/h) 39433.477  39717.4206 39601.7751 38360 38131 

Emissions (Kg/h) 462.716  468.5260 466.9628 438.3067 435.7038 

Power losses (MW) 37.699  44.0046 42.0087 17.7201 17.5619 

Total Capacity (MW) 737.699  744.0046 742.0088 717.5619 717.7201 

 

 
Table 4. Best fitness function including cost and emission effect for 6-generator system (PD = 700 MW) 

PD (power demand) 700 (MW) 

Method SA [11] SOS[5] ABC[16] MPSO GWO-PSO 

P1 (MW) 84.150  93.0456 94.0712 51.7093 31.3575 

P2 (MW) 55.655  66.7444 67.2152 160 20 

P3 (MW) 66.005  83.2719 83.1354 98.9206 169.5599 

P4 (MW) 107.266  110.7896 110.9599 210 111.6394 

P5 (MW) 230.931  205.8610 204.000 138.4984 207.9441 

P6 (MW) 187.647  178.7032 179.0000 64.0621 175.1105 

Fuel Cost ($/h) 38371.892  38999.351 39028 37685 36934.80 

Emissions (Kg/h) 476.537  472.6861 472.1017 468.0695 449.6594 

Power losses (MW) 31.656  38.4157 38.3789 23. 1904 15.6117 

Total Capacity (MW) 731.656  738.4157 738.3816 723.1904 715.6117 

Unit 
𝑃𝑖

𝑚𝑖𝑛 

(MW) 

𝑃𝑖
𝑀𝑎𝑥 

(MW) 

𝑎𝑖 

($/MW2) 

𝑏𝑖 

($/MW) 

𝐶𝑖 

($) 

𝐴𝑖 

($/MW2) 

𝐵𝑖  

($/MW) 

𝐶𝑖 

($) 

1 10 125 0.15240 38.53973 756.79886 0.00419 0.32767 13.85932 

2 10 160 0.10587 46.15916 451.32513 0.00419 0.32767 13.85932 

3 35 225 0.02803 40.39655 1049.9977 0.00683 -0.54551 40.26690 

4 35 210 0.03546 38.30553 1243.5311 0.00683 -0.54551 40.26690 

5 130 325 0.02111 36.32782 1658.5596 0.00461 -0.51116 42.89553 

6 125 315 0.01799 38.27041 1356.6592 0.00461 -0.51116 42.89553 
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Table 5. Best fuel cost for 6-generator system (PD = 900 MW) 
PD (power demand) 900 (MW) 

Method SA [11] SOS [5] ABC[16] MPSO GWO-PSO 

P1 (MW) 103.4811  101.5834 125.000 67.5726 34.2326 

P2 (MW) 70.1005  72.5721 96.000 36.6160 156.4111 

P3 (MW) 60.6818  62.0601 104.1139 225 181.0369 

P4 (MW) 139.5618  144.1300 138.000 161.1207 141.1416 

P5 (MW) 325.0000  325.0000 273.0068 206.3594 213.2466 

P6 (MW) 251.7912  252.1620 225.6305 228.1953 197.7777 

Fuel Cost ($/h) 49297.9331 49615.0583 50637 49149 47333 

Emissions (Kg/h) 845.6922  857.1338 765.9759 854.1682 727.9466 

Power losses (MW) 50.6162  57.4918 61.8483 24.8640 23. 8458 

Total Capacity (MW) 950.662  957.4918 961.7512 924.8640 923.8458 

 

 
Table 6. Best emission effects for 6-generator system (PD = 900 MW) 

PD (power demand) 900 (MW) 

Method SA [11] SOS[5] MPSO GWO-PSO 

P1 (MW) 124.989  125.000 118.1716 115.0131 

P2 (MW) 88.322  113.1067 122.7802 127.5254 

P3 (MW) 123.954  111.2052 154.1724 138.2461 

P4 (MW) 134.833  143.2346 141.8157 160.4175 

P5 (MW) 274.647  253.6414 201.1920 206.1876 

P6 (MW) 215.480  223.4585 195.1039 171.8401 

Fuel Cost ($/h) 50517.633  51368.8812 50059 49817 

Emissions (Kg/h) 751.274  759.8674 693.2987 692.4293 

Power losses (MW) 62.226  69.6737 33.2358 29. 2298 

Total Capacity (MW) 962.226  969.6464 933.2358 929.2298 

 

 
Table 7. Best fitness function including cost and emission effect for 6-generator system (PD = 900 MW) 

PD (power demand) 900 (MW) 

Method SA [11] SOS [5] CSA [23] NHPSO [23] MPSO GWO-PSO 

P1 (MW) 115.276  125.000 92.315 79.4000 42.9469 42.0228 

P2 (MW) 78.809  96.0322 98.3707 99.98 159.4 44.4486 

P3 (MW) 81.388  100.4100 150.1997 154.4 224.5 223.301 

P4 (MW) 137.345  141.5092 148.5549 145.84 209.3 161.1305 

P5 (MW) 298.677  270.6763 220.4051 223.26 195.4601 241.7809 

P6 (MW) 238.178  227.6978 218.115 224.14 98.1206 214.5229 

Fuel Cost ($/h) 49553.835  50621.817 48108 47889.45 44625 44225.2 

Emissions (Kg/h) 772.456  766.257 693.791 669.321 736.6 727.3004 

Power losses (MW) 49.676  61.3255 28.004 27.26 29.7377 27.2060 

Total Capacity (MW) 949.676  961.3255 928.004 927.26 929.7377 927.2060 

 

 

algorithms. These findings included comparisons 

with other techniques like SA [11], SOS [5], and 

ABC [16]. The Tables show a promising performance 

in terms of minimizing fuel cost and emissions effects, 

which are reduced to 1964.9331$/h and 58.85 Kg/h 

respectively Compared to the values found by SA 

[11]. While results for best multi-objective function 

for 900-MW load demand obtained from suggested 

methods are illustrated in Table 7 and compared with 

the SA, SOS, ACB, and NHPSO algorithms. For this 

scenario, compared with NHPSO [23] indicates a 

reduction in fuel cost which is 3664.25 $/h and when 

compared with SOS [5] method obtained a promising 

reduction in terms of minimizing emissions effects  
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Figure. 3 The convergence characteristic of Fuel cost 

objective function with load demand (700 MW and 900 

MW) 
 

 

 
Figure. 4 The convergence characteristic of Emission 

objective function with load demand (700 MW and 900 

MW) 
 

 

 
Figure. 5 The convergence characteristic of multi-

objective function with load demand (700 MW and 900 

MW) 

and power losses which are reduced to 38.9566 kg/h 

and 34.1195 MW respectively. However, from Table 

6, the emission effects of the GWO-PSO method are 

slightly higher than the emission results obtained 

from MPSO in the case of 900 MW of power demand, 

conversely, the losses are less. Overall, the results 

demonstrate that the suggested algorithm offers a 

reliable, good, and efficient solution to the ELD 

problem. 

Fig. 3 clearly displays the convergence curves 

that were obtained by applying MPSO and GWO-

PSO to the 30-bus test system in term of operating 

cost minimization objective function with load 

demand (700 MW and 900 MW). After all iterations, 

GWO exhibits better results, although the rate of 

decrease in cost value is initially seen to be 

significant and then slows down. Also, from the all 

tables, it is evident that the suggested GWO-PSO 

algorithm outperforms the other algorithms in terms 

of fuel cost, emission effects and fitness function 

including both the operating cost and emission effect. 

Figs. (4) and (5) show the convergence curves 

that were obtained by applying PSO and GWO-PSO 

to the 30-bus test system in terms of minimization of 

the emission effect and multioctave fitness function 

respectively. The GWO-PSO approach converges 

faster than the PSO approach. Overall, it is 

determined that the GWO-PSO approach is superior 

in terms of operating cost, emission effects, power 

loss, execution time, and higher efficiency, keeping 

in mind all the constraints so that the power mismatch 

and violation are zero. 

 

• Case study II 

The network being considered in this case is the 

400 kV Iraqi super grid (ISG). The network consists 

of 24 bus bars connected to 14 transmission lines. The 

system includes twelve generation units that are 

dispersed throughout the system, two of them are gas 

units, and the other are a thermal unit. The system's 

data are taken from [36]. 

Three scenarios with two objective functions 

(fuel cost and emission level) are simulated 

separately and simultaneously, in order to 

demonstrate the efficacy of the suggested method. 

The load demand of the system is 5297.855 MW. The 

BAJG station is considered a slack bus in the load 

flow calculation.  Table 8 displays the comparative 

simulation results of the suggested algorithm.  As 

shown in Table (8), the set of optimal solutions for 

the generation units achieved by the suggested 

algorithms clarifies the relevance between the overall 

fuel cost of the units and the emissions effects with 

total power losses, which have been minimized both 

separately and simultaneously.  For total fuel cost,  
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Table 8. Best fitness function including cost and emission effect for Iraqi Super Grid 

fitness function 

 

fitness function 

 (Cost) 

fitness function 

(Emission) 

fitness function 

 (cost and emission) 

                      Method 

Generation units 

MPSO GWO-

PSO 

MPSO GWO-

PSO 

MPSO GWO-

PSO 

slack BAJG(MW) 567.3852 351.6170 723.2543 601.2627 751.7259 467.8342 

MMDH (MW) 649.7743 512.3344 730.4401 613.5307  753.0076 544.7537 

BAJP (MW) 359.8621 468.3145 610.5455 617.0647  422.0707 514.7259 

MUSP (MW) 826.9856 520.2028 792.3000 654.8963  891.3627 475.4606 

KRK4 (MW) 372.6591 462.3147 172.3276 421.7645  313.3868 504.8008 

MUSG (MW) 499.8415 544.9438 409.5074 535.0224  385.6943 464.9053 

HDTH (MW) 556.1816 526.7626 124.7605 91.1126  184.8548 532.8426 

QDSG (MW) 555.5635 478.1175 770.0887 690.1820   801.6876 547.7876 

KAZG (MW) 389.6243 505.2566 242.2371 332.3823 260.1118 402.7999 

HRTP (MW) 329.7803 462.2877 620.5110 536.6770  335.5176 326.2302 

NSRP (MW) 678 540.4509 421 655.8832  394 429 

AMN4 (MW) 167 543.4255 171 150.2763 159 187 

Fuel Cost ($/h) 6.9094e+04 6.0351e+04 7.9044e+04 7.0801e+04 7.9787 e+04 6.1812e+04 

Emissions (Kg/h) 3.9976e+04 5.3541e+04 2.2318e+04 2.0202e+04 2.4298 e+04 2.6017e+04 

Power losses (MW) 654.8025 618.173 490.1172 422.1997 374.5648 317.5648 

Total Capacity (MW) 5952.6575 5916.028 5787.9722 5720.0547 5672.4198 5615.4198 

 

 
Figure. 6 The convergence characteristic of Emission 

objective function of Iraqi Grid 

 

 

 
Figure. 7 The convergence characteristic of Fuel cost and 

Multi objective functions of Iraqi Grid 

 

emissions effects, and real power loss, the best 

compromise solutions are found by the GWO-PSO 

algorithm with multi-objective function, which are   

6.1812e+04 [$/h], 2.6017e+04 (Kg/h), and 317.5648 

[MW], respectively. 

Figs. (6) and (7) show the convergence curves 

that were obtained by applying PSO and GWO-PSO 

to the Iraq test system in terms of minimization of the 

emission effect, Fuel cost and multi-objective fitness 

function. The GWO-PSO approach converges faster 

than the PSO approach. 

5. Conclusion 

A large amount of the primary energy (total 

energy content) of fossil fuels that are burned in 

power plants is wasted during production and 

delivery to end users. In addition to its effects on the 

environment. So, it is necessary that there are chances 

to enhance the energy efficiency of power plants and 

locate units that generate electricity in a way that 

minimizes fuel costs and power losses during 

economic load dispatch. In this way, the electrical 

grid will ensure low emissions of carbon gases and 

become even more reliable and secure. 

In this work, multi-objective functions (fuel cost 

and emission level) are employed separately and 

simultaneously in order to meet the requirements of 

the ELD for power generation. 

This study presents modified PSO and GWO-

PSO algorithms to solve the CELD problem. The 

implementation results obtained from the simulation 

demonstrate successfully implementing algorithms, 
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and the GWO-PSO approach offers a reliable, good, 

and high-quality solution. Furthermore, the 

simulation results are either superior or comparable 

(approximate) to those produced by other methods 

documented in the literature. 

 

Notation Description 

 ai, bi, ci fuel cost coefficients of generator. 

𝐴𝑖 , 𝐵𝑖   
𝑎𝑛𝑑 𝐶𝑖 

Emission coefficients of the Gith 

generating unit.   

 Bij  Elements of loss coefficient matrix B. 

𝑐1, 𝑐2   Acceleration coefficients. 

 Fc Total fuel cost ($/hr). 

𝐹𝑒    Total emissions. 

fk Objective functions that need to be 

minimized. 

𝑔𝑏𝑒𝑠𝑡   Global best position of particle t is the 

time of initialization. 

Gj Inequality constraints. 

ℎ𝑖 Price penalty factor 

n Number of generators 

Pd Total load demand 

𝑝𝑖
𝑘  Personal bet postion of particle 

PGi Power output by generator j. 

Ploss Transmission losses 

𝑟1 , 𝑟2 Random values. 

SLi Transmission line loading 

𝑣𝑖
𝑘   Velocity vector of particle 

Wi Weight factor 

𝑋 Swarm 

𝑥𝑖
𝑘  Particle′s vector postion 

Xi(t) Position vector of ith grey wolf in the 

current iteration 

𝑥𝛼  , 𝐷𝛼 Position and coefficient vectors of the 

alpha wolf. 

𝑥𝛽  , 𝑥𝐷𝛽  Position and coefficient vectors of the 

beta wolf. 

𝑥𝛿   , 𝐷𝛿  Position and coefficient vectors of the 

delta wolf 
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