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Abstract: This study aims to improve early lung cancer detection by creating a sophisticated Computer-Aided 

Diagnosis (CAD) system. This system employs advanced image processing techniques such as adaptive dynamic 

histogram equalization (ADHE), Local Binary Pattern (LBP), and Tsallis thresholding to effectively reduce noise, 

analyze textures, and segment regions. It also includes the InceptiMultiLayer-Net (IML-Net), an advanced version of 

the Inception V3 architecture designed to capture complex features in medical images. The IML-Net includes a 

multiclass Error-Correcting Output Codes (ECOC) Support Vector Machine (SVM) classifier, which improves the 

system's ability to handle complex classification tasks. The system also employs statistical features such as mean, 

variance, energy, entropy, and correlation to fully describe the characteristics of segmented regions. With an 

impressive 99.573% accuracy in identifying lung cancer-affected regions, as well as a sensitivity of 99.46% and a 

specificity of 99.24%, this CAD system has significant potential as an early lung cancer detection tool. These findings 

highlight the system's ability to assist clinicians in making accurate diagnoses, ultimately improving patient outcomes 

significantly. 

Keywords: Lung cancer, ADHE, Computer-aided diagnosis, SVM, Feature extraction, Image pre-processing, 
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1. Introduction  

Lung cancer presents significant challenges to 

early detection, frequently resulting in delayed 

diagnoses and less effective treatment options. Late-

stage lung cancer diagnosis is associated with severe 

health complications and a high mortality rate, so 

developing early detection techniques is critical to 

improving patient prognosis and increasing survival 

rates [1, 2]. 

Computed Tomography (CT) scans have become 

indispensable in the lung cancer diagnostic process, 

providing detailed information about the tumor's 

structure, size, and location. These scans are 

especially effective at detecting early-stage lung 

cancer, which is critical for initiating treatment and 

improving patient outcomes [3-5]. A newly proposed 

method aims to improve this diagnostic process by 

reducing the reliance on manual interpretation, 

allowing radiologists to make more precise and 

informed decisions, potentially saving lives [6].  

The study describes a novel multistage 

methodology that combines advanced image 

processing techniques with cutting-edge deep 

learning (DL) models. This approach is based on the 

InceptiMultiLayer-Net (IML-Net), an advanced 

version of the Inception V3 architecture designed 

specifically to capture complex features in medical 

images. The IML-Net includes a multiclass Error-

Correcting Output Codes (ECOC) Support Vector 

Machine (SVM) classifier, which improves the 
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model's ability to handle complex classification tasks. 

This integration significantly improves the accuracy 

and reliability of lung cancer detection, 

distinguishing it from other techniques.  

The proposed method's technical superiority 

stems from its advanced integration of adaptive 

image processing and deep learning techniques to 

improve early lung cancer detection. The 

InceptiMultiLayer-Net (IML-Net) uses adaptive 

dynamic histogram equalization (ADHE) to improve 

contrast and visibility in CT scans, while Local 

Binary Pattern (LBP) and Tsallis thresholding refine 

texture analysis and region segmentation, 

respectively. This increases the granularity with 

which lung tissue can be examined, allowing for the 

detection of subtler abnormalities that would 

otherwise be missed by traditional methods. 

Furthermore, the analysis includes statistical features 

such as mean, variance, energy, entropy, and 

correlation, which provides a comprehensive 

quantitative assessment of the segmented regions and 

significantly enriches the diagnostic data available to 

clinicians. This multifaceted approach not only 

improves the system's accuracy and sensitivity, but 

also gives it the ability to handle a wide range of 

imaging scenarios, establishing a new standard for 

the precision and reliability of lung cancer diagnosis. 

Section 1 emphasizes the importance of early 

detection and research objectives. Section 2 reviews 

recent studies, which serve as the basis for the 

proposed methodology. Section 3 describes the 

approach, which includes a block diagram, 

mathematical equations, and a new Deep Neural 

Network (DNN) model. Section 4 summarizes the 

research findings by calculating accuracy and 

sensitivity values and comparing existing methods. 

Section 5 concludes by emphasizing key findings, 

discussing implications, acknowledging limitations, 

and outlining potential next steps. This structured 

organization ensures coherence throughout the 

problem introduction, solution proposal, result 

analysis, and conclusion. 

2. Literature survey  

Nazir et al. [6] proposed a multiresolution rigid 

registration approach for the LIDC-IDRI dataset, 

which resulted in commendable accuracy and 

sensitivity rates of 98.2% and 96.4% in detection 

tasks, respectively. This method uses a hierarchical 

approach to align medical images at multiple scales, 

which improves the accuracy of detecting 

abnormalities in lung images. However, one 

significant limitation of this method is its reliance on 

the quality and consistency of the input data, which 

can vary between datasets, potentially affecting its 

performance in real-world applications. 

Bushara et al. [7] proposed the Visual Geometry 

Group-Capsule Network (VGG-CapsNet), a novel 

fusion of the VGG and Capsule Network 

architectures. When tested on the LIDC-IDRI 

datasets, this innovative approach achieved an 

impressive 98.61% accuracy. VGG-CapsNet, which 

combines the strengths of the VGG and Capsule 

Network models, provides a promising solution for 

image classification tasks, particularly in the field of 

medical image analysis. However, one major 

limitation of this method is its computational 

complexity, which may impede its scalability and 

practical application. 

Vijay et al. [8] proposed a hybrid classifier called 

the hybrid differential evolution (HDE) -based neural 

network, which combines differential evolution 

principles and neural network techniques. This novel 

approach achieved impressive performance metrics, 

including an accuracy of 96.39% and a sensitivity of 

95.25 percent. By incorporating differential evolution 

into the neural network framework, the model can 

effectively optimize its parameters and improve its 

classification performance, especially on complex 

and high-dimensional datasets. A significant 

limitation of this method is its sensitivity to parameter 

selection and population size, which may necessitate 

fine-tuning for optimal performance across diverse 

datasets. 

Balachandran et al. [9] proposed a context-aware 

attention UNET architecture that uses attention 

mechanisms to improve image contextualization. 

This novel approach achieved an impressive 

sensitivity of 99.15%, demonstrating its ability to 

accurately identify relevant features within medical 

images. By incorporating attention mechanisms into 

the UNET framework, the model can dynamically 

focus on informative regions, resulting in better 

segmentation performance, especially in areas with 

subtle distinctions or complex structures. One 

significant limitation of this method is its 

computational demand, as the addition of attention 

mechanisms may increase the model's complexity 

and resource requirements. 

Wang et al. [10] proposed a multiple-scale 

residual network (MResNet), which uses residual 

units to improve the model's depth and accuracy. This 

method achieved impressive accuracy and sensitivity 

rates of 85.23% and 92.79%, respectively, 

demonstrating its ability to capture intricate patterns 

across different scales within the data. MResNet uses 

residual units to efficiently learn complex 

representations, resulting in improved classification 

and detection capabilities, especially in tasks 
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involving large and diverse datasets. A major 

limitation of this method is its susceptibility to 

vanishing gradients and optimization challenges, 

particularly when dealing with extremely deep 

architectures, which may impede its convergence and 

generalization performance on more complex 

datasets or tasks with limited training data. 

Ramana et al. [11] proposed using Saliency 

capsule networks to detect lung cancer, with 

remarkable accuracy and sensitivity rates of 98.95% 

and 98.85%. This method uses capsule networks to 

capture salient features in medical images, allowing 

for precise identification of abnormalities that may 

indicate lung cancer. By incorporating Saliency 

capsule networks, the model can more effectively 

analyze the hierarchical relationships between image 

components, improving its ability to detect subtle 

patterns associated with malignancy. However, one 

significant limitation of this approach is its reliance 

on annotated training data, as obtaining accurately 

labeled medical images for model training can be 

time-consuming and potentially biased. 

Mundher et al. [12] presented a novel Progressive 

Growing Channel Attentive Non-Local (ProCAN) 

network designed for lung cancer detection and 

classification. This novel technique achieved a 

remarkable accuracy rate of 95.28%. By 

incorporating non-local operations and channel 

attention mechanisms, ProCAN allows for the 

effective modeling of long-range dependencies as 

well as selective feature enhancement, increasing the 

model's discriminative power in identifying lung 

cancer-related abnormalities. This approach's 

computational complexity, especially with the 

inclusion of non-local operations, may increase 

training and inference time, making it unsuitable for 

real-time applications or deployment in resource-

constrained settings. Furthermore, the performance 

of ProCAN may be sensitive to hyperparameters and 

dataset characteristics, necessitating careful 

optimization and validation to ensure consistent 

performance across different datasets and clinical 

scenarios. 

Saihood et al. [13] proposed a hybrid approach to 

lung cancer detection that combines the water strider 

optimization algorithm (WSA) with OTSU 

thresholding and pre-processing with the Gray-Level 

Co-occurrence Matrix (GLCM). This fusion mode 

strategy aims to improve the accuracy of cancer 

detection in two-dimensional images. The method 

yielded promising results, with 94.4% accuracy and 

91.6% sensitivity. By combining WSA for 

optimization, OTSU thresholding for segmentation, 

and GLCM for feature extraction, the model can 

effectively capture relevant image characteristics 

associated with lung cancer. A significant limitation 

of this method is its reliance on manual parameter 

tuning, especially for the WSA algorithm, which may 

necessitate extensive experimentation and domain 

knowledge. Furthermore, the approach's performance 

may vary depending on image quality and acquisition 

protocols. The proposed hybrid approach's limitation, 

particularly regarding the OTSU thresholding 

method, is its sensitivity to image noise and 

variability in image characteristics. OTSU 

thresholding assumes that the image has bimodal 

intensity distributions, which may not be true in all 

cases. 

Halder et al. [14] introduced a cutting-edge 

framework called the 2-Pathway Morphology-based 

Convolutional Neural Network (2PMorphCNN), 

which is specifically designed for lung cancer 

detection. This novel approach demonstrated 

exceptional performance, with an accuracy of 

96.10% and a sensitivity of 96.85%. By incorporating 

adaptive morphology techniques into the 

convolutional neural network architecture, the 

2PMorphCNN effectively exploits the structural 

characteristics of medical images, allowing for more 

accurate feature extraction and classification. This 

method's primary limitation is its computational 

demand, especially when performing morphological 

operations. This computational overhead may result 

in increased processing time and resource 

requirements, potentially limiting scalability and 

practical application. Furthermore, the performance 

of the adaptive morphology approach may be 

influenced by the choice of appropriate structuring 

elements and parameter configurations, necessitating 

careful calibration and validation to ensure consistent 

performance across diverse datasets and clinical 

settings. 

Aside from the works mentioned above, several 

notable methods have been developed to improve the 

prediction and classification of lung cancer outcomes. 

Aonpong et al. [15] proposed a novel methodology 

for predicting recurrence in non-small cell lung 

cancer patients by combining genotype information 

with radiomic signatures. While their approach 

shows promise for improving predictive accuracy, 

the developed signatures' generalizability across 

diverse patient populations is a potential limitation. 

Shen et al. [16] developed an interpretable deep 

hierarchical semantic convolutional neural network 

to enhance the interpretability of deep learning 

systems for lung nodule malignancy classification. 

However, the effectiveness of such models may be 

determined by the availability of large annotated 

training datasets. Choi et al. [17] also developed a 

deep learning model for predicting visceral pleural 
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invasion in lung cancer using CT scans, which 

performed similarly to experienced radiologists. 

However, rigorous validation across multiple patient 

cohorts is required to ensure the reliability and 

generalizability of this approach in clinical practice. 

Whereas existing methods for lung cancer 

detection and classification have significant 

limitations such as computational complexity, 

sensitivity to parameter tuning, and reliance on 

annotated training data, the proposed method 

provides a compelling solution to these problems. 

The proposed framework addresses the shortcomings 

of traditional approaches by seamlessly integrating 

image processing techniques with advanced deep 

learning models, specifically the InceptiMultiLayer-

Net (IML-Net) architecture and a multiclass Error-

Correcting Output Codes (ECOC) SVM classifier. 

This comprehensive approach not only improves 

computational efficiency, but it also increases the 

model's ability to detect and classify lung cancer-

related abnormalities. Furthermore, the use of the 

ECOC SVM classifier ensures that the model is 

versatile and adaptable across a wide range of 

datasets and clinical scenarios. Thus, the proposed 

method emerges as a significant advancement in the 

field, providing a strong and dependable tool for 

accurate lung cancer diagnosis and prognosis. 

3. Methodology  

Figure 1 depicts the proposed Computer-Aided 

Diagnosis (CAD) system. Initially, the system 

acquires medical images from the LIDC-IDRI dataset 

[18]. The Lung Image Database Consortium and 

Image Database Resource Initiative (LIDC-IDRI) 

[18] have been valuable resources for lung cancer 

diagnosis and research. LIDC-IDRI is a freely 

available database of thoracic CT scans with 

annotations from multiple radiologists. This dataset 

has helped to develop and validate various algorithms 

and methodologies for lung nodule detection, 

classification, and characterization. LIDC-IDRI has 

been used by researchers to train and evaluate 

machine learning and deep learning models for tasks 

like nodule segmentation, malignancy prediction, and 

treatment response assessment. LIDC-IDRI has made 

significant contributions to lung cancer imaging 

research by providing a standardized dataset with 

expert annotations, allowing for the development of 

more accurate and reliable computer-aided diagnostic 

systems. 

Later the step converts the images to grayscale 

using a formula that mimics human colour perception. 

It improves image quality even further by using a 

Wiener filter to reduce noise and adaptive dynamic  

 
Figure. 1 Proposed system block diagram 

 

 

histogram equalisation (ADHE) to improve contrast. 

Tsallis thresholding is then used to isolate regions of 

interest in images for effective image segmentation. 

Moving on to the second stage, the CAD system 

refines the edge image obtained after Canny edge 

detection using morphological operations such as 

dilation and filling. LBPs are used to extract texture 

features, allowing for the characterization of local 

texture patterns within images. The CAD system then 

employs InceptiMultiLayer-Net (IML-Net), a DL 

model derived from the Inception V3 architecture, in 

the final stage. IML-Net incorporates a multiclass 

Error-Correcting Output Codes (ECOC) SVM 

classifier for handling complex classification tasks 

and multiple layers to capture intricate image features.  

The entire process with necessary equations and 

elaboration is given below.  

Obtain the LIDC-IDRI dataset, which is a 

collection of lung cancer-related medical images. 

This database contained approximately 250 lung CT 

scans, 80 % for training and 20 % for testing. To 

improve the visual representation of the images, 

convert the acquired RGB images to the appropriate 

color space, i.e. Grayscale.   This pixel's grayscale 

value (L) can be calculated using the formula below. 

 

𝐿 =  0.2989 ×  𝑅 +  0.5870 × 

 𝐺 +  0.1140 ×  𝐵           (1) 

 

The coefficients (0.2989, 0.5870, and 0.1140) 

represent the human perception of color intensity, 
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with green receiving the most weight, followed by 

red, and blue receiving the least.    

We introduce the use of a Wiener filter to address 

the problem of noise reduction and smoothing 

irregularities or artefacts in colour images. Let I(x, y) 

represent the intensity value of a pixel at coordinates 

(x, y) within the grayscale image, and M(x, y) 

represent the final image after median filtering. The 

median filter works on the following principles: 

 

𝑀(𝑥, 𝑦) =  

𝑊𝑖𝑒𝑛𝑒𝑟(𝐼(𝑥 +  𝑖, 𝑦 +  𝑗))𝑓𝑜𝑟 𝑖 = 

 −𝑘 𝑡𝑜 𝑘, 𝑗 =  −𝑘 𝑡𝑜 𝑘                 (2) 

 

Let's apply the outcome of equation 2 to Adaptive 

Dynamic Histogram Equalization (ADHE).  Let H(L) 

represent the  

local histogram for intensity level L in a 

neighborhood of size N. The local histogram can be 

calculated as follows: 

 

𝐻(𝐿) =  𝛴𝛴 𝑤(𝑖, 𝑗) ×  

𝛿(𝐿 −  𝐼(𝑥 +  𝑖, 𝑦 +  𝑗)),  

𝑓𝑜𝑟 𝑖 =  −
𝑁

2
𝑡𝑜

𝑁

2
, 𝑗 =  −

𝑁

2
𝑡𝑜

𝑁

2
             (3) 

 

In equation 3, w(i, j) represents the weighting 

function for pixel (i, j), and δ denotes the Kronecker 

delta function,   The CDF represents the cumulative 

sum of histogram values up to the given intensity 

level. 

 

𝐶𝐷𝐹(𝐿) =  𝛴 𝛴 𝑤(𝑖, 𝑗) × ∑ 𝐻(𝐾), 

 𝑓𝑜𝑟 𝐾 =  0 𝑡𝑜 𝐿, 𝑖 = 

 −
𝑁

2
𝑡𝑜

𝑁

2
, 𝑗 =  −

𝑁

2
𝑡𝑜

𝑁

2
                  (4) 

 

In equation 4, ∑ H(K) represents the cumulative 

sum of local histogram values up to intensity level 

K.Compute the new pixel value based on the local 

CDF and the original pixel value 

 

𝑀(𝑥, 𝑦) =  𝐶𝐷𝐹(𝐼(𝑥, 𝑦)) × 

 (𝐿max −𝐿𝑚𝑖𝑛) +  𝐿𝑚𝑖𝑛             (5) 

 

Here, 𝐿max   and 𝐿𝑚𝑖𝑛  represent the maximum 

and minimum intensity levels  

Apply the above steps for each pixel in the 

grayscale image to obtain the final ADHE-enhanced 

image. Use the Tsallis thresholding technique to 

segment regions of interest based on gray-level 

intensities in the pre-processed images. The objects 

of interest are separated from the background in this 

step. Tsallis thresholding is a statistical method for 

dividing an image into different regions based on 

gray-level distribution. 

 

𝐻𝑞 =
(1 − 𝛴[𝑝(𝑖)𝑞])

(𝑞 − 1)
     (6) 

 

Here p(i) denotes the Probability based function 

for intensities of local Neighborhood. 

Tsallis entropy values for different threshold 

values (T) within a specified range can be used to 

calculate the optimal threshold. The threshold T is 

chosen to maximise the Tsallis entropy Hq: 

 

𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑇)𝐻𝑞(𝑇)   (7) 

 

For each pixel (x, y) in the pre-processed 

grayscale image 

 

𝐵𝑊(𝑥, 𝑦) =  1, 𝑖𝑓 𝐼(𝑥, 𝑦) >=  𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙   (8) 

 

𝐵𝑊(𝑥, 𝑦)  =  0, 𝑖𝑓 𝐼(𝑥, 𝑦)  <  𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙   (9) 

 

The Sobel operator calculates the gradients 𝐺𝑥 

and 𝐺𝑦 using convolution kernels for horizontal and 

vertical gradients, respectively. 

 

𝐺𝑥(𝑥, 𝑦) = 

∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) ⋅ 𝑆𝑥(𝑖, 𝑗)1
𝑗=−1

1
𝑖=−1                (10) 

 

𝐺𝑦(𝑥, 𝑦) = 

∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) ⋅ 𝑆𝑦(𝑖, 𝑗)1
𝑗=−1

1
𝑖=−1                 (11) 

 

Where Sx and Sy are the Sobel kernels for 

horizontal and vertical gradients. 

The gradient magnitude (G) is computed as the 

Euclidean norm of the horizontal and vertical 

gradients. 

 

𝐺(𝑥, 𝑦) = √𝐺𝑥2(𝑥, 𝑦) + 𝐺𝑦2  (𝑥, 𝑦)                (12) 

 

For each pixel (x, y) in the gradient magnitude 

image: 

Calculate the gradient direction (θ): 

 

𝜽(𝒙, 𝒚) = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝐺𝑥(𝑥,𝑦)

𝐺𝑦(𝑥,𝑦)
)              (13) 

 

Compare the gradient magnitude of the current 

pixel with its neighbors in the direction perpendicular 

to the gradient (θ). If it's a local maximum, retain it; 

otherwise, suppress it. The goal of edge tracking is to 

connect edge pixels to form continuous edge contours.   

We can use a connectivity-based approach to link 

strong edge pixels to potential edge pixels if they 
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share a common boundary to perform edge tracking 

by hysteresis.  After edge tracking, we obtain a binary 

edge image where edge pixels are connected to form 

continuous edge contours. The binary image 

represents the detected edges in the original image. 

Apply morphological image processing 

operations like dilation and filling on the final edge 

image obtained after Canny edge detection.  

The dilation operation can be defined as: 

 

𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝐼𝑚𝑎𝑔𝑒(𝑥, 𝑦) = 

max(𝐸𝑑𝑔𝑒𝐼𝑚𝑎𝑔𝑒(𝑥 +  𝑖, 𝑦 +  𝑗))             (14) 

 

for all (i,j) in the structuring element 

Filling, also known as hole filling or 

morphological closing, is used to fill small gaps or 

holes within the connected edge regions.  

 

𝐹𝑖𝑙𝑙𝑒𝑑𝐼𝑚𝑎𝑔𝑒(𝑥, 𝑦) = 

min(𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝐼𝑚𝑎𝑔𝑒(𝑥 +  𝑖, 𝑦 +  𝑗))              (15) 

 

for all (i,j) in the structuring element 

FilledImage will contain the filled and connected 

edge contours, allowing for further analysis or 

visualisation. 

The LBP value for a pixel (x, y) can be calculated 

as follows. 

Create a circular neighborhood of P evenly 

spaced points on a circle of radius R. The 

neighborhood points are denoted as (𝑥𝑝, 𝑦𝑝), where p 

= 0, 1, ..., P-1. For each neighbor (𝑥𝑝, 𝑦𝑝), calculate 

the difference between the intensity value of the 

central pixel (x, y) and the neighbor's intensity value: 

 

𝐷𝑝 =  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐼𝑚𝑎𝑔𝑒(𝑥𝑝, 𝑦𝑝) − 

 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐼𝑚𝑎𝑔𝑒(𝑥, 𝑦)             (16) 

 

Encode the differences as binary values by 

thresholding them: 

If 𝐷𝑝  >= 0, make the corresponding bit in the 

binary pattern to 1; otherwise, make it to value of 0. 

  for all neighbors to form an LBP pattern 

 

𝐿𝐵𝑃(𝑥, 𝑦) =  
(𝐵(𝑃 − 1)𝐵(𝑃 − 2). 𝐵(1)𝐵(0))              (17) 

 

Optionally, convert the binary LBP pattern to its 

decimal equivalent for compact representation if 

needed. Repeat the process for each pixel in the 

ProcessedImage to obtain the LBPImage. Once we 

have computed the LBP values for each pixel in the 

image, now calculate texture features like contrast, 

energy, and entropy. Contrast measures the local 

variations in pixel intensities and is calculated as the  

 
Figure. 2 InceptiMultiLayer Model 

 

 

variance of the LBP values within a local 

neighborhood. For each pixel (x, y): 

Calculate the local mean (μ) of LBP values within 

a neighborhood of size N 

 

𝜇(𝑥, 𝑦) =
(𝛴𝛴 𝐿𝐵𝑃(𝑥 + 𝑖, 𝑦 + 𝑗))

(𝑁 × 𝑁)
, 𝑓𝑜𝑟 𝑖 = 

 −
𝑁

2
𝑡𝑜

𝑁

2
, 𝑗 =  −

𝑁

2
𝑡𝑜

𝑁

2
                  (18) 

 

Calculate the contrast (C) as the variance of LBP 

values within the neighborhood: 

 

𝐶(𝑥, 𝑦) = 

(𝛴𝛴 (𝐿𝐵𝑃(𝑥 + 𝑖, 𝑦 + 𝑗) −  𝜇(𝑥, 𝑦))
2

)

(𝑁 × 𝑁)
, 

 𝑓𝑜𝑟 𝑖 =  −
𝑁

2
𝑡𝑜

𝑁

2
, 𝑗 =  −

𝑁

2
𝑡𝑜

𝑁

2
                  (19) 

 

Calculate the energy (E) as the sum of squared 

LBP values within a neighborhood: 

 

𝐸(𝑥, 𝑦) =  𝛴𝛴 (𝐿𝐵𝑃(𝑥 + 𝑖, 𝑦 + 𝑗))
2

, 

 𝑓𝑜𝑟 𝑖 =  −
𝑁

2
𝑡𝑜

𝑁

2
, 𝑗 =  −

𝑁

2
𝑡𝑜

𝑁

2
             (20) 

 

Entropy quantifies the randomness or uncertainty 

of LBP values within a local neighborhood and is 

calculated as the Shannon entropy. For each pixel (x, 

y). Calculate the entropy (H) as 

 

𝐻(𝑥, 𝑦) = 

 −𝛴𝛴 (
𝑝(𝐿𝐵𝑃(𝑥 + 𝑖, 𝑦 + 𝑗)) ×

 𝑙𝑜𝑔2 (𝑝(𝐿𝐵𝑃(𝑥 + 𝑖, 𝑦 + 𝑗)))
)  

𝑓𝑜𝑟 𝑖 =  −
𝑁

2
𝑡𝑜

𝑁

2
, 𝑗 =  −

𝑁

2
𝑡𝑜

𝑁

2
                     (21) 

 

where p(LBP) is the probability mass function of 

LBP values within the neighborhood 

InceptiMultiLayer: The term "Incepti" is 

derived from Inception V3, the base architecture used 

in this model. "MultiLayer" reflects the modification 

involving multiple layers in the network as shown in 

Fig. 2. 
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Adding more convolutional layers, fully 

connected layers, or custom layers to the base 

architecture can be represented mathematically as: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 

 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑊 ×  𝐼𝑛𝑝𝑢𝑡 +  𝑏)             (22) 

 

Where Output: The output of the layer, 

Activation: The activation function (e.g., ReLU, 

sigmoid) applied element-wise, W: weight matrix, 

Input: input to the layer, b: bias vector 

 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑖, 𝑗, 𝑘) = 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐼𝑛𝑝𝑢𝑡(𝑖 ×  
𝑃𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑖𝑧𝑒: (𝑖 + 1) ×  𝑃𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑖𝑧𝑒, 𝑗 × 

𝑃𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑖𝑧𝑒: (𝑗 + 1) × 𝑃𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑖𝑧𝑒, 𝑘))    (23) 

 

Where Output: Pooled output, Input: Input 

feature map, Pooling Size: Size of the pooling region. 

IML-Net is a novel advancement in deep learning 

architecture, building on the foundation of Inception 

V3 with an increased number of layers to capture 

intricate features in complex datasets. This extended 

architecture not only improves feature representation, 

but it also includes a cutting-edge multiclass Error-

Correcting Output Codes (ECOC) SVM classifier, 

which increases its ability to handle complex 

classification tasks. Furthermore, IML-Net 

incorporates the strategic use of average pooling as 

the output layer, a novel approach known for its 

effectiveness in image classification. This 

combination of architectural enhancements 

establishes IML-Net as a versatile and robust model, 

representing a significant step forward in addressing 

the challenges of sophisticated feature extraction and 

classification across domains.  

The algorithm below describes the creation of a 

novel deep learning architecture called 

InceptiMultiLayer (IML-Net) for multi-class 

classification tasks, with a emphasis on improving 

feature extraction capabilities. In Step 1, the 

InceptiMultiLayer class is defined, which consists of 

a base model initialized with an InceptionV3 network 

and additional layers designed to improve feature 

representation. Step 2 introduces the ECOC_SVM 

class, which implements a multiclass Error-

Correcting Output Codes (ECOC) Support Vector 

Machine (SVM) classifier, allowing for robust 

classification across multiple classes. Next, in Step 3, 

average pooling is used as the output layer to 

facilitate feature aggregation. In the main program, 

Steps 4 and 5 involve instantiating and training the 

IML-Net and ECOC_SVM models for classification 

tasks, respectively. Finally, in Step 6, average 

pooling is used to compute the model's final output. 

This algorithmic framework combines deep learning 

and traditional machine learning techniques to 

produce a comprehensive model capable of efficient 

and accurate multi-class classification, with a focus 

on improving feature representation using the 

InceptiMultiLayer architecture. 

 

Algorithm:   IML-Net 

Step 1: Define InceptiMultiLayer with enhanced 

features 

Step 1.1: Initialize InceptiMultiLayer: Let 

𝑜𝑏𝑗 represent an instance of 

InceptiMultiLayer.  

 

𝑜𝑏𝑗 = 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑀𝑢𝑙𝑡𝑖𝐿𝑎𝑦𝑒𝑟(𝑥, 𝑦)           (24) 

 

Step 1.2: Create Base Model: Let 

𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙 denote the base model created 

using InceptionV3 with input shape 𝑥. 

 

𝑏𝑎𝑠𝑒𝑚𝑜𝑑𝑒𝑙 = 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉3(𝑥)               (25) 

 

Set 𝑜𝑏𝑗.𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙 to 𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒l 

Step 1.3: Add Additional Layers: Let 𝐴 be the 

additional convolutional layer with a 3×3 

kernel and 64 filters. 

 

𝐴 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐿𝑎𝑦𝑒𝑟(3,64)                  (26) 

 

Update 𝑜𝑏𝑗.𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙 by adding 𝐴 to 

𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙. 
Step 1.4: Set Number of Classes: Let 𝐶 

represent the number of classes.  

Step 1.5: Return InceptiMultiLayer Object: 

Return 𝑜𝑏𝑗. 
Step 2: Implement multiclass ECOC SVM 

classifier 

Step 2.1: Initialize ECOC_SVM:  

Let 𝑜𝑏𝑗 denote an instance of 

ECOC_SVM. 

 

𝑜𝑏𝑗 = 𝐸𝐶𝑂𝐶_𝑆𝑉𝑀                              (27) 

 

Step 2.2: Train SVM Classifiers: 

For each class 𝑖 from 1 to 𝐶:  

Train an SVM classifier svm_model𝑖 using 

features and labels for class 𝑖.  
 

𝑠𝑣𝑚𝑚𝑜𝑑𝑒𝑙𝑖 =
𝑓𝑖𝑡𝑐𝑒𝑐𝑜𝑐(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 == 𝑖)     (28) 

 

Store svm_model𝑖 in 𝑜𝑏𝑗.𝑠𝑣𝑚_𝑚𝑜𝑑𝑒𝑙𝑠[𝑖] 

Step 2.3: Make Predictions: For each 

class 𝑖 from 1 to 𝐶:  
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Predict class probabilities predictions𝑖 
using the trained SVM classifier 

svm_model𝑖 and input data. 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑖 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠𝑣𝑚_𝑚𝑜𝑑𝑒𝑙𝑖, 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎) (29) 

Store predictions𝑖 in the 𝑖 th column of the 

predictions matrix. 

             Step 2.4: Return Predictions: 

                             Return the predictions matrix. 

Step 3: Implement average pooling as the output 

layer 

Step 3.1: Perform Average Pooling: Let 

input_data represent the input feature 

matrix.  

Calculate the mean of input_data along 

the spatial dimensions to obtain the 

output.  

 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑚𝑒𝑎𝑛(𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎)           (30) 

 

 Step 4: Instantiate InceptiMultiLayer (IML-

Net): Initialize IML_Net with input shape 𝑥 and 

𝐶. 

Step 5: Instantiate ECOC_SVM:  

Initialize ECOC_SVMECOC_SVM with 𝐶. 

Step 6: Train the Model: Train the SVM 

classifiers. 

Step 7: Make Predictions:  

Use the trained SVM classifiers to make 

predictions. 

Step 8: Implement Average Pooling: Apply 

average pooling to the predictions to obtain the 

final output 

 

The accuracy , sensitivity and Specificity are 

provided by following equations 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
            (24) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
               (25) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                (26) 

 

4. Results and discussion  

The original CT scan image serves as the 

foundation for the entire process (see Fig. 3). This 

diagram depicts the initial input obtained from the 

LIDC-IDRI database [5], which served as the 

foundation for subsequent analysis. 

Figure 4 discusses A fundamental preprocessing 

step is resizing the original image.   

 
Figure. 3 Lung Cancer CT Image 

 

 

 
Figure. 4 Resized Image 

 

 
Figure. 5 Gray Color Conversion 

 

 
Figure. 6 Filtered Image using Wiener Filter 

 

 
Figure. 7 Output of ADHE enhancement technique 
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Figure. 8 Thresholded image Using Tsallis Method 

 

Grayscale conversion simplifies the image into a 

single-channel representation, as shown in Fig. 5.   

Figure 6 is the result of Weiner Filter. The use of a 

Wiener filter is required for noise reduction and 

image enhancement.   

The image in Fig. 7 is the result of Adaptive 

Dynamic Histogram Equalisation (ADHE), which 

significantly improves image contrast and reveals 

finer details.  Figure 8 shows how this Tsallis 

statistical method effectively separates objects of 

interest from the background, isolating potentially 

cancerous regions for further investigation. The 

Canny edge detection filter, depicted in Fig. 9, plays 

an important role in highlighting edges in the image.   

Figure 10 is the end result of  Dilation, as shown 

in Fig. 10, is an important morphological operation.   

This step is critical for obtaining accurate feature 

extraction. Filling, or morphological closing, as 

demonstrated in Fig. 11, is used to close gaps within 

connected edge regions.   

 

 

 
Figure. 9 Filtered image via Canny Filter 

 

 

 
Figure. 10 Dilation Processed Image 

 
Figure. 11 Outcome of Filled Image  Process 

 

 
Figure. 12 Resultant Image of LBP 

 

In a nutshell Figure 12 illustrates the final image 

that was obtained through the extraction of the Local 

Binary Patterns (LBP) feature. As a result of the fact 

that they describe local texture patterns, LBP values 

are an essential component of texture analysis. 

Table 1 provides an in-depth look at the feature 

extraction process used on lung cancer image 

samples using the Local Binary Patterns (LBP) 

method. The table specifically provides results for 

essential features extracted from five sample images, 

such as entropy, contrast, and energy. These 

characteristics aid in characterising and quantifying 

textural patterns within images, which is useful for 

subsequent stages of analysis. The image samples 

that were utilized in this process of feature extraction 

were sourced from the Lung Image Database 

Consortium and Image Database Resource Initiative 

(LIDC-IDRI). This large database contains 

approximately 300 lung computed tomography (CT) 

scans, each of which represents a distinct clinical case. 

 

 
Table 1. Extracted Features using LBP 

 Sample Lung Cancer Images 

Featur

es 

 

Samp

le 

Image 

1 

Samp

le 

Image 

2 

Samp

le 

Image 

3 

Samp

le 

Image 

4 

Samp

le 

Image 

5 

Entrop

y 

0.753

2 

0.776

3 

0.782

1 

0.768

4 

0.734

2 

Contra

st 

2.929 2.965 2.934 2.972 2.965 

Energy 0.592

3 

0.591

2 

0.591

7 

0.592

1 

0.591

7 
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Figure. 13 Feature Plot 

 
Table 2. Assessment of Accuracy Values 

Techniques used  

 

Accuracy 

(%) 

multiresolution rigid [6] 98.2 

VGG-CapsNet [7] 98.61 

HDE [8] 96.39 

MResNet [10] 85.23 

Saliency capsule networks [11] 98.95 

ProCAN [12] 95.28 

WSA [13] 94.4 

2PMorphCNN [14] 96.10 

Proposed Method (IML-Net)  99.573 

  

 

For model development and evaluation, an 80/20 

data split was used in accordance with established 

best practises. Specifically, 80% of the dataset, or 240 

lung CT scans, was used to train the model. This 

training phase served two purposes: fine-tuning the 

model's parameters to improve performance and 

uncovering latent patterns and relationships in the 

data to build a lung cancer predictive model. The 

remaining 20% of the dataset, corresponding to 60 

lung CT scans, was set aside solely for assessing the 

trained model's performance.  

Figure 13, titled "Feature Plot," depicts the 

extracted energy, contrast, and entropy values from 

lung cancer image samples. 

Table 2 compares the accuracy values achieved 

by various techniques for lung cancer detection on the 

LIDC dataset. Notably, methods such as VGG-

CapsNet and Saliency Capsule Networks achieve 

98.61% and 98.95% accuracies, respectively, by 

combining deep learning architectures with novel 

 
Figure. 14 Comparison plot of Accuracy 

 

 

features such as capsule networks and saliency 

mechanisms. Meanwhile, the proposed method, 

IML-Net, outperforms all others with an accuracy of 

99.573%, indicating the potential for interpretability-

driven machine learning approaches. While 

techniques such as Multiresolution Rigid and HDE 

perform well with accuracies above 96%, MResNet 

falls behind with 85.23%, indicating varying degrees 

of effectiveness in combining different 

methodologies for lung cancer detection. These  

findings highlight advances in medical image 

analysis, demonstrating the potential of deep learning 

and novel techniques to improve detection accuracy 

for critical conditions such as lung cancer. 

Figure 14 shows a comparison plot of accuracy 

values for various methods used in lung cancer 

detection, with methods represented on the x-axis and 

corresponding accuracy values in percentages plotted 

on the y-axis. The plot depicts the performance 

disparities between the techniques evaluated.  

Notably, methods such as VGG-CapsNet, 

Saliency Capsule Networks, and the proposed IML-

Net achieve remarkably high accuracies of over 98%. 

In contrast, MResNet stands out with a significantly 

lower accuracy of 85.23%, indicating potential 

limitations in its application for lung cancer 

detection.The plot effectively depicts the variability 

in performance across different methodologies, 

emphasizing the importance of using the right 

techniques to achieve maximum accuracy in medical 

image analysis tasks. Furthermore, the plot 

emphasizes the importance of novel approaches, 

0 1 2 3
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Sample 2

Sample 3

Sample 4

Sample 5
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Table 3. Assessment for Sensitivity values 

Techniques used  

 

Sensitivity 

(%) 

multiresolution rigid [6] 96.4 

HDE [8] 95.25 

context-aware attention UNET [9] 99.15 

MResNet [10] 92.79 

Saliency capsule networks [11] 98.85 

WSA [13] 91.6 

2PMorphCNN [14] 96.85 

Proposed Method  99.46 

 

 
Figure. 15 Comparison Plot for Sensitivity 

 

as evidenced by the superior performance of the 

proposed IML-Net, indicating its potential for 

practical implementation in clinical settings. 

 Table 3 shows a comparative analysis of 

sensitivity values for various techniques used in lung 

cancer detection using the LIDC dataset. Among 

these methods, the proposed approach stands out with 

a sensitivity of 99.46%, indicating that it can 

correctly identify cancerous regions in lung scans. 

This outperforms several other techniques, including 

context-aware attention UNET, demonstrating the 

efficacy of the proposed method in accurately 

detecting lung cancer. Its exceptionally high 

sensitivity highlights its potential as an advanced tool 

for precise cancer detection, emphasizing the 

importance of incorporating novel methodologies to 

improve diagnostic capabilities in clinical practice. 

Figure 15 depicts a comparison plot of sensitivity 

values for various methods used in lung cancer 

detection, with methods represented on the x-axis and 

corresponding sensitivity values plotted on the y-axis. 

The plot depicts the efficacy of different techniques 

in correctly identifying cancerous regions in lung 

scans. Notably, the proposed method outperforms 

others, with sensitivity of 99.46%, as shown in Table 

3. This high sensitivity indicates that the proposed 

method excels at accurately detecting cancerous 

regions, making it a promising candidate for clinical 

use. Furthermore, while other methods, such as 

context-aware attention UNET and Saliency Capsule 

Networks, exhibit high sensitivities, they fall short of 

the proposed method's capabilities. In contrast, 

techniques such as MResNet and WSA have lower 

sensitivity, indicating potential limitations in 

accurately identifying cancerous regions. As a result, 

the plot reinforces the proposed method's superiority 

in terms of sensitivity, highlighting its potential to 

improve diagnostic accuracy and patient outcomes in 

lung cancer detection. 

The table 4 provides a comprehensive assessment 

of the specificity values for various techniques used 

in a given domain. Specificity, an important metric in 

fields such as medical imaging and pattern 

recognition, indicates a model's ability to correctly 

identify true negatives from all actual negatives. 

Across the techniques listed, we see a variety of 

specificity values, with notable performance 

differences. Contextualized attention UNET and 

WSA stand out with high specificity values of 

98.81% and 99%, demonstrating their ability to 

accurately classify negative instances. However, 

MResNet has a significantly lower specificity of 

72.89%, indicating potential limitations in its ability 

to detect true negatives effectively.  

 

 
Table 4. Assessment for Specificity values 

Techniques used  Specificity (%) 

multiresolution rigid [6] 97.2 

HDE [8] 96.12 

context-aware attention UNET [9] 98.81 

MResNet [10] 72.89 

WSA [13] 99 

2PMorphCNN [14] 95.17 

Proposed Method  99.24 
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Figure. 16 Comparison Plot for Specificity 

 
Table 5. Assessment for AUC 

Techniques used  AUC (%) 

HDE [8] 96.05 

MResNet [10] 92.75 

WSA [13] 93.1 

2PMorphCNN [14] 99.36 

Proposed Method  99.76 

 

 
Figure. 17 Comparison Plot for AUC 

The proposed method emerges as the table's 

frontrunner, with an impressive specificity of 99.24%, 

indicating superiority in accurately identifying true 

negatives when compared to the other techniques 

tested.  

Moving on to the comparison plot in Fig. 16, we 

get a visual representation of how each technique 

performs in terms of specificity. The plot provides a 

clear overview of how each method performs in 

comparison to one another, making it easy to 

compare and identify trends. Techniques such as 

WSA and the proposed method emerge as top 

performers, displaying notably high specificity 

values and demonstrating their robustness in 

accurately classifying negative instances. In contrast, 

MResNet stands out as an outlier, with a lower 

specificity value than the rest, indicating areas for 

improvement. The plot is a useful tool for researchers 

and practitioners because it helps them identify 

effective methodologies for tasks that require precise 

negative instance classification. Overall, the table 

and plot provide detailed insights into the specificity 

performance of various techniques, with the proposed 

method demonstrating superior accuracy and 

reliability in detecting true negatives. 

 The evaluation for the Area Under the Curve 

(AUC) attained by different methods is presented 

succinctly in table 5. The name of each technique is 

given in the column "Techniques used," and the 

matching AUC value in percentage is shown in the 

column "AUC (%)".  

Performance in the task assessed is shown by 

listing HDE [8], MResNet [10], WSA [13], and 

2PMorphCNN [14] together with their corresponding 

AUC percentages. The proposed method is shown in 

the last row; it outperformed the other methods listed 

with an AUC of 99.76%.  

The AUC values attained by each method are 

graphically shown in Fig. 17. Usually, each technique 

is shown as a line or a data point, which facilitates 

quick comparison of their effectiveness. Most likely, 

the various techniques are indicated by the x-axis, 

and the matching AUC values are shown by the y-

axis. 

One can see the relative performance of several 

approaches visually thanks to this plot. As seen by its 

higher position on the y-axis than the other data 

points or lines representing alternative techniques, 

the proposed method clearly outperforms the other 

techniques.  

The table and figure taken together give a 

thorough summary of the AUC evaluation and 

provide both numerical and visual information about 

how various approaches performed on the assessed 

task. 
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5. Conclusion  

Finally, this study presents a novel and 

comprehensive CAD system designed to detect lung 

cancer in medical images early. To effectively 

preprocess and segment medical images, the 

proposed methodology combines advanced image 

processing techniques such as adaptive dynamic 

histogram equalization (ADHE), Local Binary 

Pattern (LBP) feature extraction, and Tsallis 

thresholding.  InceptiMultiLayer-Net (IML-Net), a 

deep learning model, provides a powerful framework 

for precise classification. It expands on the Inception 

V3 architecture by including a multiclass Error-

Correcting Output Codes (ECOC) SVM classifier, 

which improves its ability to handle complex 

classification tasks. Our findings show that the CAD 

system performs admirably, with an accuracy of 

99.573% in identifying lung cancer-affected regions 

with specificity of 99.24 %. It also has a high 

sensitivity of 99.46%.  

This advancements in deep learning in future 

entail the development of even more sophisticated 

CAD systems capable of not only detecting lung 

cancer but also providing information about its stage 

and progression. Furthermore, the integration of real-

time data and telemedicine applications may allow 

for remote monitoring and consultation, increasing 

the accessibility and effectiveness of lung cancer 

diagnosis and treatment. Technology advancement 

and its application in healthcare have the potential to 

significantly improve our ability to combat lung 

cancer and improve patient outcomes. 
 

Notation List 

I(x, y) represent the intensity value of a pixel at 

coordinates (x, y) within the grayscale image 

M(x, y) represent the final image after median 

filtering. 

H(L) represent the local histogram for intensity 

level L in a neighborhood of size N 

w(i, j) represents the weighting function for pixel 

(i, j) 

δ denotes the Kronecker delta function 

CDF represents the cumulative sum of histogram 

values up to the given intensity level. 

∑ H(K) represents the cumulative sum of local 

histogram values up to intensity level K. 

𝐿max   and 𝐿𝑚𝑖𝑛  represent the maximum and 

minimum intensity levels 

p(i) denotes the Probability based function for 

intensities of local Neighborhood 

𝐺𝑥 and 𝐺𝑦 : horizontal and vertical gradients 

Sx and Sy are the Sobel kernels for horizontal and 

vertical gradients. 

R: circle of radius 

μ: local mean 

C: Contrast 

E: Energy 

H: Entropy  

p(LBP) is the probability mass function of LBP 

values within the neighborhood 
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