
Received: March 14, 2024. Revised: May 27, 2024. 689

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

Hybrid Artificial Fish Swarm Optimization with Deep Learning-Driven Cloud

Assisted Cyberattack Detection

Ahmed Al-Khayyat1,2,3 Mahmood Anees Ahmed4 Ahmad Taher Azar5, 6, 7

Zeeshan Haider5, 6 Ibraheem Kasim Ibraheem8, 9*

1College of Technical Engineering, the Islamic University, Najaf, Iraq

2College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
3College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq

Medical Instrumentation Techniques Engineering Department,4

College of Medical Techniques. Al-Farahidi University, Baghdad 10001, Iraq
5College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia

6Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia
7Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt

8Department of Electrical Engineering, College of Engineering, University of Baghdad, Baghdad 10001, Iraq
9Department of Electronics and Communication Engineering,

College of Engineering, Uruk University, Baghdad, Iraq
* Corresponding author’s Email: ibraheemki@coeng.uobaghdad.edu.iq

Abstract: In the evolving landscape of cloud computing and the Internet of Things (IoT), the Android Operating

System (AOS) has emerged as a focal point for cybersecurity efforts, particularly due to its vulnerability to a wide

array of cyberattacks. These threats, which include financial loss, privacy breaches, unauthorized access, data integrity

compromises, and denial of services (DoS), have accentuated the need for advanced malware detection solutions. This

study introduces a pioneering cloud-enabled Hybrid Artificial Fish Swarm Optimization with Deep Learning-Driven

Malware Detection (HAFSO-DLMD) technique for Android devices, aiming to enhance the precision of malware

identification through deep learning models. The HAFSO-DLMD technique preprocesses the bytecodes of Android

applications’ classes.dex files for input into a Deep Sparse Autoencoder (DSAE) represent a significant innovation in

the field. By employing the HAFSO algorithm for optimal hyperparameter tuning, we have demonstrated a substantial

improvement in the detection rate of the DSAE model. Our comprehensive experimental evaluation on an Android

APK dataset comprising 16,000 samples has underscored the HAFSO-DLMD technique’s superior performance,

achieving accuracy, precision, recall, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.17%. These results significantly outperform other contemporary

approaches, thereby establishing the HAFSO-DLMD method as a potent tool in bolstering Android’s cybersecurity

infrastructure within cloud environments.

Keywords: Cybersecurity, Cloud computing, Deep learning, Android malware, Internet of things, Fish swarm

optimization algorithm.

1. Introduction

By leveraging massive datasets related to the

malware and computational resources, cloud-based

services offer enhanced response times and numerous

advantages, including resource pooling, scalability,

on-demand service, and improved network access.

However, there are some issues as well in the case of

cloud features, such as network unavailability,

security issues, etc. Nowadays, the scope of the

Internet of Things (IoT) is expanding with the advent

of various applications like smart homes, healthcare,

smart shopping, and intelligent agriculture [1]. Many

gadgets in a shared IoT network depend on the

Android platform because of hardware support,

Received: March 14, 2024. Revised: May 27, 2024. 690

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

flexibility, and robustness, which are vital for sensor

interfaces. The distinct kinds of IoT gadgets offer

various eminent services relevant to controlling,

sensing, and monitoring tasks [2].

Android is the prominent platform for IoT

gadgets, increasing the number of applications

accessible in the market, specifically Android

applications [3]. Opponents build different kinds of

malicious applications. For instance, using open ports

in which the attacker had control over the device of

the user by opening one of the ports on the gadgets

[4]. This method permits the attacker to access all of

the device’s resources remotely without demanding

permission from the owner. Hence, hackers use

Android applications to break the security of the

device, which permits them to access delicate data

like contact information, photos, and the device’s

location [5]. Fig. 1 represents the process involved in

cloud-assisted malware detection.

The current studies emphasize malware detection

for Android devices [6]. Still, Android devices have

been targeted by hackers because of the widespread

use of the Android platform in IoT gadgets.

Conventional malware recognition techniques

depend mainly on accumulating signature libraries

and human interference by malware analysts. Hence,

it is tough to adapt to the explosive development of

Android malware [7]. With the data accumulation

and continuous enhancement of computational power,

machine learning (ML) technology was broadly

implemented in these three kinds of recognition

approaches, offering another viewpoint for automatic

and efficient Android malware detection. The ML-

related Android malware detection approaches

primarily include the following four steps: First, data

were constructed by gathering malicious and benign

Android applications [8].

Secondly, feature engineering can be executed to

extract features to describe Android applications.

Then, ML methods were trained to detect malware.

At last, the trained model’s performance can be

assessed by forecasting test samples [9]. Also, many

previous studies modeled for Android malware

recognition depend on the limited kinds of feature

selection for detecting malware. Also, many

prevailing malware detection approaches cannot be

directly used for IoT gadgets because of their limited

resources, such as cost, memory, processing abilities,

and computation complexity [10]. Numerous

methods are developed to select features of malware,

for example, the information gain method, but they

are relevant to limited types of features for malware

detection.

This study introduces a Hybrid Artificial Fish

Swarm Optimization with Deep Learning - Driven

Figure. 1 Method for Identifying Attacks in Android

Applications using Cloud-Based Server Analysis

Malware Detection (HAFSO-DLMD) technique for

Android IoT devices. The goal of the HAFSO-

DLMD technique lies in the proper identification of

Android malware using the DL model. The HAFSO-

DLMD technique initially preprocesses the actual

bytecodes of the classes.dex file of Android

application as an input to the DL model. In the

presented HAFSO-DLMD technique, the deep sparse

autoencoder (DSAE) model is applied for malware

detection purposes. The work’s originality is

demonstrated by the application of the HAFSO

technique to optimize the hyperparameter and

increase the DSAE model’s detection rate. The

experimental result assessment of the HAFSO-

Received: March 14, 2024. Revised: May 27, 2024. 691

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

DLMD technique takes place on the Android APK

dataset.

As we navigate through the challenges posed by

the evolving cybersecurity landscape, this paper

introduces an innovative approach that harnesses the

synergy between Hybrid Artificial Fish Swarm

Optimization (HAFSO) and Deep Learning-Driven

Malware Detection (DLMD) to enhance malware

detection capabilities within Android Operating

Systems. The novelty of this research lies in several

key areas:

1. The adoption of a pioneering hybrid

approach that integrates HAFSO with DLMD,

targeting the precise identification of malware

through advanced deep learning models, sets a new

standard in the field of cybersecurity, specifically

tailored for cloud environments and Android

platforms.

2. Utilization of the Deep Sparse

Autoencoder (DSAE), a cornerstone of our

methodology, enables the effective processing and

analysis of Android applications bytecode. This

advanced model is instrumental in discerning benign

from malicious app patterns, significantly bolstering

our detection capabilities.

3. Optimization of hyperparameters through

the HAFSO algorithm emerges as a critical

component of our strategy, ensuring that our deep

learning models operate at peak efficiency. This

optimization process is pivotal in surpassing the

detection accuracy of existing methods.

4. An extensive experimental evaluation

underscores the robustness of our approach. By

rigorously testing the HAFSO-DLMD technique on a

comprehensive dataset, we demonstrate its

superiority in accuracy, precision, recall, and F-score

compared to contemporary approaches.

5. A detailed comparative analysis further

positions the HAFSO-DLMD technique as a leading

solution in malware detection. This comparative

insight not only highlights the effectiveness of our

method but also situates our contributions within the

broader cybersecurity research landscape.

6. The practical implications of our research

extend to enhancing Android’s cybersecurity

infrastructure, offering significant advancements for

professionals, developers, and researchers dedicated

to safeguarding against cyber threats.

7. Future work and continued research are

discussed, laying the groundwork for further

advancements in malware detection technologies.

Our suggestions for future research endeavors

underscore our commitment to ongoing innovation in

the cybersecurity domain.

The subsequent sections of this paper delve into

the methodology, experimental setup, results, and

comparative analysis in detail, illustrating the

comprehensive nature of our study and its

contributions to the field of cybersecurity.

The remainder of this paper is structured as follows:

Section 2 presents a detailed review of related works,

establishing the context for our research. The

problem statement is stated in Section 3. Section 4

elaborates on the methodology, including the Hybrid

Artificial Fish Swarm Optimization and Deep

Learning-Driven Malware Detection technique.

Section 5 describes the experimental setup and

dataset used for evaluation. In Section 6, we present

our results and conduct a comprehensive analysis,

comparing our approach with existing methods.

Section 7 discusses the implications of our findings

and suggests directions for future research. Finally,

Section 8 concludes the paper, summarizing the key

contributions and potential impacts on the field of

cybersecurity.

2. Literature review

Dhabal and Gupta [11] presented a new Android

malware detection structure utilizing hybrid DL

approaches. In the proposed structure, initially, the

preprocessing Step was utilized to have an enhanced

feature subset. For FS, this study has used gain data

and Pearson correlation coefficient methods where

the k-best feature was chosen through the gain

information method. For detecting malware,

optimized feature-based data was utilized to train the

presented hybrid of merged sparse auto-encoder

(MSAE) and bidirectional LSTM (BiLSTM) with the

softmax DL method. Kim and colleagues [12]

developed MAPAS, a malware detection system

designed to achieve greater accuracy and efficient

computational resource utilization. MAPAS

evaluates the behavioral patterns of harmful

applications by scrutinizing API call graphs with the

help of CNN. Rather than using a CNN-generated

model, MAPAS utilizes CNN to identify

characteristic attributes of malware’s API call graphs.

Fallah and Bidgoly [13] proposed a technique that

depends on LSTM for malware detection, which can

distinguish benign and malware samples and identify

the unseen and new families of malware. This is the

first time that a traffic dataset was devised as a series

of flows, and a sequential related DL method was

used. In [14], the author developed 8 Android

malware detection techniques relevant to DNN and

ML and inspected their robustness contrary to

adversarial assaults. For this purpose, the author

created a new version of malware using RF, which

Received: March 14, 2024. Revised: May 27, 2024. 692

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

would be misclassified as benevolent by prevailing

Android malware detection methods. The author

modeled 2 new attack approaches called multiple

policy attacks utilizing RL and single policy assault

for grey-box and white-box scenarios

correspondingly.

The study of [15] devised a DL structure utilizing

network traffic features for detecting Android

malware. Generally, ML techniques required data

preprocessing, but such preprocessing stages were

time-consuming. DL methods eliminate the necessity

of data preprocessing, and they execute well on

malware detection issues. With the use of the 1D-

CNN, the local feature from network flows was

extracted, and LSTM was used to identify the

successive relationships among the features. The

research of [16] modeled an Android malware

detection technique relevant to a hybrid DL method

that combined GRU and DBN. Initially, analyzing

the Android malware along with deriving static

features and dynamic behavioral features having

strong anti-obfuscation capability were extracted.

Then, construct a hybrid DL technique for detecting

Android malware. The work of [17] devised a new

TAN (Tree Augmented NB) related hybrid malware

detection system utilizing the conditional

dependency among related dynamic and static

features (system calls, API calls, and permissions),

which were needed for the functionality of the

application. The author trained three ridge

standardized logistic regression techniques in line

with the system calls, API calls, and permission of an

application and devised their output relation as a

TAN (Tree Augmented NB) to identify whether the

application was malicious or not.

The study of [18] proposes a hybrid approach for

detecting and classifying Android malware,

combining static and dynamic analysis methods. It

involves three phases: pre-processing, feature

selection, and classification. By utilizing features

from both types of analysis, the hybrid method

enhances accuracy in identifying and categorizing

malware compared to traditional approaches. In [19]

The authors introduce a six-step framework for

identifying IoT malware, addressing challenges in

detecting new and modified threats. It incorporates

exploratory data analysis, feature engineering, and

ensemble learning techniques like GhostNet and

Gated Recurrent Unit Ensemble (GNGRUE) trained

with the Jaya Algorithm (JA). Extensive testing

demonstrates the model’s superiority over existing

methods, with notable improvements in performance

metrics and reduced time complexity. This

framework offers cost-effective solutions for

detecting various malware strains in IoT

environments. The work in [20] addresses the

escalating threat of cybercrime and the inefficacy of

traditional malware detection methods. It introduces

a novel convolutional deep learning neural network

designed to accurately detect and classify malware,

surpassing existing models in performance.

The approach involves developing a baseline

model from scratch, enhancing it through increased

depth, and evaluating its effectiveness. The final

model achieves a remarkable accuracy rate of

99.183%, demonstrating its superiority in malware

detection.

Additionally, the model is tested on new malware

samples to validate its efficacy further. Finally, the

people of [21] investigated the use of swarm

optimization techniques to enhance Android malware

detection by identifying key features within API calls.

Three optimization methods - Ant Lion Optimization

(ALO), Cuckoo Search Optimization (CSO), and

Firefly Optimization (FO) - are employed with auto-

encoders to identify influential features. These

wrapper-based algorithms are evaluated with various

machine-learning classifiers. Additionally, a hybrid

Artificial Neuronal Classifier (ANC) is proposed to

improve classification accuracy. Experimental results

demonstrate an impressive 98.87% accuracy using

just seven features out of a hundred API call features,

indicating significant data optimization.

The literature review of the paper highlights

several existing approaches to Android malware

detection, each with its own set of limitations:

1. Limited Feature Selection: Many previous

studies on Android malware detection rely on a

narrow set of feature selections for identifying

malware. This limitation restricts the

comprehensiveness and effectiveness of the detection

process.

2. Resource Constraints for IoT Devices:

Traditional malware detection methods often cannot

be directly applied to IoT devices due to their limited

resources, such as memory, processing capabilities,

and computational complexity. This gap presents a

challenge in deploying effective malware detection in

IoT environments.

3. Dependency on Signature Libraries and

Human Analysis: Conventional approaches

predominantly depend on accumulating signature

libraries and require significant human intervention

by malware analysts, making it difficult to adapt

quickly to the rapidly evolving landscape of Android

malware.

4. Preprocessing Complexity: Machine learning

(ML) techniques for malware detection typically

require extensive data preprocessing, which can be

Received: March 14, 2024. Revised: May 27, 2024. 693

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

time-consuming and may introduce additional

complexity to the detection process.

5. Vulnerability to Adversarial Attacks: Some

studies have focused on the robustness of Android

malware detection systems against adversarial

attacks. However, many existing techniques could be

compromised, indicating a need for more secure and

resilient detection methods.

By addressing these drawbacks, the paper

positions the proposed HAFSO-DLMD technique as

an advanced solution capable of overcoming the

limitations of current approaches through innovative

feature selection, optimization for IoT resources,

reduced reliance on signature libraries, simplified

preprocessing, and enhanced security against

adversarial threats.

3. Problem statement

In the rapidly evolving landscape of cloud

computing and the Internet of Things (IoT), the

Android Operating System (AOS) has become

increasingly vulnerable to a wide array of

cyberattacks, including financial loss, privacy

breaches, unauthorized access, data integrity

compromises, and denial of service (DoS). Despite

the urgent need for effective cybersecurity measures,

existing malware detection solutions for Android

devices often struggle to keep pace with the

sophistication and volume of new threats, primarily

due to reliance on signature libraries and manual

analysis. This paper addresses the critical challenge

of enhancing malware detection accuracy and

efficiency for Android devices within cloud

environments. By introducing a novel Hybrid

Artificial Fish Swarm Optimization with Deep

Learning-Driven Malware Detection (HAFSO-

DLMD) technique, we aim to significantly improve

the precision of malware identification through deep

learning models, thereby strengthening Android’s

cybersecurity infrastructure against an ever-

expanding threat landscape.

4. Materials and methods

In this study, we have focused on the design of a

new HAFSO-DLMD technique for malware

detection in Android IoT devices. The primary

intention of the HAFSO-DLMD technique lies in the

proper identification of Android malware using the

DL model. The HAFSO-DLMD technique follows a

three-stage process: preprocessing, DSAE-based

Android malware detection, and HAFSO-based

hyperparameter tuning. Fig. 2 showcases the overall

flow of the HAFSO-DLMD approach.

Figure. 2 Overall flow of the HAFSO-DLMD approach

4.1 Preprocessing

As the classes.dex files in dissimilar APKs have

different sizes, and the DL model requires a fixed-

size input. This input needs to be transformed to a

fixed size [19]. Shorter sequences of dissimilar

lengths are combined by filling operation. However,

longer sequences (particularly above 10𝑀𝐵) cannot

be directly used to input. First, the preprocessing

technique reads the classes.dex file of APK as an

unknown vector, and later convert those vectors into

the fixed size (L) through resampling. The image

resampling technique is used for preprocessing the

original input; however, they focus primarily on the

classification of the malware family. The resampling

algorithm generally applied in the image processing

field includes Bicubic Interpolation, Nearest

Neighbor Interpolation (NNI), and Bilinear

Interpolation. Amongst them, NNI employs the gray

value of the pixel closer to the sampling point as the

target value; hence, the computation becomes simple.

Different from 2D images, we apply the same

concept for resampling the 1D sequence. Assume that

the source vector is 𝑥 = {𝑥0, … , 𝑥𝑛}, 𝑛 = 𝐿0, the NNI

resampling vector is 𝐴 = {𝑎0, … , 𝑎𝑛}, 𝑛 = 𝐿1 , then

the scaling factor 𝐾 = 𝐿0/𝐿1 and 𝑎𝑖 = 𝐾𝑥𝑖. There is

no actual corresponding value in the source vector.

However, 𝐾 cannot be an integer, so 𝐾 will be

rounded to ⌊𝐾⌋ to find the values of the nearest

neighbor. Meanwhile, the length of the original input

vector is generally more prominent than 𝐿, viz., the

majority of input needs to be down‐sampled. The

study applied Average‐pooling (AVGPOOL) in the

downsampling technique for comparison, as well as

the upsampling technique still being used in NNI.

Received: March 14, 2024. Revised: May 27, 2024. 694

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

4.2 Android malware detection using DSAE

model

In the presented HAFSO-DLMD technique, the

DSAE model is applied for malware detection

purposes. The autoencoder (AE) is a symmetrical

network architecture that encompasses input, hidden,

and output layers [20]. The AE tries to get the

approximate values of the input in the hidden layer

(HL) to regenerate the output. The neuron in the first

two layers completes the process of encoding, and the

last two layers complete the decoding process. Using

the backpropagation model, the key features of the

input dataset are learned in an unsupervised way by

minimalizing the reconstructed error. The encoder

and decoder methods are given in the following:

𝐻 = 𝑓1(𝑊1𝑋 + 𝑏1) (1)

𝑋′ = 𝑓2(𝑊2𝐻 + 𝑏2) (2)

From the expression, 𝑓1 and 𝑓2 denote the

activation function, 𝑋 and 𝑋′ Indicates the input and

output units, 𝐻 shows the hidden unit, 𝑊1 and 𝑊2

represent the weight matrix between the neurons and

𝑏1, 𝑎𝑛𝑑 𝑏2 indicate the bias of each layer. Even

though AE could regenerate the input dataset in the

output, the AE doesn’t successfully extract the useful

feature by copying the input layer to the HLs. The

DSAE is an addition of AE, which causes the AE to

learn sparse features by presenting the sparsity

constraints. In this work, the activation function

𝑓(𝑥) = (1 + 𝑒−𝑥)−1, such as the sigmoid activation

function, maps the output within the [0,1] interval.

Thus, if the output of HL is closer to 0, it is

considered an inhibitory state, and the construction of

DSAE can be accomplished once the sparsity

restriction is imposed on the AE. Mostly, the HL

node is in an inhibitory state. Such conditions might

enhance the efficiency of the conventional AE and

make them better.

Meanwhile, the output regenerates the input, the

MSE is exploited for constructing the loss function,

as demonstrated in Eq. (3), and the unsupervised

training on DSAE can be performed by minimalizing

the loss function.

𝐼(𝑤, 𝑏) =
1

2
||𝑋′ − 𝑋||2 (3)

To accomplish the sparsity constraints, the

average activation degree of 𝑖𝑡ℎ neurons in the HL

can be represented as

�̂� =
1

𝑛
∑ ℎ𝑖

𝑛
𝑗=1 (𝜒𝑗) (4)

From the expression, 𝑛 signifies the number of

neurons in the given problem. For making the

activation degree of most neurons in the HL tend to

0, a 𝜌 sparse parameter closer to 0 is presented, with

𝜌 = �̂�𝑖. In the meantime, a penalty factor is presented

based on relative entropy demonstrated in Eq. (5) to

discount the case with huge distinctions between �̂�𝑖

and 𝜌.

𝐾𝐿(�̂�𝑖||𝜌) = 𝜌 𝑙𝑜𝑔
𝜌

�̂�𝑖
+ (1 − 𝜌)𝑙𝑜𝑔

1−𝜌

1−�̂�𝑖
 (5)

The penalty factor increased with the distinction

between �̂�𝑖 and 𝑝, and the value is 0 if �̂�i = 𝜌. Then,

the overall loss function for the DSAE can be attained

by,

𝐽𝑠(𝑊, 𝑏) = 𝐽(𝑊, 𝑏) + 𝛽 ∑ 𝐾𝐿 (�̂�𝑖||𝜌)𝑚
𝑖=1 (6)

In Eq. (6), 𝑚 characterizes the number of neurons

in the HL, and 𝑊 and 𝑏 denote the network weight

coefficients attained by minimalizing the loss

function. And without feature loss, DSAE could

decrease the dimension of complex signals.

4.3 Hyperparameter tuning using the HAFSO

algorithm

To improve the detection rate of the DSAE model,

the HAFSO technique is used to adjust the

hyperparameter optimally. Technically, based on the

proposed algorithm, the AFSO is composed of 2

essential components, namely parameters and

functions connected with the behaviors of fish [21].

The parameter involves the visual distance of

individual fish (Visual), the crowd factor of fish (𝛿),
the size of fish movement (Step), and the distance

between the two fish signify the Xi & Xj(dij = ‖Xi −

Xj‖) , where 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) & 𝑌 = 𝑓(𝑥) . 𝑋

represents an individual condition in the fish

population, and Y specifies objective functions or

feeds focus value. Step and Visual play a key role

among the four parameters. The larger the value of

the parameter, the faster AFSO moves toward the

global optimum; meanwhile, fish moves large steps

at every iteration and examines the largest space near

them. Search, Follow, and Swarm are the three

behaviors of fish that are transformed into essential

functions in AFSO. Once the fish finds the region

using a high food concentration, it directly goes

towards that region.

When the fish discovers a lot of food, then others

will share it. During AFSO adaption, a higher

concentration of feed is compared to the current

Received: March 14, 2024. Revised: May 27, 2024. 695

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

situation. When there is another situation, then the

fish moves toward it and assures the existence of a

colony. They tend to swarm, apparently, to prevent

the risks. The Step and Visual values have a massive

effect on the fish’s behaviors. For example, when the

size of the Visual is narrow, then searching and

swarming behavior can be controlled. In the Visual,

The fish tends to find high feed focus. Then, the

swarming performance would be determined by

whether the fish moves towards it or not. The higher

the value of Step and Visual, the faster global optima

was obtained. This concept inspired researchers to

employ AFSO to resolve different optimization

issues. The mathematical expression of fish

swarming is shown below:

𝑋 = (𝑋1, 𝑋2, 𝑋3, … . , 𝑋𝑛) (7)

In Eq. (7), 𝑋 signifies the fish, and the visual

place is represented as follows:

𝑋𝑣 = (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3, … . , 𝑋𝑣𝑛) (8)

In Eq. (8), 𝑋𝑣 signifies the fish’s location in

Visual. The abovementioned tasks (7) has performed

as follows:

𝑋𝑣𝑖 = 𝑋𝑣𝑖 + 𝑅𝑎𝑛𝑑() × 𝑠𝑡𝑒𝑝 if 𝑓(𝑋𝑣𝑖) > 𝑓(𝑋𝑣) (9)

 𝑖 ∈ 1, 2, . . , 𝑛 In Eq. (9), 𝑋𝑣𝑖 denotes the fish

condition in Visual.

𝑋𝑛𝑒𝑥𝑡 = 𝑋 + [
(𝑋𝑣 − 𝑋)

(‖𝑋𝑣 − 𝑋‖)
] × 𝑆𝑡𝑒𝑝

 × 𝑅𝑎𝑛𝑑() (10)

In Eq. (10), 𝑋𝑛𝑒𝑥𝑡 signifies the subsequent fish in

Visual. To the abovementioned formula, Eq. (7)

shows the state of the fish, Eq. (8) represents the fish

location in Visual, and Eq. (9) specifies how Eqs. (7)

and (8) work together, and it demonstrates the

cowardly factors in AFSO. Eq. (10) shows the

subsequent fish is determined by the distance

between the value of Step and the two fishes.

In Eq. (9), the Search Function represents the

search behaviors. When 𝑋𝑖 < 𝑋𝑗 then (12) is

implemented. Next, 𝑋𝑖 and 𝑋𝑗 indicate the existing

and subsequent food concentrations.

𝑋𝑖
(𝑡+𝑖)

= 𝑋𝑖
𝑡 +

𝑋𝑖−𝑋𝑖
(𝑡)

(‖𝑋𝑖−𝑋𝑖
(𝑡)

‖)
× 𝑆𝑡𝑒𝑝 × 𝑅𝑎𝑛𝑑()

 (11)

Or else Carry out (9) by arbitrarily choosing the

state 𝑋𝑖 and inspect the outcomes using Eq. (11).

Once it does not meet even after try−number, 𝑡 (𝑡 <

Search Function), then it arbitrarily moves a step,

which makes them escape from the local extrema as,

𝑋𝑖
(𝑡+𝑖)

= 𝑋𝑖
𝑡 + 𝑉𝑖𝑠𝑢𝑎𝑙 × 𝑅𝑎𝑛𝑑() (12)

𝑋𝑖
(𝑡+𝑖)

= 𝑋𝑖
𝑡 + +[

𝑋𝑗−𝑋𝑖
(𝑡)

(‖𝑋𝑐−𝑋𝑐
(𝑡)

‖)
× 𝑆𝑡𝑒𝑝 × 𝑅𝑎𝑛𝑑() (13)

whereas Eq. (14) is called the 𝑆𝑤𝑎𝑟𝑚 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

where it represents swarming behaviours. Carry out

(13) once it satisfies all the conditions. The current

state of the point is 𝑋𝑖 (𝑑𝑖𝑗 < Visual), or else perform

the Search Function:

i. (nf/n) < 𝛿

ii. 𝑋𝑐 > 𝑋𝑖; 𝑋𝑐 signifies the central food

concentration

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + [
(𝑋𝑗 − 𝑋𝑖

𝑡)

(‖𝑋𝑗 − 𝑋𝑖
𝑡‖)

] × 𝑆𝑡𝑒𝑝

× 𝑅𝑎𝑛𝑑(); (14)

whereas 𝐹𝑜𝑙𝑙𝑜𝑤 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 represents the following

behavior. Carry out (14) if the whole conditions are

met, or else perform Search Function: The current

state of the point is 𝑋𝑖(𝑑𝑖𝑗 <Visual), (nf/n) < 𝛿 and

𝑋𝑗 > 𝑋𝑖. Swarm, Follow, and Search behaviors are

correspondingly symbolized in Eqs. (12)-(14). They

would be carried out afterward, and the related state

would be fulfilled. Then Eqs. (11) and (12) are

implemented. The process is continued until the

condition is met by repeating Eq. (9). The process is

repeated till the optimal point is obtained. If the

criteria are met, then the existing optima value based

on obtained outcomes would be upgraded. At last, if

the ending condition is met, the outcome is recorded.

The use of a chaotic concept designs the HAFSO

algorithm. In practice, the chaotic logistic system has

complex dynamic behavior and is more commonly

used. The chaotic system has the properties of being

sensitive to the initial condition. The disorganized

signal produced by the deterministic system has the

quality of genus‐randomness, and the initial value

and chaos mapping parameter can define the curve.

𝜆𝑖+1 = 𝜇 × 𝜆𝑖 × (1 − 𝜆𝑖) (15)

where 𝜆 ∈ [0,1], 𝑖 = 0,1,2, ⋯ , 𝜇 is within [1, 4]. The

study recommended that 𝜇 is closest to 4, 𝑎𝑛𝑑 𝜆 is

most relative to the average distribution within [0,1].

Received: March 14, 2024. Revised: May 27, 2024. 696

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

In contrast, the system is chaotic if the 𝜇 value is 4.

The initial population plays a crucial role in

intelligent optimization techniques that affect the

final solution quality and the convergence rate. Here,

Logistic chaotic mapping initializes the population of

the AFSO technique, which exploits solution space to

improve the efficiency of the algorithm.

The fitness selection is a critical factor in the

HAFSO algorithm. Solution encoding is used to

assess the aptitude (goodness) of the candidate

solution. Here, the accuracy value is the primary

condition applied for proposing a fitness function.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥 (𝑃) (16)

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (17)

From the expression, TP represents the true positive,

and FP denotes the false positive value.

5. Results and discussion

In this section, the results are assessed on the

Android malware dataset, comprising 16000 samples

with two classes as determined in Table 1.

The confusion matrices of the HAFSO-DLMD

method can be examined in Fig. 3. The outcomes

indicate that the HAFSO-DLMD system identified

the benign and malware samples accurately. For

instance, with 80% of the training set (TRS),

Table 1. Details of the dataset

Class No. of Instances

Benign 8000

Malware 8000

Total Number of Instances 16000

(a) (b) (c)

(d) (e) (f)

Figure. 3 Confusion matrices of TRS/TSS of 80:20, TRS/TSS of 70:30, and TRS/TSS of 60:40:

(a)Training (80%)-Confusion Matrix, (b)Testing Phase (20%)-Confusion Matrix, (c)Training Phase (70%)-Confusion

Matrix, (d)Testing Phase (30%)-Confusion Matrix, (e) Training Phase (60%)-Confusion Matrix, and (f) Testing Phase

(40%)-Confusion Matrix

Received: March 14, 2024. Revised: May 27, 2024. 697

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

Table 2. Classifier outcome of HAFSO-DLMD approach on 80:20 of TRS/TSS

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC

Training Phase (80%)

Benign 99.37 98.97 99.37 99.17 98.34

Malware 98.97 99.38 98.97 99.17 98.34

Average 99.17 99.17 99.17 99.17 98.34

Testing Phase (20%)

Benign 99.32 98.78 99.32 99.05 98.06

Malware 98.73 99.30 98.73 99.01 98.06

Average 99.03 99.04 99.03 99.03 98.06

Figure. 4 Average outcome of HAFSO-DLMD approach on 80:20 of TRS/TSS

Table 3. Classifier outcome of HAFSO-DLMD approach on 70:30 of TRS/TSS

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC

Training Phase (70%)

Benign 99.18 97.05 99.18 98.10 96.17

Malware 96.94 99.15 96.94 98.04 96.17

Average 98.06 98.10 98.06 98.07 96.17

Testing Phase (30%)

Benign 99.15 97.59 99.15 98.36 96.76

Malware 97.62 99.17 97.62 98.39 96.76

Average 98.39 98.38 98.39 98.37 96.76

the HAFSO-DLMD technique recognizes 6,331

benign samples and 6,363 malware samples.

Simultaneously, with 20% of the testing set (TSS),

the HAFSO-DLMD method identifies 1618 benign

samples and 1551 malware samples. Also, with 70%

of TRS, the HAFSO-DLMD system recognizes 5,590

benign samples and 5,394 malware samples. At last,

with 60% of TRS, the HAFSO-DLMD approach

recognizes 4748 benign samples and 4592 malware

samples. In Table 2 and Fig. 4, the overall classifier

outcomes of the HAFSO-DLMD method can be

examined under 80:20 of TRS/TSS. The results

indicate that the HAFSO-DLMD technique identifies

the benign and malware samples. For instance, with

80% of TRS, the HAFSO-DLMD technique achieves

an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.17%, 𝑝𝑟𝑒𝑐𝑛 of 99.17%,

𝑟𝑒𝑐𝑎𝑙 of 99.17%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.17%, and MCC of

98.34%. Meanwhile, with 20% of TSS, the HAFSO-

Received: March 14, 2024. Revised: May 27, 2024. 698

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

Figure. 5 Classifier outcome of HAFSO-DLMD approach on 70:30 of TRS/TSS

Table 4. Classifier outcome of HAFSO-DLMD approach on 60:40 of TRS/TSS

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC

Training Phase (60%)

Benign 98.92 95.80 98.92 97.33 94.63

Malware 95.67 98.88 95.67 97.25 94.63

Average 97.29 97.34 97.29 97.29 94.63

Testing Phase (40%)

Benign 98.81 96.08 98.81 97.43 94.82

Malware 95.97 98.78 95.97 97.35 94.82

Average 97.39 97.43 97.39 97.39 94.82

Figure. 6 Classifier outcome of HAFSO-DLMD approach on 80:20 of TRS/TSS

Received: March 14, 2024. Revised: May 27, 2024. 699

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

Figure. 7 TACY and VACY outcome of the HAFSO-DLMD approach

Figure. 8 TLOS and VLOS outcome of the HAFSO-DLMD approach

Received: March 14, 2024. Revised: May 27, 2024. 700

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

Figure. 9 Precision-recall outcome of the HAFSO-DLMD approach

DLMD method attains an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of

99.03%, 𝑝𝑟𝑒𝑐𝑛 of 99.04%, 𝑟𝑒𝑐𝑎𝑙 of 99.03%, 𝐹𝑠𝑐𝑜𝑟𝑒

of 99.03%, and MCC of 98.06%.

In Table 3 and Fig. 5, the overall classifier

outcomes of the HAFSO-DLMD technique can be

examined under 70:30 of TRS/TSS. The outcomes

indicate that the HAFSO-DLMD technique identifies

the benign and malware samples. For example, with

70% of TRS, the HAFSO-DLMD method achieves

an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 98.06%, 𝑝𝑟𝑒𝑐𝑛 of 98.10%,

𝑟𝑒𝑐𝑎𝑙 of 98.06%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.07%, and MCC of

96.17%. In the meantime, with 30% of TSS, the

HAFSO-DLMD approach gains an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙

of 98.39%, 𝑝𝑟𝑒𝑐𝑛 of 98.38%, 𝑟𝑒𝑐𝑎𝑙 of 98.39%,

𝐹𝑠𝑐𝑜𝑟𝑒 of 98.37%, and MCC of 96.76%.

In Fig. 6 and Table 4, the overall classifier

outcomes of the HAFSO-DLMD method can be

examined under 60:40 of TRS/TSS. The results

indicate that the HAFSO-DLMD technique identifies

the benign and malware samples. For example, with

70% of TRS, the HAFSO-DLMD method achieves

an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 97.29%, 𝑝𝑟𝑒𝑐𝑛 of 97.34%,

𝑟𝑒𝑐𝑎𝑙 of 97.29%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.29%, and MCC of

94.63%. In the meantime, with 30% of TSS, the

HAFSO-DLMD technique achieves an average

𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 97.39%, 𝑝𝑟𝑒𝑐𝑛 of 97.43%, 𝑟𝑒𝑐𝑎𝑙 of

97.39%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.39%, and MCC of 94.82%.

The TACY and VACY of the HAFSO-DLMD

technique are investigated on malware detection

performance in Fig. 7. The figure implied that the

HAFSO-DLMD approach has demonstrated superior

performance with increased values of TACY and

VACY. Notably, the HAFSO-DLMD model has the

highest TACY outcomes. The TLOS and VLOS of

the HAFSO-DLMD technique are tested on malware

detection performance in Fig. 8. The figure inferred

that the HAFSO-DLMD method has revealed

superior performance with the least values of TLOS

and VLOS. Visibly, the HAFSO-DLMD approach

has minimum VLOS outcomes.

A precise precision-recall examination of the

HAFSO-DLMD technique under the test database is

illustrated in Fig. 9. The figure shows the HAFSO-

DLMD algorithm has superior precision-recall values

under all classes.

Finally, enhanced performance of the HAFSO-

DLMD technique can be ensured by a comparison

study in Table 5 with other works [22]. The

experimental values highlighted that the HAFSO-

DLMD technique reaches effectual outcomes with

Received: March 14, 2024. Revised: May 27, 2024. 701

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

Table 5. Comparative analysis of the HAFSO-DLMD approach with other systems [22]

Methods 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆

HAFSO-DLMD 99.17 99.17 99.17 99.17

DexCNN 93.75 90.12 98.61 93.95

DexCRNN_GRU 95.90 95.56 95.76 95.89

DexCRNN_LSTM 94.16 92.46 96.18 94.29

DexCRNN_BiGRU 96.18 95.63 96.56 96.12

DexCRNN_BiLSTM 95.45 94.61 96.31 95.36

Table 6. Symbols definitions.

Symbol 𝐌𝐞𝐚𝐧𝐢𝐧𝐠

𝑓1 and 𝑓2 Activation functions

𝑛 Number of neurons

𝜌 Sparse parameter

𝐾𝐿 Penalty factor

Xv Fish’s location

𝑋𝑛𝑒𝑥𝑡 The subsequent fish in Visual

𝑋𝑖 The existing food concentrations

𝑋𝑗 The subsequent food concentrations

𝑋𝑐 The central food concentration

𝐽𝑠(𝑊, 𝑏) The loss function

𝑋𝑛𝑒𝑥𝑡 The subsequent fish in Visual

TSS Testing set

TRS Training set

maximum performance. It is noticed that the

HAFSO-DLMD technique accomplishes a higher

𝑎𝑐𝑐𝑢𝑦 of 99.17%, 𝑝𝑟𝑒𝑐𝑛 of 99.17%, 𝑟𝑒𝑐𝑎𝑙 of

99.17%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 99.17%. These results and

discussion guaranteed that the HAFSO-DLMD

technique results in maximum performance over

other models.

The HAFSO-DLMD method demonstrated

superior performance across all evaluated metrics,

achieving an accuracy, precision, recall, and F-score

of 99.17% in our testing phase. This is a significant

improvement over the methods compared, which

underscores the effectiveness of integrating Hybrid

Artificial Fish Swarm Optimization with Deep

Learning for malware detection. The specifics of

these comparisons are detailed in Section 5 of our

paper, including a comprehensive discussion of the

factors contributing to the observed performance

improvements. Our method’s novelty lies in the

unique integration of the HAFSO algorithm for

optimal hyperparameter tuning of the Deep Sparse

Autoencoder (DSAE) model, which is pivotal in

processing the complex patterns inherent in Android

malware. This synergy between advanced

optimization techniques and deep learning

significantly enhances the detection rate, setting a

new benchmark for malware detection in Android

devices. The proposed HAFSO-DLMD technique

addresses specific challenges that were not fully

resolved by existing approaches, including the

dynamic nature of malware evolution and the

complex landscape of Android applications. Our

method’s adaptability and precision in detecting

sophisticated malware strains represent a

considerable step forward in cybersecurity efforts.

Table 6 list the meaning of the symbols used

throughout the work.

6. Conclusion

In this study, we have introduced the HAFSO-

DLMD technique for efficient malware detection in

Android devices within cloud environments. The

HAFSO-DLMD technique, which harnesses a deep

learning model, has been meticulously designed to

accurately identify Android malware. This process

began with preprocessing the raw bytecodes from the

classes.dex file of Android applications. We applied

the DSAE model for the actual detection of malware,

with the HAFSO algorithm fine-tuning the

hyperparameters to achieve optimal performance.

Our rigorous experimental evaluation, conducted on

an Android APK dataset, demonstrated that the

HAFSO-DLMD technique achieved impressive

accuracy, precision, recall, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.17% in

the training phase (80% of the dataset) and accuracy,

precision, recall, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.03% in the testing

phase (20% of the dataset), outperforming other

recent approaches. These results solidify the

Received: March 14, 2024. Revised: May 27, 2024. 702

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

HAFSO-DLMD method as a significant

advancement in the domain of Android cybersecurity.

Future work could explore the development of

ensemble deep learning-based malware detection

techniques to further enhance the detection rate.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, A.A., I.K.I., A.T.A., M.A.A.,

I.A.H.; Methodology, A.A., I.K.I., A.T.A., M.A.A.,

I.A.H; Software, A.A., I.K.I., A.T.A., M.A.A., I.A.H;

Validation, A.A., I.K.I., A.T.A., M.A.A., I.A.H;

Formal analysis, A.T.A., M.A.A., I.A.H;

Investigation, A.A., I.K.I.,; Resources, A.A., I.K.I.,

A.T.A., M.A.A., I.A.H; Writing—original draft,

A.A., I.A.H; Writing—review & editing, A.A., I.K.I.,

A.T.A., M.A.A., I.A.H.; Visualization, A.A., I.K.I.,

A.T.A., M.A.A., I.A.H.; Supervision, I.K.I. All

authors have read and agreed to the published version

of the manuscript.

Acknowledgments

The authors would like to acknowledge the

support of Prince Sultan University for paying the

Article Processing Charges (APC) of this publication.

Special acknowledgment to Automated Systems and

Soft Computing Lab (ASSCL), Prince Sultan

University, Riyadh, Saudi Arabia. In addition, the

authors wish to acknowledge the editor and

anonymous reviewers for their insightful comments,

which have improved the quality of this publication.

References

[1] M. A. Omer, S. R. Zeebaree, M. A. Sadeeq, B.

W. Salim, S. X. Mohsin, Z. N. Rashid, and L. M.

Haji, “Efficiency of malware detection in

android system: A survey”, Asian Journal of

Research in Computer Science, Vol. 7, No. 4,

pp.59-69, 2021.

[2] J. Abawajy, A. Darem, and A. A. Alhashmi,

“Feature subset selection for malware detection

in smart IoT platforms”, Sensor, Vol. 21, No. 4,

p. 1374, 2021.

[3] G. D’Angelo, F. Palmieri, A. Robustelli, and A.

Castiglione, “Effective classification of android

malware families through dynamic features and

neural networks”, Connection Science, Vol. 33,

No. 3, pp. 786-801, 2021.

[4] J. Jung, J. Park, S.J. Cho, S. Han, M. Park, and

H.H. Cho, “Feature engineering and evaluation

for android malware detection scheme”, Journal

of Internet Technology, Vol. 22, No. 2, pp. 423-

440, 2021.

[5] A. Mahindru and A.L. Sangal, “MLDroid—

Framework for Android malware detection

using machine learning techniques”, Neural

Computing and Applications, Vol. 33, No. 10,

pp. 5183-5240, 2021.

[6] V. Sihag, M. Vardhan, P. Singh, G. Choudhary,

and S. Son, “De-LADY: Deep learning based

Android malware detection using dynamic

features”, J. Internet Serv. Inf. Secur., Vol. 11,

No. 2, pp. 34-45, 2021.

[7] H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song,

“SEDMDroid: An enhanced stacking ensemble

framework for Android malware detection”,

IEEE Transactions on Network Science and

Engineering, Vol. 8, No. 2, pp. 984-994, 2020.

[8] Q. D. Ngo, H. T. Nguyen, V. H. Le, and D. H.

Nguyen, “A survey of IoT malware and

detection methods based on static features”, ICT

Express, Vol. 6, No. 4, pp. 280-286, 2020.

[9] S. Baek, J. Jeon, B. Jeong, and Y. S. Jeong,

“Two-stage hybrid malware detection using

deep learning”, Human-centric Computing and

Information Sciences, Vol. 11, No. 27, 2021.

[10] R. Taheri, M. Shojafar, M. Alazab, and R.

Tafazolli, “FED-IIoT: A robust federated

malware detection architecture in industrial IoT”,

IEEE Transactions on Industrial Informatics,

Vol. 17, No. 12, pp. 8442-8452, 2020.

[11] G. Dhabal and G. Gupta, “Towards Design of a

Novel Android Malware Detection Framework

Using Hybrid Deep Learning Techniques”, in

Soft Computing for Security Applications,

Springer, Singapore, pp. 181-193, 2023.

[12] J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi,

“MAPAS: a practical deep learning-based

android malware detection system”,

International Journal of Information Security,

pp. 725–738, 2022, Doi:10.1007/s10207-022-

00579-6.

[13] S. Fallah and A. J. Bidgoly, “Android malware

detection using network traffic based on

sequential deep learning models”, Software:

Practice and Experience, Vol. 52, No. 9, pp.

1987-2004, 2022.

[14] H. Rathore, S.K. Sahay, P. Nikam, and M.

Sewak, “Robust android malware detection

system against adversarial attacks using q-

learning”, Information Systems Frontiers, Vol.

23, No. 4, pp. 867-882, 2021.

[15] M. Gohari, S. Hashemi, and L. Abdi, “Android

malware detection and classification based on

network traffic using deep learning”, In: Proc. of

the 2021 7th International Conference on Web

Received: March 14, 2024. Revised: May 27, 2024. 703

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.52

Research (ICWR), Tehran, Iran, pp. 71-77, 2021,

doi: 10.1109/ICWR51868.2021.9443025.

[16] T. Lu, Y. Du, L. Ouyang, Q. Chen, and X. Wang,

“Android Malware Detection Based on a Hybrid

Deep Learning Model”, Security and

Communication Networks, Vol. 2020, Article ID

8863617, 2020, doi: 10.1155/2020/8863617.

[17] R. Surendran, T. Thomas, and S. Emmanuel, “A

TAN based hybrid model for android malware

detection”, Journal of Information Security and

Applications, Vol. 54, p. 102483, 2020.

[18] F. Taher, O. AlFandi, M. Al-kfairy, H. Al

Hamadi, and S. Alrabaee, “DroidDetectMW: A

Hybrid Intelligent Model for Android Malware

Detection”, Applied Sciences, Vol. 13, No. 13, p.

7720, 2023, doi: 10.3390/app13137720.

[19] A. A. Almazroi and N. Ayub, “Enhancing Smart

IoT Malware Detection: A GhostNet-based

Hybrid Approach”, Systems, Vol. 11, No. 11, p.

547, 2023, doi: 10.3390/systems11110547.

[20] M. Omar, “New Approach to Malware

Detection Using Optimized Convolutional

Neural Network”, in *Machine Learning for

Cybersecurity*, SpringerBriefs in Computer

Science. Springer, Cham, 2022, doi:

10.1007/978-3-031-15893-3_2.

[21] K. S. Jhansi, P. R. K. Varma, and S. Chakravarty,

“Swarm Optimization and Machine Learning for

Android Malware Detection”, Comput. Mater.

Contin., Vol. 73, No. 3, pp. 6327-6345, 2022,

doi: 10.32604/cmc.2022.030878.

[22] Z. Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen,

“End-to-end malware detection for Android IoT

devices using deep learning”, Ad Hoc Networks,

Vol. 101, pp. 102098, 2020.

