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Abstract: In the evolving landscape of cloud computing and the Internet of Things (IoT), the Android Operating 

System (AOS) has emerged as a focal point for cybersecurity efforts, particularly due to its vulnerability to a wide 

array of cyberattacks. These threats, which include financial loss, privacy breaches, unauthorized access, data integrity 

compromises, and denial of services (DoS), have accentuated the need for advanced malware detection solutions. This 

study introduces a pioneering cloud-enabled Hybrid Artificial Fish Swarm Optimization with Deep Learning-Driven 

Malware Detection (HAFSO-DLMD) technique for Android devices, aiming to enhance the precision of malware 

identification through deep learning models. The HAFSO-DLMD technique preprocesses the bytecodes of Android 

applications’ classes.dex files for input into a Deep Sparse Autoencoder (DSAE) represent a significant innovation in 

the field. By employing the HAFSO algorithm for optimal hyperparameter tuning, we have demonstrated a substantial 

improvement in the detection rate of the DSAE model. Our comprehensive experimental evaluation on an Android 

APK dataset comprising 16,000 samples has underscored the HAFSO-DLMD technique’s superior performance, 

achieving accuracy, precision, recall, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.17%. These results significantly outperform other contemporary 

approaches, thereby establishing the HAFSO-DLMD method as a potent tool in bolstering Android’s cybersecurity 

infrastructure within cloud environments. 

Keywords: Cybersecurity, Cloud computing, Deep learning, Android malware, Internet of things, Fish swarm 

optimization algorithm. 

 

 

1. Introduction 

By leveraging massive datasets related to the 

malware and computational resources, cloud-based 

services offer enhanced response times and numerous 

advantages, including resource pooling, scalability, 

on-demand service, and improved network access. 

However, there are some issues as well in the case of 

cloud features, such as network unavailability, 

security issues, etc. Nowadays, the scope of the 

Internet of Things (IoT) is expanding with the advent 

of various applications like smart homes, healthcare, 

smart shopping, and intelligent agriculture [1]. Many 

gadgets in a shared IoT network depend on the 

Android platform because of hardware support, 
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flexibility, and robustness, which are vital for sensor 

interfaces. The distinct kinds of IoT gadgets offer 

various eminent services relevant to controlling, 

sensing, and monitoring tasks [2]. 

Android is the prominent platform for IoT 

gadgets, increasing the number of applications 

accessible in the market, specifically Android 

applications [3]. Opponents build different kinds of 

malicious applications. For instance, using open ports 

in which the attacker had control over the device of 

the user by opening one of the ports on the gadgets 

[4]. This method permits the attacker to access all of 

the device’s resources remotely without demanding 

permission from the owner. Hence, hackers use 

Android applications to break the security of the 

device, which permits them to access delicate data 

like contact information, photos, and the device’s 

location [5]. Fig. 1 represents the process involved in 

cloud-assisted malware detection. 

The current studies emphasize malware detection 

for Android devices [6]. Still, Android devices have 

been targeted by hackers because of the widespread 

use of the Android platform in IoT gadgets. 

Conventional malware recognition techniques 

depend mainly on accumulating signature libraries 

and human interference by malware analysts. Hence, 

it is tough to adapt to the explosive development of 

Android malware [7]. With the data accumulation 

and continuous enhancement of computational power, 

machine learning (ML) technology was broadly 

implemented in these three kinds of recognition 

approaches, offering another viewpoint for automatic 

and efficient Android malware detection. The ML-

related Android malware detection approaches 

primarily include the following four steps: First, data 

were constructed by gathering malicious and benign 

Android applications [8].  

Secondly, feature engineering can be executed to 

extract features to describe Android applications. 

Then, ML methods were trained to detect malware. 

At last, the trained model’s performance can be 

assessed by forecasting test samples [9]. Also, many 

previous studies modeled for Android malware 

recognition depend on the limited kinds of feature 

selection for detecting malware. Also, many 

prevailing malware detection approaches cannot be 

directly used for IoT gadgets because of their limited 

resources, such as cost, memory, processing abilities, 

and computation complexity [10]. Numerous 

methods are developed to select features of malware, 

for example, the information gain method, but they 

are relevant to limited types of features for malware 

detection. 

This study introduces a Hybrid Artificial Fish 

Swarm  Optimization  with  Deep  Learning - Driven 

 
Figure. 1 Method for Identifying Attacks in Android 

Applications using Cloud-Based Server Analysis 

 

 

Malware Detection (HAFSO-DLMD) technique for 

Android IoT devices. The goal of the HAFSO-

DLMD technique lies in the proper identification of 

Android malware using the DL model. The HAFSO-

DLMD technique initially preprocesses the actual 

bytecodes of the classes.dex file of Android 

application as an input to the DL model. In the 

presented HAFSO-DLMD technique, the deep sparse 

autoencoder (DSAE) model is applied for malware 

detection purposes. The work’s originality is 

demonstrated by the application of the HAFSO 

technique to optimize the hyperparameter and 

increase the DSAE model’s detection rate. The 

experimental result assessment of the HAFSO-
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DLMD technique takes place on the Android APK 

dataset.  

As we navigate through the challenges posed by 

the evolving cybersecurity landscape, this paper 

introduces an innovative approach that harnesses the 

synergy between Hybrid Artificial Fish Swarm 

Optimization (HAFSO) and Deep Learning-Driven 

Malware Detection (DLMD) to enhance malware 

detection capabilities within Android Operating 

Systems. The novelty of this research lies in several 

key areas: 

1. The adoption of a pioneering hybrid 

approach that integrates HAFSO with DLMD, 

targeting the precise identification of malware 

through advanced deep learning models, sets a new 

standard in the field of cybersecurity, specifically 

tailored for cloud environments and Android 

platforms. 

2. Utilization of the Deep Sparse 

Autoencoder (DSAE), a cornerstone of our 

methodology, enables the effective processing and 

analysis of Android applications bytecode. This 

advanced model is instrumental in discerning benign 

from malicious app patterns, significantly bolstering 

our detection capabilities. 

3. Optimization of hyperparameters through 

the HAFSO algorithm emerges as a critical 

component of our strategy, ensuring that our deep 

learning models operate at peak efficiency. This 

optimization process is pivotal in surpassing the 

detection accuracy of existing methods. 

4. An extensive experimental evaluation 

underscores the robustness of our approach. By 

rigorously testing the HAFSO-DLMD technique on a 

comprehensive dataset, we demonstrate its 

superiority in accuracy, precision, recall, and F-score 

compared to contemporary approaches. 

5. A detailed comparative analysis further 

positions the HAFSO-DLMD technique as a leading 

solution in malware detection. This comparative 

insight not only highlights the effectiveness of our 

method but also situates our contributions within the 

broader cybersecurity research landscape. 

6. The practical implications of our research 

extend to enhancing Android’s cybersecurity 

infrastructure, offering significant advancements for 

professionals, developers, and researchers dedicated 

to safeguarding against cyber threats. 

7. Future work and continued research are 

discussed, laying the groundwork for further 

advancements in malware detection technologies. 

Our suggestions for future research endeavors 

underscore our commitment to ongoing innovation in 

the cybersecurity domain. 

The subsequent sections of this paper delve into 

the methodology, experimental setup, results, and 

comparative analysis in detail, illustrating the 

comprehensive nature of our study and its 

contributions to the field of cybersecurity. 

The remainder of this paper is structured as follows: 

Section 2 presents a detailed review of related works, 

establishing the context for our research. The 

problem statement is stated in Section 3. Section 4 

elaborates on the methodology, including the Hybrid 

Artificial Fish Swarm Optimization and Deep 

Learning-Driven Malware Detection technique. 

Section 5 describes the experimental setup and 

dataset used for evaluation. In Section 6, we present 

our results and conduct a comprehensive analysis, 

comparing our approach with existing methods. 

Section 7 discusses the implications of our findings 

and suggests directions for future research. Finally, 

Section 8 concludes the paper, summarizing the key 

contributions and potential impacts on the field of 

cybersecurity. 

2. Literature review 

Dhabal and Gupta [11] presented a new Android 

malware detection structure utilizing hybrid DL 

approaches. In the proposed structure, initially, the 

preprocessing Step was utilized to have an enhanced 

feature subset. For FS, this study has used gain data 

and Pearson correlation coefficient methods where 

the k-best feature was chosen through the gain 

information method. For detecting malware, 

optimized feature-based data was utilized to train the 

presented hybrid of merged sparse auto-encoder 

(MSAE) and bidirectional LSTM (BiLSTM) with the 

softmax DL method. Kim and colleagues [12] 

developed MAPAS, a malware detection system 

designed to achieve greater accuracy and efficient 

computational resource utilization. MAPAS 

evaluates the behavioral patterns of harmful 

applications by scrutinizing API call graphs with the 

help of CNN. Rather than using a CNN-generated 

model, MAPAS utilizes CNN to identify 

characteristic attributes of malware’s API call graphs. 

Fallah and Bidgoly [13] proposed a technique that 

depends on LSTM for malware detection, which can 

distinguish benign and malware samples and identify 

the unseen and new families of malware. This is the 

first time that a traffic dataset was devised as a series 

of flows, and a sequential related DL method was 

used. In [14], the author developed 8 Android 

malware detection techniques relevant to DNN and 

ML and inspected their robustness contrary to 

adversarial assaults. For this purpose, the author 

created a new version of malware using RF, which 
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would be misclassified as benevolent by prevailing 

Android malware detection methods. The author 

modeled 2 new attack approaches called multiple 

policy attacks utilizing RL and single policy assault 

for grey-box and white-box scenarios 

correspondingly. 

The study of [15] devised a DL structure utilizing 

network traffic features for detecting Android 

malware. Generally, ML techniques required data 

preprocessing, but such preprocessing stages were 

time-consuming. DL methods eliminate the necessity 

of data preprocessing, and they execute well on 

malware detection issues. With the use of the 1D-

CNN, the local feature from network flows was 

extracted, and LSTM was used to identify the 

successive relationships among the features. The 

research of [16] modeled an Android malware 

detection technique relevant to a hybrid DL method 

that combined GRU and DBN. Initially, analyzing 

the Android malware along with deriving static 

features and dynamic behavioral features having 

strong anti-obfuscation capability were extracted. 

Then, construct a hybrid DL technique for detecting 

Android malware. The work of [17] devised a new 

TAN (Tree Augmented NB) related hybrid malware 

detection system utilizing the conditional 

dependency among related dynamic and static 

features (system calls, API calls, and permissions), 

which were needed for the functionality of the 

application. The author trained three ridge 

standardized logistic regression techniques in line 

with the system calls, API calls, and permission of an 

application and devised their output relation as a 

TAN (Tree Augmented NB) to identify whether the 

application was malicious or not. 

The study of [18] proposes a hybrid approach for 

detecting and classifying Android malware, 

combining static and dynamic analysis methods. It 

involves three phases: pre-processing, feature 

selection, and classification. By utilizing features 

from both types of analysis, the hybrid method 

enhances accuracy in identifying and categorizing 

malware compared to traditional approaches. In [19] 

The authors introduce a six-step framework for 

identifying IoT malware, addressing challenges in 

detecting new and modified threats. It incorporates 

exploratory data analysis, feature engineering, and 

ensemble learning techniques like GhostNet and 

Gated Recurrent Unit Ensemble (GNGRUE) trained 

with the Jaya Algorithm (JA). Extensive testing 

demonstrates the model’s superiority over existing 

methods, with notable improvements in performance 

metrics and reduced time complexity. This 

framework offers cost-effective solutions for 

detecting various malware strains in IoT 

environments. The work in [20] addresses the 

escalating threat of cybercrime and the inefficacy of 

traditional malware detection methods. It introduces 

a novel convolutional deep learning neural network 

designed to accurately detect and classify malware, 

surpassing existing models in performance. 

The approach involves developing a baseline 

model from scratch, enhancing it through increased 

depth, and evaluating its effectiveness. The final 

model achieves a remarkable accuracy rate of 

99.183%, demonstrating its superiority in malware 

detection. 

Additionally, the model is tested on new malware 

samples to validate its efficacy further. Finally, the 

people of [21] investigated the use of swarm 

optimization techniques to enhance Android malware 

detection by identifying key features within API calls. 

Three optimization methods - Ant Lion Optimization 

(ALO), Cuckoo Search Optimization (CSO), and 

Firefly Optimization (FO) - are employed with auto-

encoders to identify influential features. These 

wrapper-based algorithms are evaluated with various 

machine-learning classifiers. Additionally, a hybrid 

Artificial Neuronal Classifier (ANC) is proposed to 

improve classification accuracy. Experimental results 

demonstrate an impressive 98.87% accuracy using 

just seven features out of a hundred API call features, 

indicating significant data optimization. 

The literature review of the paper highlights 

several existing approaches to Android malware 

detection, each with its own set of limitations: 

1. Limited Feature Selection: Many previous 

studies on Android malware detection rely on a 

narrow set of feature selections for identifying 

malware. This limitation restricts the 

comprehensiveness and effectiveness of the detection 

process. 

2. Resource Constraints for IoT Devices: 

Traditional malware detection methods often cannot 

be directly applied to IoT devices due to their limited 

resources, such as memory, processing capabilities, 

and computational complexity. This gap presents a 

challenge in deploying effective malware detection in 

IoT environments. 

3. Dependency on Signature Libraries and 

Human Analysis: Conventional approaches 

predominantly depend on accumulating signature 

libraries and require significant human intervention 

by malware analysts, making it difficult to adapt 

quickly to the rapidly evolving landscape of Android 

malware. 

4. Preprocessing Complexity: Machine learning 

(ML) techniques for malware detection typically 

require extensive data preprocessing, which can be 
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time-consuming and may introduce additional 

complexity to the detection process. 

5. Vulnerability to Adversarial Attacks: Some 

studies have focused on the robustness of Android 

malware detection systems against adversarial 

attacks. However, many existing techniques could be 

compromised, indicating a need for more secure and 

resilient detection methods. 

By addressing these drawbacks, the paper 

positions the proposed HAFSO-DLMD technique as 

an advanced solution capable of overcoming the 

limitations of current approaches through innovative 

feature selection, optimization for IoT resources, 

reduced reliance on signature libraries, simplified 

preprocessing, and enhanced security against 

adversarial threats. 

3. Problem statement 

In the rapidly evolving landscape of cloud 

computing and the Internet of Things (IoT), the 

Android Operating System (AOS) has become 

increasingly vulnerable to a wide array of 

cyberattacks, including financial loss, privacy 

breaches, unauthorized access, data integrity 

compromises, and denial of service (DoS). Despite 

the urgent need for effective cybersecurity measures, 

existing malware detection solutions for Android 

devices often struggle to keep pace with the 

sophistication and volume of new threats, primarily 

due to reliance on signature libraries and manual 

analysis. This paper addresses the critical challenge 

of enhancing malware detection accuracy and 

efficiency for Android devices within cloud 

environments. By introducing a novel Hybrid 

Artificial Fish Swarm Optimization with Deep 

Learning-Driven Malware Detection (HAFSO-

DLMD) technique, we aim to significantly improve 

the precision of malware identification through deep 

learning models, thereby strengthening Android’s 

cybersecurity infrastructure against an ever-

expanding threat landscape. 

4. Materials and methods 

In this study, we have focused on the design of a 

new HAFSO-DLMD technique for malware 

detection in Android IoT devices. The primary 

intention of the HAFSO-DLMD technique lies in the 

proper identification of Android malware using the 

DL model. The HAFSO-DLMD technique follows a 

three-stage process: preprocessing, DSAE-based 

Android malware detection, and HAFSO-based 

hyperparameter tuning. Fig. 2 showcases the overall 

flow of the HAFSO-DLMD approach. 

 
Figure. 2 Overall flow of the HAFSO-DLMD approach 

4.1  Preprocessing 

As the classes.dex files in dissimilar APKs have 

different sizes, and the DL model requires a fixed-

size input. This input needs to be transformed to a 

fixed size [19]. Shorter sequences of dissimilar 

lengths are combined by filling operation. However, 

longer sequences (particularly above 10𝑀𝐵) cannot 

be directly used to input. First, the preprocessing 

technique reads the classes.dex file of APK as an 

unknown vector, and later convert those vectors into 

the fixed size (L) through resampling. The image 

resampling technique is used for preprocessing the 

original input; however, they focus primarily on the 

classification of the malware family. The resampling 

algorithm generally applied in the image processing 

field includes Bicubic Interpolation, Nearest 

Neighbor Interpolation (NNI), and Bilinear 

Interpolation. Amongst them, NNI employs the gray 

value of the pixel closer to the sampling point as the 

target value; hence, the computation becomes simple. 

Different from 2D images, we apply the same 

concept for resampling the 1D sequence. Assume that 

the source vector is 𝑥 = {𝑥0, … , 𝑥𝑛}, 𝑛 = 𝐿0, the NNI 

resampling vector is 𝐴 = {𝑎0, … , 𝑎𝑛}, 𝑛 = 𝐿1 , then 

the scaling factor 𝐾 = 𝐿0/𝐿1 and 𝑎𝑖 = 𝐾𝑥𝑖. There is 

no actual corresponding value in the source vector. 

However, 𝐾  cannot be an integer, so 𝐾  will be 

rounded to ⌊𝐾⌋  to find the values of the nearest 

neighbor. Meanwhile, the length of the original input 

vector is generally more prominent than 𝐿, viz., the 

majority of input needs to be down‐sampled. The 

study applied Average‐pooling (AVGPOOL) in the 

downsampling technique for comparison, as well as 

the upsampling technique still being used in NNI. 
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4.2  Android malware detection using DSAE 

model 

In the presented HAFSO-DLMD technique, the 

DSAE model is applied for malware detection 

purposes. The autoencoder (AE) is a symmetrical 

network architecture that encompasses input, hidden, 

and output layers [20]. The AE tries to get the 

approximate values of the input in the hidden layer 

(HL) to regenerate the output. The neuron in the first 

two layers completes the process of encoding, and the 

last two layers complete the decoding process. Using 

the backpropagation model, the key features of the 

input dataset are learned in an unsupervised way by 

minimalizing the reconstructed error. The encoder 

and decoder methods are given in the following: 

 

𝐻 = 𝑓1(𝑊1𝑋 + 𝑏1)  (1) 

 

𝑋′ = 𝑓2(𝑊2𝐻 + 𝑏2)  (2) 

 

From the expression, 𝑓1  and 𝑓2  denote the 

activation function, 𝑋 and 𝑋′ Indicates the input and 

output units, 𝐻  shows the hidden unit, 𝑊1  and 𝑊2 

represent the weight matrix between the neurons and 

𝑏1,  𝑎𝑛𝑑 𝑏2  indicate the bias of each layer. Even 

though AE could regenerate the input dataset in the 

output, the AE doesn’t successfully extract the useful 

feature by copying the input layer to the HLs. The 

DSAE is an addition of AE, which causes the AE to 

learn sparse features by presenting the sparsity 

constraints. In this work, the activation function 

𝑓(𝑥) = (1 + 𝑒−𝑥)−1, such as the sigmoid activation 

function, maps the output within the [0,1] interval. 

Thus, if the output of HL is closer to 0, it is 

considered an inhibitory state, and the construction of 

DSAE can be accomplished once the sparsity 

restriction is imposed on the AE. Mostly, the HL 

node is in an inhibitory state. Such conditions might 

enhance the efficiency of the conventional AE and 

make them better. 

Meanwhile, the output regenerates the input, the 

MSE is exploited for constructing the loss function, 

as demonstrated in Eq. (3), and the unsupervised 

training on DSAE can be performed by minimalizing 

the loss function. 

 

𝐼(𝑤, 𝑏) =
1

2
||𝑋′ − 𝑋||2  (3) 

 

To accomplish the sparsity constraints, the 

average activation degree of 𝑖𝑡ℎ  neurons in the HL 

can be represented as 

 

�̂� =
1

𝑛
∑ ℎ𝑖

𝑛
𝑗=1 (𝜒𝑗)  (4) 

 

From the expression, 𝑛 signifies the number of 

neurons in the given problem. For making the 

activation degree of most neurons in the HL tend to 

0, a 𝜌 sparse parameter closer to 0 is presented, with 

𝜌 = �̂�𝑖. In the meantime, a penalty factor is presented 

based on relative entropy demonstrated in Eq. (5) to 

discount the case with huge distinctions between �̂�𝑖 

and 𝜌. 
 

𝐾𝐿(�̂�𝑖||𝜌) = 𝜌 𝑙𝑜𝑔 
𝜌

�̂�𝑖
+ (1 − 𝜌)𝑙𝑜𝑔 

1−𝜌

1−�̂�𝑖
    (5) 

 

The penalty factor increased with the distinction 

between �̂�𝑖 and 𝑝, and the value is 0 if �̂�i = 𝜌. Then, 

the overall loss function for the DSAE can be attained 

by, 

 

𝐽𝑠(𝑊, 𝑏) = 𝐽(𝑊, 𝑏) + 𝛽 ∑ 𝐾𝐿 (�̂�𝑖||𝜌)𝑚
𝑖=1     (6) 

 

In Eq. (6), 𝑚 characterizes the number of neurons 

in the HL, and 𝑊 and 𝑏 denote the network weight 

coefficients attained by minimalizing the loss 

function. And without feature loss, DSAE could 

decrease the dimension of complex signals. 

4.3 Hyperparameter tuning using the HAFSO 

algorithm 

To improve the detection rate of the DSAE model, 

the HAFSO technique is used to adjust the 

hyperparameter optimally. Technically, based on the 

proposed algorithm, the AFSO is composed of 2 

essential components, namely parameters and 

functions connected with the behaviors of fish [21]. 

The parameter involves the visual distance of 

individual fish (Visual), the crowd factor of fish (𝛿), 
the size of fish movement (Step), and the distance 

between the two fish signify the Xi & Xj(dij = ‖Xi −

Xj‖) , where 𝑋 = (𝑋1, 𝑋2, … ,  𝑋𝑛)  & 𝑌 = 𝑓(𝑥) . 𝑋 

represents an individual condition in the fish 

population, and Y  specifies objective functions or 

feeds focus value. Step and Visual play a key role 

among the four parameters. The larger the value of 

the parameter, the faster AFSO moves toward the 

global optimum; meanwhile, fish moves large steps 

at every iteration and examines the largest space near 

them. Search, Follow, and Swarm are the three 

behaviors of fish that are transformed into essential 

functions in AFSO. Once the fish finds the region 

using a high food concentration, it directly goes 

towards that region.  

When the fish discovers a lot of food, then others 

will share it. During AFSO adaption, a higher 

concentration of feed is compared to the current 
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situation. When there is another situation, then the 

fish moves toward it and assures the existence of a 

colony. They tend to swarm, apparently, to prevent 

the risks. The Step and Visual values have a massive 

effect on the fish’s behaviors. For example, when the 

size of the Visual is narrow, then searching and 

swarming behavior can be controlled. In the Visual, 

The fish tends to find high feed focus. Then, the 

swarming performance would be determined by 

whether the fish moves towards it or not. The higher 

the value of Step and Visual, the faster global optima 

was obtained. This concept inspired researchers to 

employ AFSO to resolve different optimization 

issues. The mathematical expression of fish 

swarming is shown below:  

 

𝑋 = (𝑋1, 𝑋2, 𝑋3, … . , 𝑋𝑛)  (7) 

 

In Eq. (7), 𝑋  signifies the fish, and the visual 

place is represented as follows:  

 

𝑋𝑣 = (𝑋𝑣1, 𝑋𝑣2, 𝑋𝑣3, … . , 𝑋𝑣𝑛) (8) 

 

In Eq. (8), 𝑋𝑣  signifies the fish’s location in 

Visual. The abovementioned tasks (7) has performed 

as follows: 

 

𝑋𝑣𝑖 = 𝑋𝑣𝑖 + 𝑅𝑎𝑛𝑑( ) × 𝑠𝑡𝑒𝑝  if 𝑓(𝑋𝑣𝑖) > 𝑓(𝑋𝑣) (9) 

 

 𝑖 ∈ 1, 2, . . , 𝑛   In Eq. (9), 𝑋𝑣𝑖  denotes the fish 

condition in Visual. 

 

𝑋𝑛𝑒𝑥𝑡 = 𝑋 + [
(𝑋𝑣 − 𝑋)

(‖𝑋𝑣 − 𝑋‖)
] × 𝑆𝑡𝑒𝑝  

   ×  𝑅𝑎𝑛𝑑()   (10) 

 

In Eq. (10), 𝑋𝑛𝑒𝑥𝑡 signifies the subsequent fish in 

Visual. To the abovementioned formula, Eq. (7) 

shows the state of the fish, Eq. (8) represents the fish 

location in Visual, and Eq. (9) specifies how Eqs. (7) 

and (8) work together, and it demonstrates the 

cowardly factors in AFSO. Eq. (10) shows the 

subsequent fish is determined by the distance 

between the value of Step and the two fishes. 

In Eq. (9), the Search Function represents the 

search behaviors. When 𝑋𝑖 < 𝑋𝑗  then (12) is 

implemented. Next, 𝑋𝑖  and 𝑋𝑗  indicate the existing 

and subsequent food concentrations. 

 

𝑋𝑖
(𝑡+𝑖)

= 𝑋𝑖
𝑡 +

𝑋𝑖−𝑋𝑖
(𝑡)

(‖𝑋𝑖−𝑋𝑖
(𝑡)

‖)
× 𝑆𝑡𝑒𝑝 ×  𝑅𝑎𝑛𝑑( )

       (11) 

 

Or else Carry out (9) by arbitrarily choosing the 

state 𝑋𝑖  and inspect the outcomes using Eq. (11). 

Once it does not meet even after try−number, 𝑡 (𝑡 < 

Search Function), then it arbitrarily moves a step, 

which makes them escape from the local extrema as, 

 

𝑋𝑖
(𝑡+𝑖)

= 𝑋𝑖
𝑡 + 𝑉𝑖𝑠𝑢𝑎𝑙 × 𝑅𝑎𝑛𝑑()         (12) 

 

𝑋𝑖
(𝑡+𝑖)

= 𝑋𝑖
𝑡 + +[

𝑋𝑗−𝑋𝑖
(𝑡)

(‖𝑋𝑐−𝑋𝑐
(𝑡)

‖)
× 𝑆𝑡𝑒𝑝 × 𝑅𝑎𝑛𝑑( ) (13) 

 

whereas Eq. (14) is called the 𝑆𝑤𝑎𝑟𝑚 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

where it represents swarming behaviours. Carry out 

(13) once it satisfies all the conditions. The current 

state of the point is 𝑋𝑖 (𝑑𝑖𝑗 < Visual), or else perform 

the Search Function: 

 

i. (nf/n) < 𝛿 

ii. 𝑋𝑐 > 𝑋𝑖; 𝑋𝑐 signifies the central food 

concentration 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + [
(𝑋𝑗 − 𝑋𝑖

𝑡)

(‖𝑋𝑗 − 𝑋𝑖
𝑡‖)

] × 𝑆𝑡𝑒𝑝 

× 𝑅𝑎𝑛𝑑();                                   (14) 

 

whereas 𝐹𝑜𝑙𝑙𝑜𝑤 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 represents the following 

behavior. Carry out (14) if the whole conditions are 

met, or else perform Search Function: The current 

state of the point is 𝑋𝑖(𝑑𝑖𝑗 <Visual), (nf/n) < 𝛿 and 

𝑋𝑗 >  𝑋𝑖. Swarm, Follow, and Search behaviors are 

correspondingly symbolized in Eqs. (12)-(14). They 

would be carried out afterward, and the related state 

would be fulfilled. Then Eqs. (11) and (12) are 

implemented. The process is continued until the 

condition is met by repeating Eq. (9). The process is 

repeated till the optimal point is obtained. If the 

criteria are met, then the existing optima value based 

on obtained outcomes would be upgraded. At last, if 

the ending condition is met, the outcome is recorded. 

The use of a chaotic concept designs the HAFSO 

algorithm. In practice, the chaotic logistic system has 

complex dynamic behavior and is more commonly 

used. The chaotic system has the properties of being 

sensitive to the initial condition. The disorganized 

signal produced by the deterministic system has the 

quality of genus‐randomness, and the initial value 

and chaos mapping parameter can define the curve. 

 

𝜆𝑖+1 = 𝜇 × 𝜆𝑖 × (1 − 𝜆𝑖)                 (15) 

 

where 𝜆 ∈ [0,1], 𝑖 = 0,1,2, ⋯ , 𝜇 is within [1, 4]. The 

study recommended that 𝜇 is closest to 4, 𝑎𝑛𝑑 𝜆 is 

most relative to the average distribution within [0,1]. 
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In contrast, the system is chaotic if the 𝜇 value is 4. 

The initial population plays a crucial role in 

intelligent optimization techniques that affect the 

final solution quality and the convergence rate. Here, 

Logistic chaotic mapping initializes the population of 

the AFSO technique, which exploits solution space to 

improve the efficiency of the algorithm. 

The fitness selection is a critical factor in the 

HAFSO algorithm. Solution encoding is used to 

assess the aptitude (goodness) of the candidate 

solution. Here, the accuracy value is the primary 

condition applied for proposing a fitness function.  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑚𝑎𝑥 (𝑃)                    (16) 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (17) 

 

From the expression, TP represents the true positive, 

and FP denotes the false positive value. 

5. Results and discussion 

In this section, the results are assessed on the 

Android malware dataset, comprising 16000 samples 

with two classes as determined in Table 1. 

The confusion matrices of the HAFSO-DLMD 

method can be examined in Fig. 3. The outcomes 

indicate that the HAFSO-DLMD system identified 

the benign and malware samples accurately. For 

instance, with 80% of the training set (TRS), 

 
Table 1. Details of the dataset 

Class No. of Instances 

Benign 8000 

Malware 8000 

Total Number of Instances 16000 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure. 3 Confusion matrices of TRS/TSS of 80:20, TRS/TSS of 70:30, and TRS/TSS of 60:40: 

(a)Training (80%)-Confusion Matrix, (b)Testing Phase (20%)-Confusion Matrix, (c)Training Phase (70%)-Confusion 

Matrix, (d)Testing Phase (30%)-Confusion Matrix, (e) Training Phase (60%)-Confusion Matrix, and (f) Testing Phase 

(40%)-Confusion Matrix 
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Table 2. Classifier outcome of HAFSO-DLMD approach on 80:20 of TRS/TSS 

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

Training Phase (80%) 

Benign 99.37 98.97 99.37 99.17 98.34 

Malware 98.97 99.38 98.97 99.17 98.34 

Average 99.17 99.17 99.17 99.17 98.34 

Testing Phase (20%) 

Benign 99.32 98.78 99.32 99.05 98.06 

Malware 98.73 99.30 98.73 99.01 98.06 

Average 99.03 99.04 99.03 99.03 98.06 

 

 

 
Figure. 4 Average outcome of HAFSO-DLMD approach on 80:20 of TRS/TSS 

 

 

Table 3. Classifier outcome of HAFSO-DLMD approach on 70:30 of TRS/TSS 

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

Training Phase (70%) 

Benign 99.18 97.05 99.18 98.10 96.17 

Malware 96.94 99.15 96.94 98.04 96.17 

Average 98.06 98.10 98.06 98.07 96.17 

Testing Phase (30%) 

Benign 99.15 97.59 99.15 98.36 96.76 

Malware 97.62 99.17 97.62 98.39 96.76 

Average 98.39 98.38 98.39 98.37 96.76 

 

 

 

the HAFSO-DLMD technique recognizes 6,331 

benign samples and 6,363 malware samples. 

Simultaneously, with 20% of the testing set (TSS), 

the HAFSO-DLMD method identifies 1618 benign 

samples and 1551 malware samples. Also, with 70% 

of TRS, the HAFSO-DLMD system recognizes 5,590 

benign samples and 5,394 malware samples. At last, 

with 60% of TRS, the HAFSO-DLMD approach 

recognizes 4748 benign samples and 4592 malware 

samples. In Table 2 and Fig. 4, the overall classifier 

outcomes of the HAFSO-DLMD method can be 

examined under 80:20 of TRS/TSS. The results 

indicate that the HAFSO-DLMD technique identifies 

the benign and malware samples. For instance, with 

80% of TRS, the HAFSO-DLMD technique achieves 

an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 99.17%, 𝑝𝑟𝑒𝑐𝑛  of 99.17%, 

𝑟𝑒𝑐𝑎𝑙  of 99.17%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.17%, and MCC of 

98.34%. Meanwhile, with 20% of TSS, the HAFSO- 
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Figure. 5 Classifier outcome of HAFSO-DLMD approach on 70:30 of TRS/TSS 

 

 
Table 4. Classifier outcome of HAFSO-DLMD approach on 60:40 of TRS/TSS 

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

Training Phase (60%) 

Benign 98.92 95.80 98.92 97.33 94.63 

Malware 95.67 98.88 95.67 97.25 94.63 

Average 97.29 97.34 97.29 97.29 94.63 

Testing Phase (40%) 

Benign 98.81 96.08 98.81 97.43 94.82 

Malware 95.97 98.78 95.97 97.35 94.82 

Average 97.39 97.43 97.39 97.39 94.82 

 

 

 
Figure. 6 Classifier outcome of HAFSO-DLMD approach on 80:20 of TRS/TSS 
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Figure. 7 TACY and VACY outcome of the HAFSO-DLMD approach 

 

 

 
Figure. 8 TLOS and VLOS outcome of the HAFSO-DLMD approach 



Received:  March 14, 2024.     Revised: May 27, 2024.                                                                                                    700 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.52 

 

Figure. 9 Precision-recall outcome of the HAFSO-DLMD approach 

 

DLMD method attains an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 

99.03%, 𝑝𝑟𝑒𝑐𝑛 of 99.04%, 𝑟𝑒𝑐𝑎𝑙  of 99.03%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 99.03%, and MCC of 98.06%. 

In Table 3 and Fig. 5, the overall classifier 

outcomes of the HAFSO-DLMD technique can be 

examined under 70:30 of TRS/TSS. The outcomes 

indicate that the HAFSO-DLMD technique identifies 

the benign and malware samples. For example, with 

70% of TRS, the HAFSO-DLMD method achieves 

an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 98.06%, 𝑝𝑟𝑒𝑐𝑛  of 98.10%, 

𝑟𝑒𝑐𝑎𝑙  of 98.06%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 98.07%, and MCC of 

96.17%. In the meantime, with 30% of TSS, the 

HAFSO-DLMD approach gains an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 

of 98.39%, 𝑝𝑟𝑒𝑐𝑛  of 98.38%, 𝑟𝑒𝑐𝑎𝑙  of 98.39%, 

𝐹𝑠𝑐𝑜𝑟𝑒 of 98.37%, and MCC of 96.76%. 

In Fig. 6 and Table 4, the overall classifier 

outcomes of the HAFSO-DLMD method can be 

examined under 60:40 of TRS/TSS. The results 

indicate that the HAFSO-DLMD technique identifies 

the benign and malware samples. For example, with 

70% of TRS, the HAFSO-DLMD method achieves 

an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 97.29%, 𝑝𝑟𝑒𝑐𝑛  of 97.34%, 

𝑟𝑒𝑐𝑎𝑙  of 97.29%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 97.29%, and MCC of 

94.63%. In the meantime, with 30% of TSS, the 

HAFSO-DLMD technique achieves an average 

𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 97.39%, 𝑝𝑟𝑒𝑐𝑛  of 97.43%, 𝑟𝑒𝑐𝑎𝑙  of 

97.39%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.39%, and MCC of 94.82%. 

The TACY and VACY of the HAFSO-DLMD 

technique are investigated on malware detection 

performance in Fig. 7. The figure implied that the 

HAFSO-DLMD approach has demonstrated superior 

performance with increased values of TACY and 

VACY. Notably, the HAFSO-DLMD model has the 

highest TACY outcomes. The TLOS and VLOS of 

the HAFSO-DLMD technique are tested on malware 

detection performance in Fig. 8. The figure inferred 

that the HAFSO-DLMD method has revealed 

superior performance with the least values of TLOS 

and VLOS. Visibly, the HAFSO-DLMD approach 

has minimum   VLOS   outcomes. 

A precise precision-recall examination of the 

HAFSO-DLMD technique under the test database is 

illustrated in Fig. 9. The figure shows the HAFSO-

DLMD algorithm has superior precision-recall values 

under all classes. 

Finally, enhanced performance of the HAFSO-

DLMD technique can be ensured by a comparison 

study in Table 5 with other works [22]. The 

experimental values highlighted that the HAFSO-

DLMD  technique  reaches  effectual  outcomes  with  
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Table 5. Comparative analysis of the HAFSO-DLMD approach with other systems [22] 

Methods 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

HAFSO-DLMD 99.17 99.17 99.17 99.17 

DexCNN 93.75 90.12 98.61 93.95 

DexCRNN_GRU 95.90 95.56 95.76 95.89 

DexCRNN_LSTM 94.16 92.46 96.18 94.29 

DexCRNN_BiGRU 96.18 95.63 96.56 96.12 

DexCRNN_BiLSTM 95.45 94.61 96.31 95.36 

 

 
Table 6. Symbols definitions. 

Symbol 𝐌𝐞𝐚𝐧𝐢𝐧𝐠 

𝑓1 and 𝑓2 Activation functions 

𝑛 Number of neurons 

𝜌 Sparse parameter 

𝐾𝐿 Penalty factor 

Xv Fish’s location 

𝑋𝑛𝑒𝑥𝑡  The subsequent fish in Visual 

𝑋𝑖 The existing food concentrations 

𝑋𝑗 The subsequent food concentrations 

𝑋𝑐 The central food concentration 

𝐽𝑠(𝑊, 𝑏) The loss function 

𝑋𝑛𝑒𝑥𝑡  The subsequent fish in Visual 

TSS Testing set 

TRS Training set 

 

 

maximum performance. It is noticed that the 

HAFSO-DLMD technique accomplishes a higher 

𝑎𝑐𝑐𝑢𝑦  of 99.17%, 𝑝𝑟𝑒𝑐𝑛 of 99.17%, 𝑟𝑒𝑐𝑎𝑙  of 

99.17%, and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 99.17%. These results and 

discussion guaranteed that the HAFSO-DLMD 

technique results in maximum performance over 

other models. 

The HAFSO-DLMD method demonstrated 

superior performance across all evaluated metrics, 

achieving an accuracy, precision, recall, and F-score 

of 99.17% in our testing phase. This is a significant 

improvement over the methods compared, which 

underscores the effectiveness of integrating Hybrid 

Artificial Fish Swarm Optimization with Deep 

Learning for malware detection. The specifics of 

these comparisons are detailed in Section 5 of our 

paper, including a comprehensive discussion of the 

factors contributing to the observed performance 

improvements. Our method’s novelty lies in the 

unique integration of the HAFSO algorithm for 

optimal hyperparameter tuning of the Deep Sparse 

Autoencoder (DSAE) model, which is pivotal in 

processing the complex patterns inherent in Android 

malware. This synergy between advanced 

optimization techniques and deep learning 

significantly enhances the detection rate, setting a 

new benchmark for malware detection in Android 

devices. The proposed HAFSO-DLMD technique 

addresses specific challenges that were not fully 

resolved by existing approaches, including the 

dynamic nature of malware evolution and the 

complex landscape of Android applications. Our 

method’s adaptability and precision in detecting 

sophisticated malware strains represent a 

considerable step forward in cybersecurity efforts. 

Table 6 list the meaning of the symbols used 

throughout the work. 

6. Conclusion 

In this study, we have introduced the HAFSO-

DLMD technique for efficient malware detection in 

Android devices within cloud environments. The 

HAFSO-DLMD technique, which harnesses a deep 

learning model, has been meticulously designed to 

accurately identify Android malware. This process 

began with preprocessing the raw bytecodes from the 

classes.dex file of Android applications. We applied 

the DSAE model for the actual detection of malware, 

with the HAFSO algorithm fine-tuning the 

hyperparameters to achieve optimal performance. 

Our rigorous experimental evaluation, conducted on 

an Android APK dataset, demonstrated that the 

HAFSO-DLMD technique achieved impressive 

accuracy, precision, recall, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.17% in 

the training phase (80% of the dataset) and accuracy, 

precision, recall, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.03% in the testing 

phase (20% of the dataset), outperforming other 

recent approaches. These results solidify the 
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HAFSO-DLMD method as a significant 

advancement in the domain of Android cybersecurity. 

Future work could explore the development of 

ensemble deep learning-based malware detection 

techniques to further enhance the detection rate. 
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