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Abstract: Anomaly detection from a video surveillance camera is a time-critical application that combines the 

capabilities of computer vision-based object detection algorithms to monitor and analyze various anomalous activities 

in Industry 4.0 scenarios. An intelligent video surveillance system for automated monitoring and analysis of video 

streams without human supervision is paramount in industrial scenarios. Nevertheless, the detection of anomalous 

objects is often hindered by the scarcity of data and privacy restrictions inherent in the centralized storage and 

processing of surveillance videos.  To overcome these shortcomings, Federated Learning (FL) has emerged as a 

promising solution for the privacy-preserved processing of decentralized data. Despite significant advancements in 

computer vision, accurately identifying surveillance anomalies through object detection within resource-constrained 

edge networks remains a formidable challenge for FL-assisted anomaly detection. This difficulty arises from the 

limited computational capabilities and constrained resources inherent to edge devices, which impedes the performance 

and accuracy of anomaly detection algorithms relying on the object recognition method. Thus, this work proposes a 

hierarchical FL-assisted surveillance anomaly detection by integrating the YOLOv8n and Flownet models for motion-

aware, accurate anomalous object detection. To design time-efficient anomaly detection for time-critical applications, 

the proposed approach applies the hierarchical FL that comprises multiple edge aggregators instead of cloud 

aggregators. The primary objective of adopting the hierarchical FL is to alleviate the communication costs associated 

with object detection tasks. By distributing the aggregation process across multiple edge nodes, the proposed approach 

enhances the efficiency of anomaly detection while minimizing latency, thereby ensuring timely responses. Finally, 

the FL-assisted detection system accurately identifies anomalous human activities in the manufacturing industry 

through the hierarchical aggregation associated with the local model of YOLOv8n and Flownet-based object detection 

in the edge network. Thus, the experimental results prove its anomaly detection ability in the surveillance vides by 

yielding 88.95% accuracy and 0.85 as the average Anomaly score while testing on the Avenue dataset. 

Keywords: Anomaly detection, Hierarchical federated learning, Industry 4.0, Object detection, Surveillance video, 

And manufacturing industry. 

 

 

 



Received:  April 10, 2024.     Revised: May 26, 2024.                                                                                                      650 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.49 

 

1. Introduction  

With the emergence of Industry 4.0, 

manufacturing processes have witnessed a dramatic 

technological change characterized by historically 

unprecedented levels of automation. Tiny and 

intelligent smart sensing equipment with cutting-

edge capabilities is the foundation of Industry 4.0, 

bringing in a new era of interconnected 

manufacturing systems. The resource-constrained 

devices, which are also known as cyber-physical 

systems, function with constrained energy, memory, 

and bandwidth [1]. However, they are essential for 

accurately and quickly coordinating intricate 

manufacturing processes. Object detection-based 

video surveillance plays a pivotal role in assuring the 

security, safety, and efficiency of the industrial 4.0 

atmosphere [2]. Anomalous object detection is vital 

for industrial security, achieved through video 

surveillance analysis. While YOLO variants excel at 

object detection, detecting anomalies poses 

challenges. To address this, pretraining YOLO 

models with anomalous behaviors or fine-tuning for 

anomaly detection is crucial. Motion feature 

extraction across sequential frames enhances 

understanding of human activities, aiding in anomaly 

detection alongside traditional deep learning models. 

In the context of Industry 4.0, the proliferation of 

smart devices results in the generation of vast 

quantities of data, often stored in cloud-based 

databases. These repositories serve as the primary 

storage solution for the copious amounts of 

information produced by Industry 4.0 devices. To 

execute sophisticated real-time decision-making in 

industrial applications, access to data from these 

cloud servers is necessary. Minimal delay has a 

significant impact on the efficiency of the industry, 

which emphasizes the importance of responding 

quickly and intelligently to new situations or 

anomalies in industrial settings. By bringing cloud 

services closer to the devices, edge computing 

reduces the latency of the object detection model [3], 

[4].  

Due to a multitude of privacy considerations, 

there exists a lack of comprehensive understanding 

regarding abnormal events across various Industry 

4.0 environments, consequently impeding the 

efficacy of automated object detection models. 

Additionally, the substantial expense associated with 

transmitting large surveillance videos to centralized 

storage facilities serves as a barrier, constraining the 

real-time prediction capabilities of these models. To 

counter privacy concerns and high-cost issues, 

Federated Learning (FL) is referred to as a promising 

solution, as it can provide distributed model training 

among different industries in a privacy-preserving 

way [5, 6]. The FL introduces dynamic learning 

strategies in which the globally shared models can be 

updated periodically and enhanced according to the 

evolving conditions in diverse parts of the various 

industrial 4.0 environments [7, 8]. Thus, it is highly 

adaptive to address the unique characteristics of local 

industrial environments effectively. It maximizes the 

accuracy and robustness of FL-enabled object 

detection-based surveillance in distinct industrial 

scenarios [9]. Despite its advantages, the FL 

algorithm introduces significant communication 

overhead between edge devices and centralized cloud 

servers during model updates and aggregation phases, 

particularly in the context of cybersecurity. The high 

communication burden has the potential to impact 

system efficiency, as it leads to delays in model 

convergence and increased resource consumption, 

affecting the overall performance of the FL-based 

cybersecurity framework [10]. Hence, the FL 

algorithm needs continuous model updates and 

multiple aggregators to enhance the accuracy of the 

global model due to the data distributions in various 

organizations are different and demand minimal 

communication costs in a resource-constrained 

environment. Due to the resource-intensive nature of 

FL, deploying it with the edge environments is 

essential, necessitating the development of precise 

object detection strategies to enhance the 

performance of anomalous activity detection. In 

accordance with this, the edge-assisted federated 

approach ensures that computational resources are 

efficiently utilized at the edge, enabling effective 

anomaly detection while minimizing the burden on 

the underlying infrastructure. As FL consumes high 

resources, running it on an edge environment and 

designing precise object detection strategies to 

improve the performance of abnormal activity 

detection is crucial. Thus, this work designs the 

hierarchical FL model associated with anomaly 

detection in industry by examining videos. 

1.1 Contributions 

This work aims to propose an FL-enabled human 

anomaly detection model for an Industry 4.0 

surveillance system in which different human 

abnormalities are recognized in video sequences with 

minimal communication cost and higher accuracy in 

a privacy-preserving manner. The major 

contributions of the proposed model are as follows. 

• The primary aim of the proposed model is to 

design a surveillance anomaly detection system 

for Industry 4.0 with the assistance of a 
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hierarchical FL and YOLOv8 object detection 

model. It includes three major steps: data 

collection with feature extraction, FL-assisted 

edge computing, and YOLOv8-based object 

detection. 

• The proposed anomaly detection model utilizes a 

hierarchical FL architecture featuring multiple 

edge aggregators. A global aggregator optimizes 

the collaborative utilization of anomalous 

knowledge from industries across various regions, 

enhancing anomaly detection within each 

industry contextually and efficiently. 

• In the hierarchical FL framework, the proposed 

surveillance anomaly detection boosts the 

performance of YOLOv8n-based anomalous 

object detection by integrating the Flownet model 

for motion-based image frame extraction and 

pretraining the YOLOv8n model with anomalous 

human behaviors, thereby improving the accuracy 

of abnormal event detection compared to only 

processing entire image frames using YOLOv8n. 

1.2 Paper organization 

The remaining part of the paper is organized as 

follows. Section 2 comprehensively reviews the 

works related to FL-based objection detection models. 

Section 3 provides the system model with an 

architecture. Section 4 provides an overview of the 

proposed model and explains the mechanisms of the 

proposed model in detail. Section 5 shows the 

experimental evaluation, and section 6 concludes this 

paper. 

2. Literature review 

The related study on object detection-based 

surveillance using FL is discussed as follows: 

Dai et al. [11] introduced an enhanced object 

detection algorithm focused on video key-frames to 

reduce latency in edge Internet of Vehicles (IoV) 

systems. The methodology includes a crucial 

coefficient and a frame similarity comparison 

algorithm to filter redundant frames and identify key 

frames for object detection. Additionally, an 

improved Haar-like feature-based classification 

algorithm is employed in the edge computation 

model to enhance overall detection efficiency. Liu et 

al. [12] presented an enhanced detection algorithm 

tailored for small objects using YOLOv5. This model 

reduced computing resources by judiciously clipping 

the feature map output from the large object detection 

layer, resulting in a more lightweight model. The 

study introduced an improved feature fusion method, 

PB-FPN, for small object detection, drawing 

inspiration from PANet and BiFPN. This innovation 

effectively enhances the algorithm's ability to detect 

small objects. Malburg et al. [13] introduced a 

framework for video-based monitoring of 

manufacturing processes using a physical smart 

factory simulation model. The study rigorously 

evaluates three object detection systems' efficacy in 

detecting workpieces and recognizing failures within 

the simulation model, presenting potential 

adaptations. These systems demonstrate reliability 

and provide valuable information for integration with 

other sensors in the IoT-based production process 

monitoring domain.  

Cob-Parro et al. [14] designed a smart video 

surveillance system that employs low-power 

embedded devices and executes deep learning 

algorithms. The computer vision algorithm, 

optimized for surveillance, detects, counts, and tracks 

people's movements using MobileNet-SSD 

architecture. Additionally, a robust Kalman filter 

bank facilitates precise tracking and people counting. 

Based on the UpSquared2 device, the chosen edge 

node incorporates a vision processor unit (VPU) for 

accelerated AI CNN inference. Nawaratne et al. [15] 

presented ISTL, an Incremental Spatio-Temporal 

Learner, for real-time video surveillance anomaly 

detection and localization. ISTL employs 

unsupervised deep learning with active learning and 

fuzzy aggregation to adaptively update and 

distinguish evolving anomalies from normal patterns 

over time. Zhao et al. [16] presented an innovative 

Lightweight Deep Learning (DL) method termed 

Intelligent Edge Surveillance (LEDS), designed for 

applications in the Intelligent Internet of Things 

(IIoT). By adding depth-wise separable 

convolutional layers, the work in [16] adopts a 

multifaceted strategy to produce a lightweight neural 

network that mitigates the processing expenses and 

integrates edge and cloud computing to reduce 

network traffic efficiently.  

Li et al. [17] developed DeepFed, a federated 

deep-learning method for cyber threat detection in 

industrial CPSs. DeepFed approach involves the 

designing of a new intrusion detection model using 

convolutional neural networks and gated recurrent 

units and developing an FL framework for multiple 

CPSs to construct intrusion detection models while 

preserving privacy collaboratively. Qu et al. [18] 

proposed a decentralized Cognitive Computing 

(D2C) paradigm by integrating FL and blockchain. 

The integration enables quick convergence with 

advanced verifications and member selections. 

Additionally, applying a Markov decision process 

optimizes the D2C model for accuracy and security. 

Huong et al. [19] presented an approach for detecting 
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cyberattacks in Industrial Control Systems using FL-

based Anomaly Detection. The architecture identifies 

anomalies in time series data within an IIoT-based 

Supervisory Management system. However, this 

efficiency trade-off involves increased computing 

resource consumption at edge devices for 

implementing the detection task. Liang and Wu [20] 

developed Edge YOLO, an Object Detection (OD) 

system using edge-cloud collaboration and 

reconstructive CNN. It solves issues of computing 

power reliance and uneven cloud resource 

distribution with a lightweight framework. Edge 

YOLO combines pruned feature extraction and 

compressed feature fusion for enhanced multi-scale 

prediction. Nikouei et al. [21] developed LCNN, a 

human object detection algorithm for edge devices, 

utilizing a lightweight Depth-wise Separable 

Convolutional network. LCNN efficiently detects 

pedestrians in surveillance video frames with a 

manageable computation workload. Implemented on 

a Raspberry Pi 3 with OpenCV libraries, it 

demonstrates satisfactory real-world performance. 

Chen et al. [22] introduced FedAGRU, an intrusion 

detection algorithm for wireless edge networks based 

on FL. FedAGRU updates universal learning models 

instead of sharing raw data and employs an attention 

mechanism to prioritize crucial devices, reducing 

communication overhead and ensuring learning 

convergence without unnecessary server uploads. 

Table 2 compares the potential factors that focus on 

the design of state-of-the-art anomaly detection 

systems.  

From the review of state-of-the-art anomaly 

detection, it is recognized that there are still research 

gaps in the field of video surveillance detection of 

anomalies when it pertains to dealing with dynamic 

conditions, generalization, and computation  

 

Table 1. Comparison of Factors involved in the Anomaly Detection Systems 

Object 

Detectio

n Works 

Factors 

Data 

Scarcit

y 

Anomaly 

Detectio

n 

Hybrid 

Mode

l 

Communicatio

n Cost 

Motion 

Feature 

Analysi

s 

Collaborativ

e Training 

Lightweigh

t 

[11]        

[12]        

[13]        

[14]        

[15]        

[16]        

[17]        

[18]        

[19]        

[20]        

[21]        

[22]        

Proposed        
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complexity. In particular, several anomaly detection 

researches [15, 17, 19] focused on addressing the 

real-time challenges; however, developing reliable 

video surveillance anomaly detection algorithms that 

dynamically address the real-time constraints without 

compromising the detection accuracy and speed is 

necessary to bridge these gaps. 

Dynamicity: Traditional anomaly detection and 

object detection algorithms cannot respond to these 

changes in a diversified real-time environment, 

diminishing the reliability and precision performance 

of anomaly detection. Anomaly detection systems 

without motion feature analysis fail to observe 

temporal dynamics and contextual data about objects' 

activities over time. Due to the complicated or 

volatile nature of anomalies, a lack of contextual 

understanding leverages the increased false positives 

and false negatives. To handle this constraint, this 

work extracts the dynamic insights across the 

timeframes with motion feature analysis and 

collaborative knowledge from the different dynamic 

circumstances in distributed industries. 

Generalization: Although an anomaly detection 

model is trained using a single surveillance dataset, it 

is unable to produce generalized anomalous patterns 

in diversified industrial circumstances. Retraining the 

detection model with different datasets impacts the 

speed of anomaly detection and increases the 

computational complexity in the process of detecting 

abnormalities in different industries. Hence, this 

work attempts to apply the hierarchical FL for 

improved generalization across various abnormal 

activities in distributed industries. 

Computation Complexity: In large-scale 

surveillance systems, implementing anomaly 

detection requires abundant computational resources 

to process high-resolution video streams, which 

becomes challenging without affecting the speed of 

anomaly detection. To cope with this, the proposed 

anomaly detection deploys the local anomaly 

detection models in the edge environment and the 

multiple edge aggregators in the hierarchical 

federated settings. 

3. Problem formulation and system model  

This research aims to resolve the above three 

main research gaps - dynamicity, generalization, and 

computational complexity. An anomaly detection 

architecture is developed to achieve this objective, 

combining edge computing, FL, and object detection 

techniques specifically tailored for industrial 

manufacturing. The conventional automated 

industrial control system relies on human factors, 

which increases the risk of human error or deliberate 

abnormal actions by individuals, consequently 

impacting the manufacturing process. In addition, the 

lack of analyzing the motion features in the video 

sequences misleads the human anomaly detection 

when only relying on the object detection models. 

Thus, the examination of motion-based image frames 

in a contextual manner is imperative in addition to the 

extraction of knowledge regarding pixel distributions 

in the input video sequences. 

 

𝐹(𝑀) = argmax
𝑓∈𝐼𝑚(𝑉)

(𝑣𝑂
𝑡 )     (1) 

 

As formulated in (1), extracting the function for 

motion-based image frames (f) from the images of 

surveillance video (V) over time (t). The maximum 

velocity (v) of the objects (O) in the consecutive 

image frames aids in recognizing the dynamics of 

human behaviors.  

Anomaly detection examines the surveillance 

scene and entities or components involved, 

particularly in the Industry 4.0 manufacturing field. 

In the realm of industry, it is common to have a 

multitude of devices, sensors, or machines distributed 

across diverse locations or organizational units, 

leading to the increased computational strain on the 

anomaly detection mechanism. Hence, in order to 

handle this constraint, the distributed industries 

intricately connect with the edge server in the FL 

model. In this scenario, video surveillance data is 

collected from various geolocations to monitor and 

identify any abnormalities or irregularities effectively. 

In industrial settings, the distribution of pixel values 

in each image varies with the environmental factors, 

such as the lighting conditions, whereas the physical 

feature space of the indoor industrial environment 

becomes similar in the same kind of industries 

located in different regions. Hence, this work designs 

anomaly detection in the horizontal FL setup. 

Implementing horizontal FL architecture with the 

components of clients as the industries, edge server 

as the anomaly detector, and aggregator as the shared 

or collaborative knowledge provider. Rather than 

being detected from the cloud server, the anomaly 

detection module in the proposed system is 

implemented on the edge layer. The anomaly 

detection module in the proposed system is deployed 

at the edge layer instead of detected on the cloud 

server. It is because edge computing renders the 

feasibility for applications that require immediate 

action, such as, industrial automation and healthcare 

monitoring applications, leveraging the response to 

anomalies promptly. Moreover, FL enables the 

model training from the local data dispersed among 

various industry regions. FL ensures resilient and 
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generalized anomaly detection by applying 

collaborative insights from multiple patterns. The 

federated setup involves the utilization of a cloud-

based global model as the central monitoring entity 

for the locally sourced data collected from diverse 

localities. The centralized aggregator facilitates the 

exchange of parameters learned among various local 

industries through the local model, enabling precise 

anomaly detection at the edge layer rather than 

relying on training a global model with the sensitive 

data acquired from each industry. However, the 

increased number of communication rounds in the 

federated settings creates the computation and 

communication complexity to the anomaly detection 

model from the large-scale video surveillance from 

distributed industries. 

 

𝑂(𝐴𝐷)𝐼 = min
𝑖∈𝐼

𝐶𝑅𝐼
𝐸,𝐺

    (2) 

 

𝑊 = 𝑎𝑟𝑔min
𝑖∈𝐼

𝐿(𝑙𝑘
𝐸̅)

𝐼

 𝐺
 , 𝑤ℎ𝑒𝑟𝑒 𝑘 ⊆ 𝐼  (3) 

 

The formulation in (2) and (3) indicates the 

objectives of minimizing the communication rounds 

(𝐶𝑅𝐼
𝐸,𝐺

) and global loss (𝐿𝐼
 𝐺) respectively during the 

task of Anomaly Detection (AD) in each industry. 

The global weights (W) are based on the average loss 

of edge servers (𝑙𝑘
𝐸̅) across the industries (i), in which 

‘I’ refers to the total number of distributed industries 

that establish communication through hierarchical FL. 

k, E and G denote a subset of industries connected in 

the edge server, edge server, and global server, 

respectively.   

The primary components used in the design of the 

proposed anomaly detection are presented as follows.  

Hierarchical FL: Industrial anomaly detection is 

a highly time-sensitive application; hence, efficiently 

detecting anomalous behaviors is crucial without 

service delay. Consequently, prioritizing the 

optimization of resource utilization with minimal 

communication overhead is highly significant in 

resource-constrained and heterogeneous IoT 

environments. To accomplish this, the hierarchical 

FL architecture is adopted by the proposed system, 

collaboratively aggregating the local model updates 

at various hierarchy levels. By enabling the multi-

level federated aggregation of model updates in 

hierarchical FL [23], the proposed anomaly detection 

adaptively supports the heterogeneous industrial 

environment. Therefore, hierarchical FL is able to 

scale efficiently in order to accommodate distributed 

settings, enabling collaborative model training 

without overwhelming central resources. In 

particular, the ability to scale is the primary  

Table 2. Comparison of YOLO Versions 

YOLO 

variants 

Size 

(pixels) 

Number of 

Parameters 

(M) 

FPS FLOPs  

YOLOv1 418 - 45 - 

YOLOv2 416 - 40 62.94 

YOLOv3 608 61.2 35 65.4 

YOLOv4 608 27.6 72 59.7 

YOLOv5n 640 1.9 45 4.5 

YOLOv6n 640 4.3 785 11.1 

YOLOv7 640 36.9 161 103.4 

YOLOv8n 640 3.2 80.4 8.7 

 

importance for industries engaged in extensive data 

collection and analysis, such as smart manufacturing, 

supply chain management, or energy optimization. 

Thus, the proposed system designs an FL-based 

anomaly detection system with a hierarchical FL 

architecture comprising the edge environment and 

multiple global aggregation modules. The execution 

of the edge server and cloud server for the 

aggregation depends on the computational 

complexity at the edge level. Consequently, the 

hierarchical FL offers a significant security solution 

for collaborative training in heterogeneous, 

distributed, and resource-constrained industrial 

settings. 

YOLO: The FL-based anomaly detection system 

employs an object detection model, like the YOLO 

framework trained with a customized surveillance 

anomaly dataset, to identify anomalies in indoor 

firms. The main objectives behind the selection of 

YOLO for anomaly detection in the indoor scenario 

are discussed as follows. i) By extracting the 

comprehensive features, YOLO is capable of 

recognizing several anomalous behaviors in a single 

image or frame. As a result, YOLO variants can 

facilitate anomaly detection in a complex and 

crowded indoor environment. ii) Furthermore, 

prompt response is a crucial component of anomaly 

detection, which is addressed by YOLO-based quick 

anomaly detection in real-time video or image frames. 

iii) To identify the anomalous actions carried out by 

individuals within the industry, the YOLO model is 

pretrained with data objects that highlight authorized 

or lawful behaviors related to the functioning of 

industrial components, in addition to a knowledge of 

abnormal human behavior. 

Table 1 compares several versions of the YOLO 

models while testing on the PASCAL VOC dataset 

[24, 25]. This work selects the YOLOv8n model for 
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object detection in the anomaly detection system from 

the analysis of i) computation cost based on the model 

parameters and Floating Point Operations (FLOPs) 

and ii) speed based on Frames Per Second (FPS). With 

its potential benefit of fast inference speeds, 

YOLOv8n has particular advantages for time-

sensitive applications as it is optimized for real-time 

performance. It is capable of handling video streams 

quickly, allowing for the early detection of anomalies 

in various industries. YOLOv8n can be trained on 

diverse datasets to adapt to different environments 

and anomaly types, which enforces the precise 

detection of anomalies in video sequences with 

improved situational awareness and timely response 

in diverse applications. 

FlowNet: The main application of FlowNet is 

optical flow estimation, which estimates the motion 

vectors between successive frames in a video stream. 

FlowNet is able to forecast the intense optical flow 

field that occurs between successive frame pairs when 

the flow field mentions the motion of the pixels in the 

sequential image frames. FlowNet's optical flow 

information has been an important source of input for 

conventional object identification models like CNN 

and region-based detectors, particularly YOLO, 

providing additional benefits. In video surveillance, 

optical flow data offers insightful context on motion 

dynamics that enhances the resilience and accuracy of 

object detection systems when there are dynamics in 

the objects.  

The proposed architecture comprises three main 

layers: data, edge, and cloud, as illustrated in Fig. 1.  

Data Layer: In a three-tier architecture, the lower 

layer refers to the data layer that consists of several 

industrial devices, such as sensors, actuators, and 

computing units, placed in various sections of the 

industrial facility. The data layer is responsible for 

monitoring and recording the videos using the IoT 

devices, and the object detection model mounted on 

the edges gained data-level knowledge from the 

monitored data. 

Edge Layer: The main objectives of the edge layer 

design in the proposed anomaly detection system 

target to optimize the real-time quick response, 

scalability, and communication overhead across 

distributed industrial environments. In particular, the 

edge layer is responsible for executing surveillance 

anomaly detection mechanisms with the integration of 

different local models for dispersed industries. The 

anomaly detection mechanism is a design of a local 

YOLO v8-assisted object detection model based on its 

locally collected industrial information. In the 

hierarchical FL-enabled proposed system, edge 

aggregation is also performed with the concept of 

FedAvg for the different local models at the lower  

 
Figure. 1 The architecture of FL-based Anomaly 

Detection in Industry 4.0 

 

 

layer of the edge in which the edge aggregator is 

located on the upper layer of the edge. Moreover, the 

cloud server updates the local model with global 

parameters based on prevalent knowledge of 

anomalous behavioral objects across multiple 

industries. The hierarchical aggregation process 

iteratively continues over the hierarchical levels until 

convergence is attained based on the predefined 

stopping criterion.  

Cloud Layer: It comprises a server, database, and 

FL aggregator. The cloud server generates a 

comprehensive FL global model by aggregating the 

local model parameters obtained from different edges 

through FedAvg. The global model performance is 

cooperatively improved by the hierarchical level of 

multiple intermediate nodes and central servers that 

aggregate the updates received from various  

 

industries. To produce greater accuracy in the global 

model, a greater number of interactions between the 

cloud server and edges are essential. In order to enable 

anomaly detection in every industry, even in 

circumstances with insufficient abnormal object 

patterns, FL conducts a distributed model training 

procedure in which numerous edge devices 

collaboratively improve a shared global model 

without raw data exchange. 

4. Proposed system  

The primary objective of the proposed work is to 

determine the abnormal events conducted by humans 

in Industry 4.0 by introducing a novel FL-enabled 

object detection-based surveillance strategy in the 

edge layer. The proposed anomaly detection system 

incorporates three main phases: data collection and 

feature extraction, edge-assisted FL, and YOLO v8-



Received:  April 10, 2024.     Revised: May 26, 2024.                                                                                                      656 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.49 

 

based object detection. Initially, the most pertinent 

features are extracted as image frames by 

preprocessing the input dataset. Secondly, at the edge, 

the FL-based surveillance analysis model enhances 

object detection learning strategies by generating 

extensive global knowledge while maintaining 

privacy. The proposed method applies the 

hierarchical FL that enables the multi-level 

aggregation at the edge and cloud server rather than 

transferring the local model parameters from the edge 

to the remote cloud for the federated aggregation. 

Finally, by combining the strengths of Flownet and 

YOLO v8 models for object identification in the 

hierarchical FL model, the proposed anomaly 

detection strategy identifies anomalies related to 

human behavior in situations. In particular, using 

pretrained knowledge from the YOLOv8n model 

customized by human anomalous behaviors enforces 

the anomaly detection model to trigger an emergency 

alarm. As a result, the design of hierarchical FL and 

edge intelligence leverages the execution of the 

proposed system under minimal service delay 

without impacting the quality of anomaly detection. 

4.1 Surveillance data feature extraction 

To implement the FL model for the distributed 

industries, the proposed system needs to be evaluated 

on the datasets that are timestamp-tagged 

surveillance videos, including normal and abnormal 

human activities gathered from the indoor industrial 

scenario. To detect the anomaly in the manufacturing 

industry, the proposed system examines the 

interactions between human and machine or 

industrial components, facilitating the spotting of 

anomalous human behavior in the object detection 

outcome. For the purpose of effectively analyzing 

and interpreting the data gathered from surveillance 

systems, surveillance data feature extraction is 

essential.  

Owing to the lack of industrial surveillance videos 

for anomaly detection, this work utilizes several 

datasets, such as the Avenue dataset [26], UCF-Crime 

dataset [27], UMN-Crowd11 dataset [28], and SVIP 

dataset [29] with multiple surveillance videos to 

demonstrate the anomalous object detection in the 

context of the human-involved manufacturing 

industry. Even though the aforementioned 

surveillance datasets are not particularly developed 

from indoor industrial spaces, the image frames and 

human activities in these datasets leverage anomalous 

human object detection. The Avenue dataset [26] 

comprises videos captured from indoor spaces and 

streets, widely exploited for anomaly detection. UCF-

Crime dataset [27] is also used for the anomaly  

 
Figure. 2 Proposed Anomaly Detection Methodology 

 

 

detection task consisting of various human-involved 

crime scenarios of video clips, such as the assault, 

robbery, and burglary recorded from the surveillance 

cameras. UMN Crowd11 dataset [28] contains the 

motion patterns of the crowd with the composition of 

6000 video sequences. Shanghaitech Vision and 

Intelligent Perception (SVIP) dataset [29] comprises 

the human actions in surveillance footage with 130 

abnormal events over 270,000 training frames, widely 

utilized for anomaly detection tasks. In conclusion, 

this work employs the SVIP dataset as the human 

anomalous dataset for pretraining the YOLOv8n 

model. The remaining three datasets [26-28] are 

considered local for three industrial environments.   

During the video preprocessing, the proposed 

approach enhances the visual tracking of physical 

parts by implementing depth-based segmentation and 

background removal. The process of extracting 

relevant information from acquired video frames for 

anomaly detection is a major component of feature 

extraction, which is used extensively in video 

surveillance. In order to achieve promising outcomes 

for the stacked multiple image frames over time, the 

proposed approach applies a CNN-based model to 

spatially extract object patterns from the surveillance 

video due to the effective feature extraction providing 

situational awareness to the anomaly detection system. 

Motion pattern analysis, in particular, is a component 

of the feature extraction method that helps to identify 
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anomalous human actions in video frames accurately. 

In the video sequences, motion features involve the 

optical flow, acceleration, speed, and direction, which 

assist in characterizing the dynamics of the objects. 

Therefore, the proposed approach aims to 

automatically analyze the optical flow in the visual 

frames for motion tracking, thereby rendering it 

simple to identify anomalous objects in the 

surveillance footage. Instead of providing all the 

image frames to the YOLO model, the proposed 

approach extracts the motion features using the 

Flownet model briefly discussed by Savian et al. [30]. 

Subsequently, the motion-based image frames are 

provided to the YOLO model and the raw inputs. In 

the proposed system, the Flownet model is integrated 

with the YOLO model as the local anomaly detection 

model in the FL environment. 

4.2 Edge-assisted federated learning 

To address data scarcity and handle heterogeneity 

in the manufacturing industry, the proposed approach 

applies the edge-assisted hierarchical FL model that 

significantly mitigates the communication cost with 

the globally shared intelligence. The edge-assisted 

FL facilitates cooperative model training over-

dispersed edge devices while protecting data privacy 

and reducing communication overhead by integrating 

the FL paradigm with edge computing infrastructure. 

The proposed surveillance anomaly detection is 

implemented on the edge network in the FL 

infrastructure with the components of a local model, 

edge aggregator, and cloud or global aggregator. The 

proposed edge-assisted FL model addresses the 

privacy and cost constraints while storing the 

surveillance videos of each industry in the centralized 

cloud storage. To avoid transferring videos for the 

global model training it is achieved by building an 

object detection model locally on the associated edge 

server. By utilizing the potential benefits of edge 

computing, the proposed approach implements 

hierarchical FL with minimal delay and low cost by 

using partitioned edge networks as the upper and 

lower layers. In particular, time-critical applications, 

such as surveillance anomaly detection, are 

increasingly beneficial by the hierarchical modeling 

of FL. The proposed FL architecture aims to resolve 

the shortcomings in a single aggregator for the trained 

local models by collectively integrating the multiple 

local models for the edge-level aggregator and the 

cloud-level aggregator. The proposed federated 

architecture is hierarchical, with several layers of 

edge devices to train anomaly detection models 

cooperatively while maintaining data privacy. 

Lower-layer edge devices deploy a lightweight 

learning model to interpret locally accessible 

surveillance video, extract pertinent features, and 

identify anomalies. The global anomaly detection 

model is then improved by combining insights from 

a two-layer edge network in which the local model 

parameters are subsequently aggregated at the upper 

edge layer, improving anomaly detection accuracy. 

In the edge network, edge aggregator placement is 

based on the number of requests and characteristics 

of the communication network in a particular region. 

As illustrated in Fig. 1, in the hierarchical FL model, 

the proposed anomaly detection module is located on 

the lower or bottom layer of the edge network 

associated with the federated edge aggregator located 

on the higher or top layer of the edge network. 

Moreover, the global federated aggregator is 

located on the cloud, interacts with the hierarchical 

aggregation in the edge layer, and ensures the time-

efficient anomaly detection mechanism. The 

proposed local model, an object detection-based 

anomaly detection model, initially learns the local 

industry dataset in the corresponding edge server. 

Subsequently, the edge aggregator is responsible for 

amalgamating the insights obtained from the local 

models of several businesses by exchanging local 

model parameters rather than disclosing the raw 

surveillance video input. In the edge layer, the 

proposed approach initiates a relevant local model 

update based on the model's parameters in the edge 

aggregator. Moreover, the multiple local models 

trained on data from various industries by the 

numerous edge aggregators in a hierarchical FL 

structure enforce the global aggregation on the cloud 

server. During the aggregation, the FedAvg method 

collaboratively learns the model parameters and 

weight to update the edge aggregator in the top layer 

of the edge network and the global aggregator in the 

cloud network. Finally, the proposed approach 

reduces service latency. It enhances anomaly 

detection quality for time-sensitive anomaly 

detection in the manufacturing sector by updating 

local models across industries using hierarchically 

shared global parameters. 

4.3 YOLO-based anomalous object detection 

The primary goal of this work is to develop an 

effective anomaly detection system that efficiently 

extracts temporal and spatial information from 

surveillance videos by integrating the FlowNet and 

YOLOv8 models. In the unified anomaly detection 

system, the YOLOv8 component offers object-based 

features that capture spatial relationships and object 

properties, and the FlowNet component offers 

motion-based features that observe temporal 
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dynamics and motion patterns. The proposed 

anomaly detection integrates Flownet and YOLOv8 

model for object detection in the hierarchical FL 

architecture, implemented in the edge layer. 

Anomaly detection effectively finds and categorizes 

abnormal activities or patterns in real-time 

surveillance video streams by utilizing the distinctive 

objects extracted from the You Only Look Once 

(YOLO) object identification framework. Owing to 

resource limitations in the edge environment, the 

proposed approach targets to create a lightweight 

object detection model with the minimal possible 

YOLOv8n model parameters comprising 3.2M 

parameters and recognizing the 640×640 pixels of 

image frames. In the series of object detectors, 

YOLOv8n is the most recent variant with the novelty 

of enhancement and features in its architecture. 

Compared to other YOLO models, YOLOv8 detects 

objects even in real-time crowd density with the 

proficiency of recognizing abnormal activities. 

To customize the YOLOv8n model for 

surveillance anomaly detection, the proposed 

approach trains the object detection model with the 

SVIP dataset [29] that contains the human abnormal 

behaviors, facilitating anomalous human activities 

through YOLOv8n-based object detection. The 

depth-wise separable convolution layers-enabled 

YOLO model leverages fast anomalous object 

detection to ensure lightweight real-time object 

detection. The enhanced anomalous object detection 

described in Fig. 3 is enriched by the Flownet model 

[30], which assists in minimizing or discarding the 

repetitive video frames in the surveillance video 

activities and provides the filtered input into the 

YOLOv8n model. Consequently, the proposed object 

detection model accurately recognizes the abnormal 

activities of humans from the filtered motion-based 

video frames alone and reduces the computation 

complexity while understanding human activities. 

Motion characteristics capture an object's dynamic 

activity all over time, thereby providing temporal 

context. Systems for detecting anomalies can 

distinguish between standard and anomalous object 

activities or interactions in the environment 

according to this temporal information. Moreover, 

the surveillance video frames are provided as the 

input to the YOLOv8n model in parallel and thus, 

both the Flownet-assisted YOLOv8n features and 

raw input-based YOLOv8n features are early fused 

before the object detection in its architecture.  

In the proposed anomaly detection, the design of 

the lightweight object detection model is enhanced 

with the MobileNetv3 model for backbone feature 

extraction to further increase the speed of the  

 
Figure. 3 Local Model in Federated-Enabled Proposed 

Anomaly Detection 

 

 

computations due to the deployment on the resource- 

constrained edge network. MobileNetV3 is a 

promising solution that offers deployment scalability 

in distributed industrial environments due to its 

flexibility and adaptability to different datasets and 

object detection tasks. Combined with its lightweight 

architecture, MobileNetV3 performs better 

comparable to extremely complicated models in 

object detection tasks and reaches competitive 

accuracy levels. In MobileNetV3, the significance of 

model parameters and advanced features, such as the 

squeeze-and-excitation blocks and inverted residuals, 

aids in reducing the computation cost while 

increasing accuracy. By modeling the h-swish 

activation function, the MobileNetV3-integrated 

YOLOv8n model reduces the computations and 

improves the model performance. Therefore, the 

proposed object identification precisely identifies 

anomalies pertaining to humans without Introducing 

the computing burden. By applying the edge-assisted 

network, the federated architecture and YOLOv8n 

model jointly provide efficient and real-time anomaly 

detection in the industrial sector. From the analysis of 

anomalous image frames detected by the object 

detection model, higher anomaly scores indicate a 

higher probability of abnormal behavior, 

accomplished by the thresholding method that 

decides whether the detected object is anomalous or 

normal. In surveillance anomaly detection, the 

thresholding method is based on the examination of 

anomaly scores over the time frame. Finally, the 

anomaly detection model generates alerts or triggers 

the automatic response systems in the industry. 

Algorithm 1 describes the overall steps involved in 

the proposed surveillance anomaly detection. 
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5. Experimental evaluation 

To evaluate surveillance anomaly detection, this 

work experiments with the object detection model in 

the FL setup for the proposed algorithm by 

comparing several existing object detection, E1 and 

E2 [16, 12], FL works, E3 and E4 [17, 18], and 

surveillance anomaly detection research works, E5 

and E6 [19, 15] respectively. In the evaluation 

scenario, the comparative existing works are referred 

to as E1, E2, E3, E4, E5, and E6. 

5.1 Implementation setup 

The experimental model is implemented using 

Python language with the version of Python 3.8 in the 

Ubuntu 18.04 Operating system for conducting the 

YOLOv8 model and FL experiments. To train the 

YOLOv8n model with surveillance anomalies, the 

experimental model exploits the video surveillance  

datasets [26-28] as indoor human anomaly videos for 

three industries in the federated settings. The 

hierarchical federated setting is implemented with 5 

communication rounds for 3 clients. To assess the 

surveillance anomaly detection, the experimental 

model employs precision, recall, mean average 

precision (mAP), and accuracy metrics to validate the  

Table 3. Implementation Parameters of Object and 

Anomaly Detection Models. 

Paramet

er 

Values 

Propos

ed 

Liu et 

al. 

(2022) 

[12] 

Nawarat

ne et al., 

(2020) 

[15] 

Zhao 

et al. 

(2020) 

[16] 

Model 
YOLOv

8 

YOLOv

5 

Spatio 

Temporal 

Autoenco

der 

Tiny-

YOLO 

Image 

Size 

640×64

0 
640×640 224×224 

256×2

56 

Optimiz

er 
Adam Adam Adam Adam 

Activati

on 

Function 

Relu, 

Sigmoi

d 

Relu, 

Sigmoid 

Relu, 

Sigmoid 

Relu, 

Sigmo

id 

Loss 

Function 

Binary 

Cross 

Entropy 

Binary 

Cross 

Entropy 

Binary 

Cross 

Entropy 

Binary 

Cross 

Entrop

y 

Learnin

g Rate 
0.001 0.001 0.001 0.001 

Epochs 10 10 10 10 

Batch 

Size 
32 32 32 32 

Backbon

e 

Mobile

NetV3 

Spatial 

pyramid 

pooling 

at the 

end of 

the 

backbon

e 

- 

Mobil

eNetV

2-SSD 

 

 

object and anomaly detection in the surveillance 

videos. Precision is the percentage of detected objects 

or anomalies, the recall is the percentage of 

accurately identified anomalies based on the 

identified bounding boxes in the ground truth.  

Moreover, to precisely assess the ability of 

anomalous activity detection by the proposed model, 

the experimental model computes the anomaly score 

for each detected image frame using the following 

Eqs. (4) and (5). 

 

𝑃𝑆𝑁𝑅(𝐴(𝐼), 𝑃(𝐼)) 

= 10 log10
[𝑀𝑎𝑥.𝑠𝑐𝑜𝑟𝑒𝑃(𝐼)]

2

1

𝑁
∑ (𝑠𝑐𝑜𝑟𝑒(𝑖)𝐴(𝐼)−𝑠𝑐𝑜𝑟𝑒(𝑖)𝑃(𝐼))

2𝑁
𝑖=1

          (4) 

 

𝐴𝑆(𝑡) =  
𝑃𝑆𝑁𝑅𝑡−𝑚𝑖𝑛(𝑃𝑆𝑁𝑅)

𝑚𝑎𝑥(𝑃𝑆𝑁𝑅)− 𝑚𝑖𝑛(𝑃𝑆𝑁𝑅)
   (5) 
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Table 4. Implementation Parameters of Federated 

Settings. 

Paramet

er 

Values 

Propose

d 

Li et al., 

(2021) 

[17]  

Qu et 

al., 

(2021) 

[18]  

Huong 

et al., 

(2021) 

[19] 

Federate

d 

Architec

ture 

Hierarchi

cal FL 

As 

proposed 

in [17] 

As 

proposed 

in [18] 

As 

propose

d in 

[19] 

Model 

Architec

ture 

Yolov8 Yolov8 Yolov8 Yolov8 

Commu

nication 

Rounds 

5 5 5 5 

Number 

of 

Clients 

3 3 3 3 

FedAvg Yes Yes Yes Yes 

Epochs 10 10 10 10 

Batch 

Size 
32 32 32 32 

 

 

To compute the Anomaly Score (AS) for each 

image frame (i), the experimental model measures the 

Peak Signal-to-Noise Ratio (PSNR) between the 

actual (A) and predicted (P) image frames based on 

the score returned by the anomaly detection model. 

In (4), ‘i’ denotes each image frame in the total ‘N’ 

number of image frames. To normalize the PSNR of 

the image frames in a video, Eq. (5) computes the 

normalized anomaly score. Accordingly, the 

experimental model exemplifies the performance of 

the proposed algorithm in terms of average anomaly 

score per video segment. Table 1 depicts the training 

parameters used for the proposed and existing object 

and anomaly detection model for the implementation 

of test datasets.   

Furthermore, to implement the federated model in 

the proposed system, the experimental framework 

provides the federated parameter settings of the 

proposed approach and several existing federated 

approaches in Table 2. The comparative both the 

existing federated and proposed approaches are 

evaluated on those above all the three datasets. 

As mentioned in Table 2, the experimental model 

conducts the experiments for the existing FL 

architectures [17-19] with the same evaluation 

scenarios. The experimental model evaluates the 

effectiveness of the federated architectures and 

workflow in the corresponding works [17-19] with 

the deep learning architectures of Yolov8 as adopted 

in the proposed system. Even though the existing 

federated approaches [17-19] employed different 

benchmark datasets, this experimental model utilizes 

the three benchmark above surveillance video 

datasets for the input of YOLOv8 models in their 

federated architectures, illustrating the ability of 

anomaly detection by each federated approach. For 

the evaluation of work in [17], the workflow of the 

DeeFed scheme is considered as the existing 

algorithm with the YOLOv8 deep learning 

architecture rather than the CNN-GRU-based 

intrusion detection model. In contrast to the privacy 

assessment, the experimental model evaluates the 

work in [18] in terms of the FL-based cognitive 

computing algorithm implementation. During the 

evaluation of work in [19], the experimental model 

implements the federated edge architecture with the 

Yolov8 model as the local model instead of the VAE-

LSTM model. 

5.2 Results and discussion 

From the analysis of Fig. 4, the proposed object 

detection model obtains higher precision, recall, and 

mAP while testing on the surveillance videos of 

multiple industries. 

5.2.1. Evaluation of object detection models 

Compared to the various YOLO models, such as 

the YOLOv4 and YOLOv5, the edge YOLOv8 

model outperforms the object detection performance 

in the video frames. All the comparative models and 

research works [12, 16] are evaluated under the same 

experimental settings, including the optimizer, 

activation function, loss function, epochs, batch size, 

and learning rate. The comparative research only 

varied in their corresponding algorithms and input 

image size, as mentioned in Table 1.  

As shown in Fig. 4, the edge yolov8 model 

precisely recognizes the objects for the test dataset 

with the potential advantage of enhanced feature 

extraction and computation capabilities in the object 

detection architecture. The results depicted in Fig. 4 

are obtained from the implementation of all the 

comparative algorithms on the Avenue dataset [26]. 

Conventional object detection research works [12, 

16] have yielded results on various video datasets. To 

compare the object detection performance, the 

experimental model implements the object detection 

algorithms [12, 16] for the Avenue dataset and 

measures the performance metrics. As a result, the 

edge YOLOv8 model accomplishes 81.24% accuracy 

values, which is 3.59% higher than the comparative 

object detection model [12]. Even though the 
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comparative model [12] applies the YOLOv5 model 

for object detection, the edge YOLOv8 model 

outperforms the human recognition performance 

even in a crowded environment, particularly in 

surveillance videos. In addition, ensuring 

generalization ability is critical to analyzing its object 

detection performance on a variety of datasets and 

scenarios due to the lack of training in the model with 

global or collaborative knowledge. Also, the 

comparative edge intelligence in [16] applies the tiny 

YOLO with the integration of MobileNetV2-SSD. 

However, the YOLOV8 model outperforms the 

object detection performance when deployed on the 

edge environment. It is because edge intelligence 

significantly improves accuracy and efficiency by 

enabling contextual  

edge-cloud collaboration and dynamic adaptation 

to the input data, leveraging the extraction of 

actionable insights for accurate decision-making. 

Hence, this work selects the YOLOv8 model as the 

core model for object detection among the abnormal 

activities of human objects due to its superior 

performance in object detection from video frames 

and the integration of edge intelligence. 

5.2.2. Impact of federated learning on anomaly 

detection 

Table 3 presents the performance of the proposed 

surveillance anomaly detection with the comparison 

of the existing FL-based anomaly detection approach 

[17] and centralized approach while testing on the 

Avenue dataset [26], UCF-Crime dataset [27], and 

UMN Crowd11 dataset [28] with 3 clients. From the 

results mentioned in Table 3, it is determined that the 

proposed hierarchical FL approach outperforms the 

traditional federated approach [17] and the 

centralized approach in anomaly detection with 

improved accuracy and mAP@0.5. In addition, the 

work in [18] enables quick convergence with optimal 

verification in FL settings and obtains 2.37% higher 

accuracy than the E3 [17]. Despite this, the 

hierarchical FL in the proposed approach 

outperforms the existing federated approaches [17, 

18] by contextually integrating the insights from the 

diversified industries in the multiple edge 

aggregators, resulting the 88.95% accuracy.  

As presented in Table 3, the experimental model 

partially implements the existing federated 

approaches in the context of anomaly detection for 

the surveillance videos. Although the research [17, 

19] fails to target the communication between the 

edge and cloud as well as the edge and IoT devices 

during the federated execution, it leads to increased 

bandwidth resource consumption and affects 

 
Figure. 4 Assessment of Object Detection Performance 

 

 
Table 5. Comparative Performance of Anomaly Detection 

Models 

Comparat

ive Models 

Average Anomaly Detection 

Performance (%) 

Preci

sion  

Reca

ll 

Accu

racy 

mAP

@0.5 

Centralize

d 
80.25 79.59 80.05 80.11 

Li et al., 

(2021), E3 

[17] 

84.01 83.98 84.41 83.88 

Qu et al., 

(2021), E4 

[18] 

86.13 85.17 86.78 86.04 

Huong et 

al., (2021), 

E5 [19] 

87.78 86.34 87.05 86.95 

Proposed  87.76 86.34 88.95 87.19 

 

 

communication efficiency. In addition, the 

aggregator in the federated environment focused on 

the same data distribution or patterns from each local 

model affects anomaly detection when there are 

inherently varied anomaly patterns in the input data. 

In contrast, the proposed approach applies the 

hierarchical FL with multiple edge aggregators and 

leverages the accurate understanding of the input 

patterns for the anomaly detection task.   

Precisio
n

Recall
mAP@0.

5
Accurac

y

Edge Yolov8 80.25 79.84 80.12 81.24
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5.2.3. Evaluation of the proposed anomaly detection 

Table 4 compares the impact of each task and 

model involved in the proposed system on improving 

the performance of anomalous object detection while 

testing on three datasets above for the centralized and 

federated settings. In Table 4, the evaluation results 

of the centralized settings are obtained for the Avenue 

dataset, whereas the federated settings are also 

obtained for the Avenue dataset with the 

collaborative integration of UCF-crime and UMN-

Crowd11 datasets during federated aggregation. 

Moreover, the tasks of YOLOv8n, 

YOLOv8n+MobileNetv3, and YOLOv8n + Flownet 

model belong to the centralized settings, whereas 

other tasks are under the federated settings. 

Compared to the YOLOv8n model, integrating the 

Flownet and Hierarchical FL (HFL) model with the 

surveillance anomaly detection system yields better 

true positive rates at 85.18% and 86.34%, 

respectively. Even though the YOLOv8n model 

accurately recognizes the objects, integrating 

collaborative knowledge from diverse environments 

and motion feature-based image frame analysis 

enforces anomalous object detection in video 

surveillance with improved accuracy. Moreover, the 

HFL enables the communication and cooperation 

between edge devices, enhancing anomalous object 

detection performance and generalization. The 

proposed approach improves the anomaly detection 

accuracy by jointly utilizing the diversified local 

model updates at several hierarchical levels in 

addition to the abnormal behavior pretraining in the 

YOLOv8n model. Also, it minimizes the 

communication rounds by achieving higher accuracy 

in minimal communication rounds rather than 

executing the multiple communication rounds. 

5.2.4. Evaluation of anomaly detection 

Fig. 5 compares the proposed anomaly detection 

performance with the existing surveillance anomaly 

detection approach [15, 19] in which the Avenue 

dataset evaluates existing [15, 26] in this experiment. 

In contrast, the time-series industry datasets 

implement the evaluation of the E5 approach [19]. To 

unify the comparative evaluation of the proposed 

approach and the existing works [15, 19], the 

experimental model utilizes the Avenue dataset as the 

test dataset. During the proposed model evaluation, 

the anomaly detection performance of the Avenue 

dataset is illustrated in Fig. 5 by collaboratively 

utilizing the UCF-crime and UMN-Crowd11 dataset 

in federated settings. The proposed approach yields 

an accuracy of 88.95% and mAP as 87.19%, which is  

Table 6. Comparative Performance of Proposed Anomaly 

Detection Tasks 

Tasks 

Average Anomaly Detection 

Performance (%) 

Precisio

n  

Reca

ll 

Accurac

y 

mAP@0.

5 

Yolov8n 78.33 78.53 78.24 78.13 

Yolov8n + 

MobileNet

V3 

79.37 79.75 79.58 79.01 

Yolov8n + 

FlowNet 
80.25 79.59 80.05 80.11 

Yolov8n + 

FlowNet + 

FL 

85.98 85.18 85.33 85.76 

Proposed  

(Yolov8n + 

FlowNet + 

HFL) 

87.76 86.34 88.95 87.19 

 

8.7% and 7.85% higher than the comparative 

anomaly detection model [15]. The proposed 

approach integrates the FL model with the YOLOv8n 

model for accurate object detection. Also, the 

Flownet-based motion-video frames greatly assist the 

recognition of abnormal activities by humans in the 

industrial environment. 

Even though the existing 6 model in [15] analyzes 

the spatial and temporal features in the surveillance 

videos, the lack of YOLO-based object detection fails 

to capture the inherent pattern changes during the 

pixel-level analysis. Also, the comprehensive is 

provided to the object detection model in a particular 

context by training the model with the videos of 

human anomalies dataset. Although the anomaly 

detection model in [19] recognizes the anomalous 

activities in the smart manufacturing industry, it 

becomes inaccurate when adopting for the 

surveillance videos in the Avenue dataset, even when 

adopting the YOLOv8 as the model architecture in 

the federated model of  [19]  and thus, accomplishes 

a 3.77% higher true positive rate than the E5 [15]. 

The collaborative knowledge shared by the 

hierarchical FL model and pretraining the YOLOv8n 

model with abnormal activity in the proposed system 

enforces the accurate detection of anomalies in each 

industry from the video surveillance with 87.19% 

mean average precision value, even when there are 

inadequate surveillance videos with anomalous 

patterns. 

Fig. 6 compares the proposed surveillance 

anomaly detection with the E6 [15] in the perspective 

of examining the average anomaly score of the  
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Figure. 5 Assessment of Surveillance Anomaly Detection 

Performance 

 

 
Figure. 6 Assessment of Anomaly Score 

 

predicted anomalous image frames in the video 

segment. From the analysis of Fig. 6, the anomaly 

detection performance within the bounding boxes of 

the image frame rather than assessing the number of 

detected anomalous image frames. Moreover, to 

prove the scalability of the anomaly detection 

performance, the average anomaly score is evaluated 

for different numbers of image frames in each video. 

Consequently, the proposed approach maintains the 

anomaly score with an average of 0.85 even when 

there is a huge number of image frames in the 

surveillance video segment, accomplished by edge 

intelligence and hierarchical FL. 

6. Conclusion  

This work suggested a surveillance anomaly 

detection model for the manufacturing industry, 

integrating a hierarchical FL model and enhanced 

YOLOv8n-based object detection by the Flownet. 

The proposed anomaly detection model is deployed 

within the edge network infrastructure, adopting a 

federated setting for enhanced performance. This 

architecture entailed the placement of both the local 

model and multiple FL-based edge aggregators 

directly on the edge layer. This setup is precisely 

designed to facilitate accurate decision-making while 

minimizing communication rounds, thus optimizing 

the efficiency of anomaly detection processes. 

Moreover, by leveraging this distributed approach, 

the system empowered earlier detection and warning 

of anomalous activities within the industry, 

contributing to improved security and proactive risk 

mitigation measures. Moreover, the flow net-assisted 

motion-based image frames extraction enhanced the 

learning ability of the YOLOv8n model in the context 

of anomalous behavior learning over the consecutive 

image frames leveraged the accurate detection of 

anomalies in the surveillance videos. Thus, this work 

ensured that the proposed surveillance anomaly 

detection is an accurate recognition of 88.95% 

accuracy for Industry 4.0 applications. 
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