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Abstract: The objective of the navigation process is to determine the most efficient route for the hovercraft and 

regulate its movement along that route without any oscillation. The primary goal of this work is to determine the 

most efficient routes for a hovercraft operating in a global environment. The proposed approach, called Artificial 

Bee Colony Self Perception Particle Swarm Optimization (ABC-SPPSO), is utilized to accomplish this objective. 
The main benefit of utilizing the ABC-SPPSO algorithm is its ability to design the most efficient route while 

preventing collisions with stationary obstructions. In addition, a suggested controller that consists of a Feedforward 

Numerical Inverse Dynamic Controller (FNIDC) and a Feedback Neural Network Radial Basis Function (FNNRBF) 

control technique with the Grey Wolf Optimization (GWO) algorithm will be utilized to guide the hovercraft along 

predetermined paths. This suggested controller is designed to regulate the nonlinear dynamics of the hovercraft 

system in order to efficiently and rapidly generate the forces exerted by the starboard and portboard fans. These 

forces are utilized to control the orientation and position of the hovercraft. Moreover, the utilization of the suggested 

controller effectively reduces the differences between the desired and the actual positions in both the X-axis and the 

Y-axis. Additionally, the controller nearly eliminates any deviation in orientation and ensures a stable response 

without any oscillation. Specifically, the controller ensures that the hovercraft will promptly and accurately adhere to 

its intended trajectories. Ultimately, we verify the accuracy of the numerical simulation outcomes of the suggested 

control approach by contrasting them with those of other controllers, specifically in relation to the highest level of 

error improvement in the X-position and the Y-position. In particular, when comparing the proposed controller to the 

Improved Quasi-Velocities (IQV) controller, the results show that the suggested controller decreases the error rate of 

tracking on the X-position by 22% and enhances the tracking error rate on the Y-position by 14.8%. Furthermore, the 

suggested controller was evaluated against the terminal sliding mode controller (TSMC), and the results of the 

comparison indicate that the proposed controller enhances the error rate of tracking on the X-position by 50.7% and 

on the Y-position by 64.5%. Additionally, the suggested controller was evaluated against the nonlinear cascade 

controller, and the comparative analysis demonstrates that the suggested controller enhances the X-position and the 

Y-position tracking error rates by 25.9% and by 33%, respectively. Finally, from a comparative study with the neural 

network-based adaptive dynamic inversion controller, the proposed controller enhances the error rate of tracking on 

the X-position by 51% and on the Y-position by 42.9%. 

Keywords: Artificial bee colony self-perception particle swarm optimization, Path finding, Hovercraft model 

feedforward numerical inverse dynamic controller, Radial basis function neural network, Trajectory tracking. 

 

 

1. Introduction  

The design of the hovercraft is based on a basic 

ship equation that exhibits nonlinearity and under-

actuation. In this context, the utilization of high-

performance vehicles featuring distinctive material 

architectures and navigation principles has 

witnessed a notable rise in several domains, such as 

icebreakers, maritime transportation, military 

transportation, civilian survival, rescue operations, 

and scientific research recreational activities during 

the 21st century [1]. Hence, while contemplating the 

utilization of hovercrafts, they can navigate both 

water and land, provided that there are impediments 

of reasonable size, all while maintaining a state of 

hovering on a cushion of high-pressure air [2, 3]. 
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When dealing with hovercraft navigation challenges, 

it is crucial to address three primary concerns: safety, 

accuracy, and efficiency. The primary 

considerations are ensuring a path free from 

collisions and accurately following the designated 

route. Efficiency refers to the ability of an algorithm 

to avoid unnecessary repetition and excessive 

processes, which is a futile use of time and energy 

[4]. Of all these issues, it might be argued that path 

finding is the most crucial aspect of vehicle 

navigation. Particularly, it is described as 

determining a geometrical path that must be the 

quickest and most obstacle-free route from the start 

to the destination states [5-6]. Furthermore, the 

hovercraft necessitates a control system to modify 

the force of each fan in order to achieve the desired 

position. Although several trajectory-tracking 

control methods are available for monitoring the 

hovercraft system, the primary objective is to 

operate the system in a cost-effective and efficient 

manner while maintaining the controller's robustness, 

stability, and reliability. As a result, numerous 

strategies have been proposed to address problems 

with trajectory-tracking and guarantee that the 

hovercraft adheres to the set path without faltering. 

For instance, in [7], the authors proposed a nonlinear 

controller for trajectory-tracking of the hovercraft 

system utilizing two controllers. The first controller 

is the position controller that depends on the inverse 

kinematics of the hovercraft model, and the second 

one is the forces selection technique that depends on 

nine cases of the forces based on if-then control 

actions with four control gains selected by the trail-

and-error method to stabilize the control law. 

However, these values of the parameters and the 

nine cases of the forces lead to generating errors in 

the x-axis and the y-axis of the hovercraft during 

motion because the forces selection did not cover all 

the regions of the hovercraft platform movement in 

the environments. In [8], the researchers explained 

the direct neural network-based adaptive control 

structure that compensates for unknown hovercraft 

nonlinearities in a feedback linearizing control 

framework based on the line-of-sight guidance law 

with five control gains. These gains are obtained by 

the trial-and-error method to stabilize the system 

based on the Lyapunov function. However, these 

values of the control law parameters lead to 

significant errors in the position and orientation of 

the hovercraft and considerable oscillations in the 

kinematic velocities’ control action. In [9], the 

author proposed a nonlinear controller based on 

quasi-velocities using the terminal sliding mode 

control algorithm to track two desired paths with 

minimum tracking errors of the hovercraft model. 

However, the limitation of this work is that there are 

twelve parameters of the control law initialized 

using the trial-and-error method to stabilize the 

system based on the Lyapunov method. 

Nevertheless, these values cause a significant error 

in the starting of the hovercraft motion in the x-axis 

and the y-axis. Moreover, there is a high fluctuation 

in the response of the control action. Moreover, in 

[10], the authors employed a nonlinear control 

strategy for an under-actuated hovercraft using the 

derivative-free nonlinear Kalman filter to estimate 

the state and smooth out disturbances, which 

improved the maneuvering and accuracy of 

trajectory tracking. Nonetheless, the issue of this 

work is the linearization of the model that increased 

the problem of the localization and autonomous 

navigation of the hovercraft. The researchers in [11] 

introduced an effective control technique for 

hovercraft navigation utilizing a compensated back-

stepping method with a finite-time extended state 

observer and the line-of-sight guidance law to 

ensure safety. However, the control law has twenty-

eight parameters that were found by the trial-and-

error method. Therefore, there is a small tracking 

error in the position and orientation of the hovercraft, 

and the response of the two control actions has 

oscillation. On the other hand, the authors in [12] 

designed a trajectory-tracking controller for a 

hovercraft platform with unmeasured linear velocity 

and subject to time-varying observers based on the 

Lyapunov method with eight control gains, 

However, these parameters were selected using trial-

and-error method. Therefore, the stabilization of the 

control law was poor with a limited range of 

operation. In addition, the work in [13] presented a 

model-based approach to the nonlinear tracking 

control for both the horizontal and vertical dynamics 

of an under-actuated hovercraft vehicle with 

feedback accurate velocity signals and an observer-

based sensor fusion using acceleration 

measurements and data from an optical flux sensor. 

Nonetheless, the stabilizing feedback control law 

was insufficient because the model of the hovercraft 

was linearized. On the other hand, the researchers in 

[14] developed fuzzy-based three PID controllers 

with nine control gains for non-holonomic 

hovercrafts to handle dynamic restrictions in path-

planning and obstacle avoidance with the aid of IoT 

sensors and digital image processing, Nevertheless, 

the drawback of this controller is the limited number 

of the used scenarios with slow time response to 

generate the nine control parameters. In [15], the 

authors addressed the problem of the path following 

control for an under-actuated hovercraft in the 

presence of external disturbances and uncertain 
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parameters using the back-stepping method with ten 

parameters of the control law to steer the hovercraft 

to a neighborhood of the desired path and obtain 

global practical stability, However, the issue of this 

work is that the gains were obtained by the trial-and-

error method utilizing a very small search space. 

Consequently, these values of the control law 

parameters lead to significant errors in the position 

and orientation of the hovercraft. Moreover, the 

authors in [16] proposed to design and 

experimentally validate a nonlinear controller for a 

hovercraft model based on the Lyapunov function 

actuated through thrust force and rudder angle and 

subject to static and linear velocity drag forces. In 

addition, an online estimation algorithm 

continuously estimates the drag parameters of the 

hovercraft to improve the performance over 

different cases. However, the convergence is 

considerably slow in finding the parameters because 

the chosen oval trajectory was not rich enough in 

lateral movements for the hovercraft, and the 

adaptation of these parameters was slow.  

The problem definition of this work is divided 

into two stages. The first stage involves developing 

an optimal or nearly optimal desired path equation 

for the hovercraft platform to solve three problems 

of the path planning and achieve the requirements in 

terms of obstacle-free navigation, minimizing the 

distance to the target, and establishing the smoothest 

path for two scenarios of the hovercraft in a 

complex environment. The second stage involves 

developing the trajectory-tracking controller of the 

hovercraft that solves three problems of the 

trajectory-tracking and achieves the following 

requirements: the hovercraft must follow a 

predetermined path accurately without sliding and 

with minimal errors in position and orientation 

tracking. In particular, the main scientific 

contributions of this work include addressing the 

problem statement utilizing a hybrid method called 

artificial bee colony self-perception particle swarm 

optimization (ABC-SPPSO) to generate an optimal 

or nearly optimal smooth desired path equation for a 

hovercraft. This path should have the shortest 

distance and avoid collisions in a global 

environment, and the controller should generate 

smooth and optimal control action values of the two 

fans through numerical simulation. These objectives 

will be achieved by employing a suggested 

feedforward numerical inverse dynamic controller 

and a feedback neural network radial basis function 

control technique with the grey wolf optimization 

algorithm to find and tune the optimal or near-

optimal control gain parameters. This control 

strategy obtains the fast and optimal value of the 

fans’ forces control actions that will thrust the 

hovercraft model by quickly tracking the desired 

path and stabilizing the motion. 

This paper is structured as follows: Section 2 

demonstrates an under-actuated hovercraft system. 

Section 3 outlines the path-finding controller 

technique. Section 4 provides the simulation results, 

and Section 5 presents the conclusions of this 

research. 

2. Under-actuated hovercraft system  

The term "under-actuated" pertains to 

hovercrafts that exhibit non-holonomic constraints 

in their motion, as the number of independent 

actuators is less than the number of degrees of 

freedom (DOF). The level of complexity in 

resolving issues related to under-actuated 

hovercrafts is greatly influenced by the specific 

configuration of the vehicle [14]. This paper focuses 

on the hovercraft system illustrated in Fig. 1. The 

hovercraft is pushed by an air propeller and 

supported by a skirt, which can be thought of as a 

cushion of air held within a flexible structure. 

Hovercraft propulsion is achieved using two electric 

motor-driven propellers, which facilitate forward 

and lateral maneuvering [17]. 

The hovercraft is a multi-input multi-output 

system that incorporates two input forces, namely 

the starboard and the portboard of two fans. 

Additionally, it has three outputs associated with the 

global positions of x, y, and ψ. The comprehension 

of hovercraft motion necessitates the elucidation of 

both kinematic and dynamic equations pertaining to 

the hovercraft. The hovercraft's kinematic and 

dynamic equations of motion can be expressed as 

follows [18, 19]: 

 

𝑥̇𝑠 = 𝑢𝑠 𝑐𝑜𝑠 𝜓 − 𝑣𝑠 𝑠𝑖𝑛 𝜓                            (1) 

 

 

 

Figure. 1 The hovercraft system. 
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Table 1. Parameters definition of the equations for the 

hovercraft model. 

Variables Meaning 
Units of 

variable 

𝑢𝑠, v𝑠 Surge and Sway speeds m/s 

𝑥̇𝑠, 𝑦̇𝑠 
Speeds in the directions 

of x and y coordinates 
m/s 

ψ 
The orientation of the 

hovercraft 
rad 

𝑟𝑠 Angular velocity rad/s 

dvi,  

dro 

The coefficient of 

viscous and rotational 

friction 

(kg/s), 

(kg.m/s) 

Fst, Fpt 
The starboard, and 

portboard fans forces 
N 

L Forces' arm m 

J Rotational inertia kg.m2 

M Mass of the hovercraft kg 

𝑟𝑠̇ Angular acceleration rad/s2 

 

 

𝑦̇𝑠 = 𝑢𝑠 𝑠𝑖𝑛 𝜓 + 𝑣𝑠 𝑐𝑜𝑠 𝜓                (2) 

 

𝜓̇ = 𝑟𝑠                                          (3) 

 

𝑀 𝑢̇𝑠 − 𝑀 v𝑠 𝑟𝑠 + 𝑑𝑣𝑖𝑢𝑠 =  𝐹𝑠𝑡 + 𝐹𝑝𝑡             (4) 

 

𝑀 𝑣̇𝑠 + 𝑀 𝑢𝑠 𝑟𝑠 +  𝑑𝑣𝑖𝑣𝑠 = 0                           (5) 

 

𝐽 𝑟̇𝑠 + 𝑑𝑟𝑜𝑟𝑠 =  𝐿(𝐹𝑠𝑡 − 𝐹𝑝𝑡)                           (6) 

 

The definitions of the variables in the hovercraft 

equations are presented in Table 1. 

3. Path finding control strategy design  

The proposed path finding control strategy for 

the hovercraft, which is shown in Fig. 2, consists of 

two slices: the first slice is to solve the path finding 

problem utilizing a hybrid method called artificial 

bee colony self-perception particle swarm 

optimization (ABC-SPPSO) by generating an 

optimal or nearly optimal smooth desired path 

equation for the hovercraft. 

This path should have the shortest distance and 

also avoid collisions in a global environment. The 

second slice is to generate smooth and optimal 

values for the control actions of the two fans of the 

hovercraft model.  

This is achieved by employing a suggested 

feedforward numerical inverse dynamic controller 

and a feedback neural network radial basis function 

control technique with the grey wolf optimization 

algorithm, which is used to find and tune the optimal 

or near-optimal control gain parameters. This 

control strategy obtains the fast and optimal value of 

the fans’ forces control actions that will thrust the 

hovercraft model by quickly tracking the desired 

path and stabilizing the motion. 

 

 

 
Figure. 2 The proposed path finding control strategy design for the hovercraft model 
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3.1 Hybrid path finding methodology 

The work presents a hybrid path finding 

algorithm for hovercraft navigation, with a specific 

emphasis on the following three goals: obstacle-free 

navigation; minimizing the distance to the target; 

and establishing the smoothest path.  

This approach utilizes the artificial bee colony 

self-perception particle swarm optimization method 

(ABC-SPPSO), which is adopted from [19]. The 

ABC algorithm, which was formulated by Karaboga 

et al. in 2005, is a computational approach that 

draws inspiration from the behavioral patterns 

observed in honey bee colonies [20]. In particular, 

this algorithm comprises three key components: 

food sources, employed and unemployed bees 

(referred to as spectator and scout), and two primary 

behavioral patterns: nectar source recruitment and 

abandonment. The algorithm employs recruit, 

onlooker, and scout bees in order to optimize the 

trajectory of the hovercraft. The sequential phases of 

this approach are illustrated in Eq. (7), Eq. (8), Eq. 

(9) and Eq. (10) [19, 20]. 

 

𝑛𝑖,𝑗 = 𝑎𝑖,𝑗 + r𝑖,𝑗(𝑎𝑖,𝑗 − 𝑎𝑘,𝑗)                           (7) 

 

𝑓(𝑎𝑖) = √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2          (8) 

 

𝑓𝑡𝑖 = {

1

1+𝑓(𝑎𝑖)
 , 𝑖𝑓 𝑓(𝑎𝑖) ≥ 0

1 + |𝑎𝑖|  , 𝑖𝑓 𝑓(𝑎𝑖) < 0
                       (9) 

 

𝑃𝑖(𝑖) =
𝑓𝑡𝑖

∑ 𝑓𝑡𝑖
                                                   (10) 

 

The variables' definitions for the equations used 

in this approach (ABC) are displayed in Table 2. 

However, the ABC algorithm faces issues with 

accuracy and convergence speed, and it is effective 

for exploration but not for exploiting. On the other 

hand, Particle Swarm Optimisation (PSO) is a 

population-based stochastic optimisation method 

that draws inspiration from the phenomenon of fish 

crowding together and the behavior of bird flocks. It 

imitates a group of particles searching for the most  

 

 
Table 2. Variables meaning of ABC equations 

Variables Meaning 

𝑎𝑖,𝑗  Solution in the swarm 

r𝑖,𝑗  Random variable between [0,1] 

𝑛𝑖,𝑗 Potential solution closer to its initial one 

𝑓𝑡𝑖 The solution’ fitness 

𝑃𝑖(𝑖) Probability of the solution  

Table 3. Variables definition of the SP-PSO parameters 

Variables Meaning 

𝑤𝑖
𝑘

 Inertia weight 

𝑣𝑖
𝑘 

Velocity of the ith particle at the kth 

iteration 

PSR Perception factor of the self-cognizance 

PSP 
Perception factor of the social 

cognizance 

c1, c2 
Constants of acceleration, where (c1+c2) 

is less than 4 

r1, r2 Random variable of interval (0,1) 

𝐿𝑏𝑒𝑠𝑡
𝑘  The best personal location 

𝐺𝑏𝑒𝑠𝑡
𝑘  The best global particles’ position 

𝑥𝑖
𝑘 

The current position (or solution) of 

the ith particle at the kth iteration. 

 

 

efficient solution. The PSO technique iteratively 

updates the particle swarm, where each particle 

represents a potential solution [21, 22]. Nevertheless, 

the conventional PSO lacks the population variety, 

and it easily falls into local minima. One proposed 

technique aims to enhance the PSO algorithm by  

incorporating particle self-perception. This 

modification enhances the system's evolutionary 

process, leading to improved outcomes within a 

reduced time. Humans are capable of self-regulation, 

and group learning is where this idea originates from. 

As the algorithm progresses, particles can update 

their locations and velocities according to Eq. (11) 

and Eq. (12) [19], which allows them to move 

towards search regions that are more advantageous.  

  

𝑣𝑖
𝑘+1 = 𝑤𝑖

𝑘𝑣𝑖
𝑘 + 𝑃𝑆𝑅𝑐1𝑟1(𝐿𝑏𝑒𝑠𝑡

𝑘 − 𝑥𝑖
𝑘) + 

𝑃𝑆𝑃𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡
𝑘 − 𝑥𝑖

𝑘)               (11) 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                              (12) 

 

Table 3 displays the symbols’ definition of the 

equations depicting the relationship between 

velocity and location. 

The ABC algorithm exhibits a sophisticated 

exploration capability and necessitates only a 

minimal number of control parameters. 

Consequently, it guarantees the identification of a 

path from the starting location to the desired 

destination by guiding the hovercraft towards the 

target while evading obstacles until it successfully 

arrives at the required place. Particles can undergo 

various alterations through self-perception to enable 

rapid identification and clever exploitation [19]. 
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Figure. 3 The proposed hybrid (ABCSPPSO) algorithm 

[19] 

 

A detailed explanation of the fundamental steps 

involved in the hybrid ABC-SP-PSO algorithm is 

shown in Fig. 3 [19]. 

3.2 Control strategy design 

The present work aims to address the challenge 

of developing a motion controller for trajectory 

tracking in a hovercraft system. Trajectory tracking 

begins with path finding to establish an optimal or 

near-optimal hovercraft path equation. Next, the 

suggested control methodology, which has two 

stages, is executed. The initial stage involves the 

utilization of a feedforward numerical inverse 

dynamic controller, whereas the subsequent stage 

employs a feedback neural network radial basis 

function (NNRBF) controller with the GWO 

algorithm to find and tune the optimal or near-

optimal control gain parameters. The proposed 

controller is capable of accurately and rapidly 

generating the ideal forces for the starboard and 

portboard fans, which are fed to the hovercraft for 

precise tracking of the intended paths’ equations, 

with minimal position tracking error and without 

oscillation. 

3.2.1. Feedforward numerical inverse dynamic 

controller design 

The feedforward controller is employed to 

generate reference forces for the starboard and 

portboard fans using mathematical equations 

derived from the kinematic and dynamic analysis of 

the hovercraft model [18, 19]. By deriving surge and 

sway speeds from Eq. (1) and Eq. (2) of the 

kinematic analysis, the following equations can be 

obtained: 

 

𝑣𝑠 = 𝑦̇𝑠 𝑐𝑜𝑠 𝜓 − 𝑥̇𝑠 𝑠𝑖𝑛 𝜓              (13) 

 

𝑢𝑠 = 𝑥̇𝑠 𝑐𝑜𝑠 𝜓 +𝑦̇𝑠 𝑠𝑖𝑛 𝜓              (14) 

 

By utilizing Eq. (13) and Eq. (14), the angular 

velocity rs = 𝜓̇ can be determined, as follows: 

 

𝑟𝑠 =
−𝑣̇𝑠

  𝑢𝑠 
                (15) 

 

𝜓̇ =
−𝑦𝑠̈ cos 𝜓+𝑦̇𝑠 sin 𝜓+𝑥𝑠̈ sin 𝜓+𝑥̇𝑠 cos 𝜓 

𝑥̇𝑠 cos 𝜓+𝑦̇𝑠 sin 𝜓
            (16) 

 

Subsequently, we can ascertain the orientation of 

the hovercraft in Eq. (17) by employing the Runge-

Kutta (RK4) method. 

 

𝜓𝑖 = 𝜓𝑖−1 + (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) × (
𝑇

6
) (17) 

 

Where T represents the sampling time. 
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The following equations are utilized to obtain 

the proposed reference control actions of starboard 

and portboard forces in Eq. (18) and Eq. (19) by 

solving Eq. (4), Eq. (5), and Eq. (6), as follows: 

 

 

𝐹𝑠𝑟𝑒𝑓 = 0.5 (𝑀𝑢̇𝑠 − 𝑀𝑣𝑠𝑟𝑠 + (
𝐽

𝐿
) 𝑟̇𝑠)           (18) 

 

𝐹𝑝𝑟𝑒𝑓 = 0.5 (𝑀𝑢̇𝑠 − 𝑀𝑣𝑠𝑟𝑠 − (
𝐽

𝐿
) 𝑟̇𝑠)           (19) 

 

3.2.1. Feedback neural network radial basis 

function (RBF) controller design 

The feedback controller plays a critical role in 

maintaining the trajectory tracking error of the 

hovercraft system when its location deviates from 

the reference path during the transient state. 

Furthermore, this controller identifies the most 

efficient fan forces that minimize the feedback 

position error. The controller receives inputs in the 

form of feedback from the starboard and portboard 

forces of the hovercraft, together with configuration 

errors denoted as 𝑒𝑥 and 𝑒𝑦, as well as the 𝑒ψ, 

which represents the error between the desired and 

the actual routes of the hovercraft. The calculation 

of this error can be performed using the rotation 

matrix in Eq. (20) [23]. 

 

[

𝑒𝑥
𝑒𝑦
𝑒𝜓

] = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0

−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

] [

𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
𝜓𝑟 − 𝜓

]         (20) 

  

The feedback control mechanism employed in 

this work is based on the neural network radial basis 

function (NNRBF). In this regard, RBF networks 

differ from other neural networks in their ability to 

provide a universal approximation, and they exhibit 

a higher learning speed. An RBF network can be 

classified as a feedforward neural network [22,24]. 

The proposed approach integrates the principles of 

conventional neural networks and radial basis 

functions, resulting in robust capabilities for 

approximation and efficient training.  The structure 

of the proposed neural network controller is 

illustrated in Fig. 4. The proposed controller 

architecture comprises two networks for starboard 

and portboard forces, which are subsequently 

combined to generate feedback forces. The 

architectural design of the network comprises three 

unique layers, specifically the input layer, the 

hidden layer, and the output layer [25]. 

The input layer receives input data and transmits 

it to the hidden layer. It consists of four input  

 
Figure. 4 The proposed RBF neural network controller 

design 

 

neurons for each network to receive the current 

location, orientation, and prior inputs of starboard 

and portboard forces G(i)=(Xr(i), Yr(i), ψr(i), Fs(i-

1), Fp(i-1)), as illustrated in Fig. 4. There are no 

weights in this layer. The hidden layer is where the 

computation occurs, and it consists of nine neurons 

Hsj and Hpj for each network with nonlinear 

activation functions. The RBF uses the Gaussian 

basis function as an activation function, as shown in 

Eq. (21) and Eq. (22) [22-25]. 

 

𝐻𝑠𝑗
= 𝑎𝑒

−(
∑(𝐺𝑖−𝑐)2

𝑟2 )
                                         (21) 

 

𝐻𝑝𝑗
= 𝑎𝑒

−(
∑(𝐺𝑖−𝑐)2

𝑟2 )
                                        (22) 

 

where c is the center of the geometric shape of 

the Gaussian functions of the neurons, a and 𝑟 are 

the maximum amplitude and the width of the 

geometric shape of the Gaussian functions of 

neurons, respectively, and Gi represents the network 

inputs (position and feedback forces). 

The output layer is made up of a single linear 

neuron for each network. This neuron is responsible 

for computing the weighted sum oks and okp of their 

inputs, as expressed in Eq. (23) and Eq. (24) [26]. 

 

𝑜𝑘𝑠 = ∑ 𝐻𝑠𝑗 × 𝑊𝑠1𝑗
9
𝑗=1                                 (23) 
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𝑜𝑘𝑝 = ∑ 𝐻𝑝𝑗 × 𝑊𝑝1𝑗
9
𝑗=1                                (24) 

 

The variables Ws and Wp denote the weights 

between the hidden and the output layers. Then, oks 

and okp are composed for representing the proposed 

feedback forces control action (𝐹𝑠𝑚  and 𝐹𝑝𝑚 ), as 

given in Eq. (25) and Eq. (26). 

 

𝐹𝑠𝑚(𝑖) = 𝑜𝑘𝑠 × 𝐵1 + 𝑜𝑘𝑝 × 𝐵3                   (25) 

 

𝐹𝑝𝑚(𝑖) = 𝑜𝑘𝑠 × 𝐵2 + 𝑜𝑘𝑝 × 𝐵4                   (26) 

 

where 𝐵1, 𝐵2, 𝐵3, and 𝐵4 are variable weights. 

 

The control gain parameters of the feedback 

NNRBF controller can be found and tuned by the 

off-line GWO algorithm in order to obtain the 

optimal or near-optimal forces’ control actions (𝐹𝑠𝑚 

and 𝐹𝑝𝑚 ) for the hovercraft model to keep the 

position and the orientation of the hovercraft in the 

desired path equation.  

The Grey Wolf Optimization (GWO) meta-

heuristic optimization algorithm was introduced by 

Mirjalili et al. in 2014 [27]. This algorithm draws 

inspiration from the distinctive social behaviour and 

leadership hierarchy observed in grey wolves. Grey 

wolves have four types: alpha (α), beta (β), and delta 

(δ). The alpha wolves set hunting, sleeping, and 

waking times, in addition to group management and 

hunting choices. The beta wolves assist the alphas in 

decision-making and can replace them. The deltas 

are the last to eat and hunt, following alpha and beta 

wolves. A delta wolf is needed to prevent group 

turmoil [27, 28].  

The GWO strategy consists of three primary 

stages: searching for the prey, encircling the prey, 

and attacking the prey. The optimization process in 

this method is guided by the α, β, and δ. α represents 

the best solution, β represents the second best 

solution, and δ represents the third best option. 

These three wolves are followed by the remaining 

wolves [28].  

The algorithm commences by the initialization 

of α, β, and δ, followed by the randomization of the 

weight population. Subsequently, the algorithm 

proceeds to compute the mean square error and the 

fitness of the current weights based on Eq. (27) [23]. 

 

𝑀𝑆𝐸 = 0.5 × ∑((𝐹𝑠𝑟𝑒𝑓(𝑖) − 𝐹𝑠𝑚(𝑖))2

+𝐹𝑝𝑟𝑒𝑓(𝑖) − 𝐹𝑝𝑚(𝑖))2)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1+𝑀𝑆𝐸

}  (27) 

 

 
Figure. 5 Flowchart for tuning the weights of NNRBF 

based on the GWO algorithm 

 

  It<max_iteration 
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The values of α_weight, β_ weight, and δ_ 

weight can be determined based on the estimated 

fitness of the weights. For the purpose of updating 

the weight for all populations, it is necessary to 

calculate the values of x1, x2, and x3 for each 

population using the following equations [29]: 

 

𝑎 = 2 − 1(
2

𝑁𝑜.𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)                            (28) 

 

𝐴 = 2𝑎 × 𝑟1 − 𝑎                                            (29) 

 

𝑐 = 2 × 𝑟2                                                      (30) 

 

𝐷𝛼 = |𝑐 × 𝛼_𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑤𝑒𝑖𝑔ℎ𝑡|                   (31) 

 

𝑥1 = α_weight − 𝐴 × 𝐷𝛼                              (32) 

 

𝐷𝛽 = |𝑐 × 𝛽_𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑤𝑒𝑖𝑔ℎ𝑡|                  (33) 

 

𝑥2 = 𝛽_weight − 𝐴 × 𝐷𝛽                               (34) 

 

𝐷𝛿 = |𝑐 × 𝛿_𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑤𝑒𝑖𝑔ℎ𝑡|                   (35) 

 

𝑥3 = 𝛿_weight − 𝐴 × 𝐷𝛿                               (36) 

 

Where the value of variable a decreases linearly 

from 2 to 0 with iterations.  

It is employed to approach the solution range. 

The variables r1 and r2 represent random vectors 

within the range of (0,1). 

According to Eq. (37), each weight can be 

updated as follows: 

 

𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑥1+𝑥2+𝑥3

3
                                        (37) 

 

The variables x1, x2, and x3 denote the varying 

degrees of deviation of the current weight from the 

alpha (best), beta (second best), and delta (third 

best) values, respectively. Upon completion of all 

iterations, the optimal solution is denoted as 

α_weight [29]. 

 

The flowchart illustrating the method is depicted 

in Fig. 5 for tuning the parameters of the NNRBF 

controller. 

4. Simulation results  

In order to optimize the navigation process of 

the hovercraft operating within a workspace 

measuring [500 x 500] cm and containing stationary 

obstacles, as seen in Fig. 6, the initial phase involves 

generating a desired path equation that successfully 

travels toward the designated target while avoiding  

 
Figure. 6 The proposed environment 

 

 

Table 4. Hovercraft specifications [18] 
Specifications Values 

Width 35.6 cm 

Height 18.1 cm 

Depth 25.4 cm 

Mass 5.15 kg 

Viscous coefficient 4.5 kg/sec 

Rotational friction 0.41 kg m/sec 

The starboard and 

portboard fans’ forces 
5.5 N 

Rotational inertia 0.047 kg m2 

Forces' Arm 0.123 m 

 

 

any potential impediments as much as possible to 

ensure a minimum distance to the target achieving 

the smoothest path.  

The second phase entails the identification of an 

appropriate control scheme for the dynamic 

hovercraft model. The model is an under-actuated 

system, which is illustrated in Fig. 1, comprising 

two inputs, namely the forces exerted by the 

starboard and the portboard fans, and three outputs 

that indicate the position (x and y) and orientation. 

Consequently, it can be classified as a multi-input 

multi-output (MIMO) system. The model 

demonstrates pronounced nonlinearity and time-

varying behaviour. This paper focuses on the 

hovercraft specifications shown in Table 4. 

The MATLAB 2022a package was utilized, 

incorporating computer hardware characteristics, 

including an Intel Core i5-5200U processor with 

8.00 GB of RAM and a CPU operating at a 

frequency of 2.20GHz. The hybrid ABC-SPPSO 

algorithm was implemented to satisfy the path 

finding criteria.  



Received:  April 30, 2024.     Revised: May 21, 2024.                                                                                                      585 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.44 

 

Table 5. The proposed parameters of ABC-SPPSO. 

Symbols Value 

Scout bees numbers 10 

Selected bees numbers 5 

Recruit bees numbers equals 

the population size of SPPSO 
40 

Particle numbers 5 

The fittest bees numbers 5 

W 0.7 

Npop 40 

Particle position (x,y) 5 

c1,c2 1.37, 1.37 

r1,r2 
Random values 

between (0,1) 

ItMax 50 

 

 
Table 6. Hovercraft path length and iteration number for 

two cases 

Case study Best path length 
No. of 

Iterations 

Case 1 555.36cm 11 

Case 2 390.46cm 10 

 

 

The proposed hybrid ABC-SPPSO algorithm 

can determine the shortest path for the hovercraft in 

the given environment. The proposed parameters of 

the hybrid ABC-SPPSO algorithm are demonstrated 

in Table 5.  

This work considers two scenarios involving a 

hovercraft. In the first scenario, the initial position 

of the hovercraft is indicated by a red triangle at 

coordinates (50, 50) cm. The blue diamond, which 

represents the goal point, is situated at coordinates 

(350, 450) cm. Fig. 7 represents the optimal or the 

near-optimal path with the minimum cost function 

for case 1. 

In case 2, the initial position of the hovercraft is 

at the coordinates (50, 200) cm, as indicated by the 

red triangle. The target position, denoted by a blue 

diamond, is situated at coordinates (300, 450) cm. 

Therefore, the proposed hybrid ABC-SPPSO 

algorithm is applied to find the shortest path for the 

hovercraft in the given environment. Fig. 8 

represents the optimal or the near-optimal path with 

the minimum cost function for case 2. 

Table 6 displays the shortest path for each 

hovercraft case, along with the corresponding 

number of iterations required to obtain this solution. 

The optimal desired paths for the hovercraft in 

the two scenarios, following the implementation of 

the ABC-SPSPO method, are represented by the 

intended paths of Eq. (38) and Eq. (39) using the 

fitting function.  

 

 
(a) 

 
(b) 

Figure. 7 Case 1 using ABC-SPPSO method for path 1: 

(a) path finding and (b) cost function 

 

 

𝑌𝑟(𝑋𝑟) = 1.4305 × 10−11 × 𝑋𝑟
6 − 

1.3195 × 10−8 × 𝑋𝑟
5 + 4.6824 × 10−6  × 

 𝑋𝑟
4 − 0.0008 ×  𝑋𝑟

3 + 0.067 × 𝑋𝑟
2 − 

 1.9213 × 𝑋𝑟 + 40                           (38) 

 

𝑌𝑟(𝑋𝑟) = 3.2290 × 10−11𝑋𝑟
6 − 3.1256 × 

10−8  ×  𝑋𝑟
5 + 1.2014 × 10−5 × 𝑋𝑟

4 − 

0.002326 × 𝑋𝑟
3 + 0.23663 × 𝑋𝑟

2 − 

 11.193756 × 𝑋𝑟 + 394.64              (39) 

 

These paths are used to train the proposed path 

finding controller, as shown in Fig. 2. The proposed 

feedback NNRBF controller, depicted in Fig. 4, is 

trained to perform the function of a numerical 

inverse dynamic trajectory tracking controller for 

the hovercraft. Therefore, we generate the reference 

starboard and portboard fan forces using the 

proposed Eq. (18) and Eq. (19).  
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(a) 

 

 
(b) 

Figure. 8 Case 2 using ABC-SPPSO method for path 2: 

(a) path finding and (b) cost function. 

 

 

The best-proposed values of the GWO algorithm 

in terms of the agent number are 50 and the 

maximum number of iterations is 100. After 100 

iterations of the GWO technique, the suggested 

controller successfully generated starboard and 

portboard fan forces that matched the hovercraft's 

reference forces, as shown in Fig. 9 (a) and (b). 

Subsequently, in order to ascertain the absence 

of the over-learning issue in the proposed feedback 

NNRBF controller, a test was conducted using 

different data to evaluate the performance of the 

controller model in generating the forces exerted by 

the starboard and portboard fans for the hovercraft. 

This evaluation is conducted without encountering 

the over-learning problem, as depicted in Fig. 10 (a) 

and (b). 

 

 
(a) 

 

 
(b) 

Figure. 9 Learning process result fans’ forces: (a) 

starboard and (b) portboard 

 

 

Fig. 11 shows the convergence curve 

performance of implementing the GWO method in 

the training process. Fig. 12 depicts the controller's 

learning performance response for the hovercraft 

with two fan forces.  

The response is dependent on the learning data,  

which is the optimal reference path for the 

hovercraft. This decision is made by considering Eq. 

(27) as well as the numerical inverse dynamic 

equations that generate the reference forces. 

Based on Eq. (27), the MSE reaches a tiny value 

of less than 0.001, as shown in Fig. 12, and there are 

no learning concerns, such as overfitting or 

overlearning. 

Fig. 13 depicts the proposed NNRBF controller's 

learning accuracy using Eq. (40), which reaches 

99.98% at 90 iterations. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − (
𝑀𝑆𝐸

100
)) × 10                  (40) 

 

The controller that has been proposed is now 

prepared to trace various types of desired pathways. 

In order to evaluate the efficacy of the proposed 

NNRBF controller in trajectory tracking for  
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(a) 

 

 
(b) 

Figure. 10 Fans’ forces of the testing process: (a) 

starboard and (b) portboard 

 

 

 
Figure. 11 Convergence curve performance of 

implementing GWO 

 

 

hovercraft scenarios, Fig. 14 presents a two-

dimensional simulation of the intended route for 

case 1, as determined by Eq. (38) and the actual 

output of the dynamic hovercraft model. The 

observed performance of the hovercraft exhibits 

rapidity and stability throughout a total of 300 

samples, where the sampling time is taken to be 0.1 

seconds. Fig. 15 (a) shows the output response of  

 
Figure. 12 Learning performance response of the 

proposed controller 

 

 

 
Figure. 13 Learning accuracy of the proposed controller 

 

 

 
Figure. 14 Simulation result of the actual and the desired 

paths of the hovercraft for case 1 
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(a) 

 

 
(b) 

Figure. 15 Simulation result: (a) starboard and portboard 

forces of the fans and (b) surge and sway speeds 

 

 

the proposed path-finding controller, demonstrating 

quick and smooth control of the hovercraft's 

starboard and portboard forces.  

On the other hand, Fig. 15 (b) illustrates the 

surge and sway speeds. There is no saturation state, 

allowing for successful path tracking. Fig. 16 (a) and 

(b) demonstrate the best response of the hovercraft's 

linear velocity and orientation for case 1.  

For case 2, the hovercraft's actual output and the 

desired path, which are identical and stable for 250 

samples, are shown in Fig. 17.  

The suggested path-finding controller generates 

rapid and smooth control responses for the 

hovercraft's starboard and portboard fans, as shown 

in Fig. 18 (a). On the other hand, Fig. 18 (b) shows 

the sway and surge speeds. The best response of the 

hovercraft's linear velocity and orientation for case 2 

is shown in Fig. 19 (a) and (b).  

In order to validate the efficacy of this proposed 

controller scheme in trajectory tracking for the 

hovercraft, we conducted a comparative analysis 

between the numerical simulation results of the 

proposed controller and those of alternative 

controllers. This analysis focused on measuring the  

 
(a) 

 

 
(b) 

Figure. 16 Simulation result: (a) linear velocity and (b) 

hovercraft orientation 

 

 

 
Figure. 17 Simulation result of the actual and the desired 

paths of the hovercraft for case 2 

 

 

maximum improvement achieved in the hovercraft's 

tracking error in both the X-axis and the Y-axis 

positions. Initially, the suggested approach was  
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(a) 

 

 
Figure. 18 Simulation result: (a) starboard and portboard 

forces of the fans and (b) surge and sway speeds 

 

 
(a) 

 

 
(b) 

Figure. 19 Simulation result: (a) linear velocity and (b) 

hovercraft orientation 

compared to the study conducted in [9], which 

introduced an improved quasi-velocity (IQV) 

controller for controlling the hovercraft system to 

follow two specified pathways. 

Subsequently, terminal sliding mode control 

(TSMC) was employed for the same objective. In 

 

 

 
Figure. 20 Simulation result of the actual and the desired 

paths of the hovercraft for path1 of [9] 

 

 

 
(a) 

 

 
(b) 

Figure. 21 Simulation result: (a) starboard and portboard 

forces and (b) surge and sway speeds 
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their study, the researchers in [9] conducted 

experiments in a fixed environment that included a 

workspace measuring [600 x 700] cm. The reference 

path equation for path1 and path2 was derived from 

the fitting function and is represented by Eq. (41) 

and Eq. (42), respectively.  

 

𝑌𝑟(𝑋𝑟) = −0.01543 × 𝑋𝑟
3 − 0.00389 × 

 𝑋𝑟
2 +  1.74804 × 𝑋𝑟 − 0.01083                   (41) 

 

𝑌𝑟(𝑋𝑟) = 0.03928 × 𝑋𝑟
4 − 0.30311 × 

 𝑋𝑟
3 + 0.14653 ×  𝑋𝑟

2 + 

 2.72180 × 𝑋𝑟 − 0.00350                             (42) 

 

Following that, we applied the reference path 

equation that was obtained to the proposed path 

finding controller depicted in Fig. 2. Fig. 20 

illustrates the discrepancy between the intended 

trajectory and the trajectory produced by the 

dynamic hovercraft model for path 1 based on Eq. 

(41).  

 

 

 
Figure. 22 Tracking error in x position and in y position 

for path1 of [9] 

 

 

 
Figure. 23 Simulation result of the actual and the desired 

paths of the hovercraft for path 2 of [9] 

 

 
(a) 

 

 
(b) 

Figure. 24 Simulation result: (a) starboard and portboard 

forces and (b) surge and sway speeds 

 

 

 
Figure. 25 Tracking error in x position and in y position 

for path 2 of [9] 

 

 

The suggested controller generates rapid and 

smooth control responses for the hovercraft's 

starboard and portboard fans, as shown in Fig. 21 (a), 

whereas, Fig. 21 (b) shows the sway and surge 

speeds. 

The hovercraft's current performance is 

characterized by high speed and the absence of 

oscillation throughout a span of 70 samples. A 

representation of the summing error in the x-

position and in the y-position can be found in Fig. 
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22. The position error is increased after sample 50 

because the proposed controller was trained for the 

desired map that has a size of 500×500 cm. Thus, 

after sample 50, the size of the map is greater than 

the desired map. 

Fig. 23 illustrates the difference between the 

reference path and the actual path of the hovercraft 

for path 2 based on Eq. (42). As shown in Fig. 24 (a), 

the suggested controller produces a quick and 

smooth control action for the fans on the starboard 

and portboard of the hovercraft. The sway and surge 

speeds are shown in Fig. 24 (b).  

The extent of the summing error in the x-

position and the y-position are illustrated in Fig. 25 

for path2 that was taken from [9]. The position error 

is increased after sample 55 because the proposed 

controller was trained using the desired map that has 

a size of 500×500 cm. Therefore, after sample 55, 

the size of the map is greater than the desired map.   

As can be seen in Tables 7 and 8, the results of 

the simulations conducted in this particular instance 

demonstrate that the proposed controller generates a 

smaller tracking error in comparison to both the IQV 

controller and the TSMC controller in [9]. The 

reasons for the enhancement of our proposed 

controller over the two controllers in [9] are that the 

proposed path finding controller was trained off-line 

using the intelligent optimization algorithm  of the 

GWO algorithm in order to find the optimal control 

gain parameters of the proposed NNRBF controller, 

and it was tuned on-line in order to generate the 

optimal or near-optimal starboard and portboard 

forces’ control action that moves the hovercraft in 

the desired path equation with a minimum tracking 

error in the x-axis and in the y-axis. However, the 

controller in [9] has limitations in the values of the 

control parameters. 

 
Table 7. Tracking error result of the comparison with 

IQV 

Axis tracking 

error (cm) 

IQV 

[9] 

The 

proposed 

controller 

Enhance-

ment 

(%) 

Error in x-

position in 

path 1 

4.5 3.51 22% 

Error in y-

position in 

path 1 

3.98 3.39 14.8% 

Error in x-

position in 

path 2 

7.2 2.0 72.2% 

Error in y-

position in 

path 2 

3.71 1.65 55.5% 

Table 8. Tracking error result of the comparison with 

TSMC 

Axis tracking 

error (cm) 

TSMC 

[9] 

The 

proposed 

controller 

Enhance-

ment 

(%) 

Error in x-

position in 

path 1 

7.13 3.51 50.7% 

Error in y-

position in 

path 1 

9.55 3.39 64.5% 

Error in x-

position in 

path 2 

2.6 2.0 23% 

Error in y-

position in 

path 2 

4.87 1.65 66.1% 

 

 

Specifically, there are twelve parameters of the 

control law and they are initialized by the trial-and-

error method. They do not use any intelligent 

algorithm but depend on the experience of the 

authors in order to stabilize the system based on the 

Lyapunov method. These values lead to an error in 

the start of the hovercraft motion in the x- and the y-

axes, and there is a high fluctuation in the response 

of the control action, which leads to a tracking error 

in the position of the hovercraft during the motion. 

Furthermore, we conducted a comparison 

between the suggested methodology and the study 

conducted in [7], which addresses the nonlinear 

control problem by treating it as a cascade control 

problem. This study employs a stationary setting 

with a workspace measuring [400×400] cm for a 

circular trajectory (path 1) and [600×400] cm for a 

complex trajectory (path 2). 

The fitting function was used to obtain the 

reference path equations for paths 1 and 2 of 

reference [7], which are represented by Eq. (43) and 

Eq. (44), respectively. 

 
𝑋𝑟(𝑖) = 2 × sin(𝑖/10)
𝑌𝑟(𝑖) = 2 × cos(𝑖/10)

}                                 (43) 

 
𝑋𝑟(𝑖) = −3 × sin(4 × 𝜋 × 𝑖/300)

𝑌𝑟(𝑖) = 2 × sin(4 × 𝜋 × 𝑖/200)
}              (44) 

 

After that, we utilized the reference paths 

equation that was automatically developed on the 

proposed controller depicted in Fig. 2.  

Fig. 26 illustrates the differences between the 

intended trajectory and the real trajectory produced 

by the dynamic hovercraft model for path 1.  

Fig. 27 (a) shows that the suggested path-finding 

controller generates quickly and smoothly the two  
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Figure. 26 Simulation result of the actual and the desired 

paths of the hovercraft for path1 of [7] 

 

 

 
(a) 

 

 
(b) 

Figure. 27 Simulation result: (a) starboard and portboard 

forces and (b) surge and sway speeds 

 

control signals of the starboard and the portboard 

forces for the fans on the hovercraft. Fig. 27 (b) 

shows the sway and surge speeds.  The hovercraft's 

performance is characterized by high speed and 

smooth operation, with no oscillation observed 

during the sampling process. Fig. 28 depicts the 

error in the x and the y positions. 

 
Figure. 28 Tracking error in x position and y positions for 

path1 of [7] 

 

 

 
Figure. 29 Simulation result of the actual and the desired 

paths of the hovercraft for path 2 of [7] 

 

 

Fig. 29 shows the discrepancy between the 

reference path and the actual path for the hovercraft 

on path 2 that was taken from [7]. 

Fig. 30 (a) shows that the suggested controller 

controls the starboard and portboard forces of the 

fans on the hovercraft quickly and smoothly. Fig. 30 

(b) shows the sway and surge speeds. Fig. 31 shows 

the magnitude of the x- and y-axes errors. 

The results of the simulations conducted in this 

particular instance, as shown in Table 9, indicate 

that the suggested controller produces a lower 

tracking error compared to that of the nonlinear 

controller in [7] for the two paths.  

The nonlinear controller in [7] consists of two 

controllers, the first is the position controller that 

depends on the inverse kinematics of the hovercraft 

model and the second is the force selection 

technique that depends on nine cases of the forces 

based on if-then control actions with four control 

gains selected using the trail-and-error method to 

stabilize the control law. 

However, these values of the parameters are not 

the optimal values and the nine cases of the forces 

selection did not cover all the region of the  
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(a) 

 

 
(b) 

Figure. 30 Simulation result: (a) starboard and portboard 

forces and (b) surge and sway speeds 

 

 

 
Figure. 31 Tracking error in x position and y position for 

path2 of [7] 

 

 

hovercraft platform movement in the environments. 

Therefore, there are errors in the x-axis and the y-

axis of the hovercraft during motion. In contrast, the 

proposed path-finding controller was trained off-line 

using the intelligent optimization algorithm of the 

GWO algorithm to find the optimal control gain 

parameters of the proposed NNRBF controller. It 

was then tuned on-line to generate the optimal or the  

Table 9. Tracking error result of the comparison  

Axis tracking 

error (cm) 

Nonlinear 

controller 

in [7] 

The 

proposed 

controller 

Enhance-

ment 

(%) 

Error in x-

position in 

path 1 

2.58 1.91 25.9% 

Error in y-

position in 

path 1 

2.81 1.88 33% 

Error in x-

position in 

path 2 

7.73 1.82 76.4% 

Error in y-

position in 

path 2 

8.53 1.92 77.5% 

 

 

near-optimal starboard and portboard forces control 

action that moves the hovercraft in the desired path 

equation with the least amount of tracking error in 

the x- and y-axes. These are the reasons that our 

proposed controller is superior to the controller in 

[7]. 

Thirdly, we performed a comprehensive analysis 

comparing the proposed methodology with the 

research undertaken in [8], which focuses on 

guiding and controlling algorithms for an 

autonomous hovercraft. The methods utilize line-of 

sight guidance and neural network-based adaptive 

dynamic inversion control to accurately follow 

waypoints. This work employs a stationary setting 

with a workspace measuring [700×450] cm. Fig. 32 

shows the difference between the reference path and 

the actual path for the hovercraft.  

Fig. 33 (a) shows that the suggested path-finding 

controller controls the starboard and portboard 

forces of the fans on the hovercraft quickly and 

smoothly. In addition, Fig. 33(b) shows the sway 

and surge speeds and Fig. 34 shows the 

 

 

 
Figure. 32 Simulation result of the actual and the desired 

paths of the hovercraft of [8] 
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Table 10. Tracking error result of the comparison 

Axis 

tracking 

error 

(cm) 

The 

controller 

in [8] 

The 

proposed 

controller 

Enhancement 

(%) 

Error in 

x-position 
9.2 4.5 51% 

Error in 

y-position 
7.3 4.2 42.4% 

 

 

 
(a) 

 

 
(b) 

Figure. 33 Simulation result: (a) starboard and portboard 

forces and (b) surge and sway speeds 

 

 

 
Figure. 34 Tracking error in x position and y position for 

the path of [8] 

trajectory tracking of the x- and the y-axes errors 

during the hovercraft motion. The results of the 

simulations conducted in this particular instance, as 

shown in Table 10, indicate that the suggested 

controller produces a lower tracking error compared 

to that of the controller in [8]. 

The reason that our proposed controller is better 

than the controller in [8] is that it was trained offline 

using the intelligent optimization algorithm of the 

GWO algorithm to determine the ideal control gain 

parameters of the proposed NNRBF controller. It 

was then tuned online to produce the best or the 

near-best starboard and portboard forces control 

action that moves the hovercraft in the desired path 

equation with the least amount of tracking error in 

the x- and y-axes.  

In contrast, the controller in [8] has limitations 

in the values of the control parameters. In particular, 

there are five parameters of the control law and they 

are initialized by the trial-and-error method. They do 

not use any intelligent algorithm and depend on the 

experience of the authors to stabilize the system 

based on the Lyapunov method. These values lead 

to an error in each segment of the desired path of the 

hovercraft motion in the x- and the y-axes, and there 

is a high oscillation in the response of the kinematic 

velocities’ control action, leading to a high tracking 

error in the position of the hovercraft during motion. 

5. Conclusions  

This research presented a design of the path-

finding controller for trajectory tracking of the 

hovercraft system. The controller is based on a 

feedforward numerical inverse dynamic controller 

and a feedback neural network radial basis function 

controller with the GWO algorithm to find and tune 

the optimal or near-optimal control gain parameters. 

The purpose of this design is to follow the intended 

path equations of the hovercraft system. The 

pathways were constructed using the hybrid 

artificial bee colony self-perception particle swarm 

optimization algorithm, which is designed to 

discover the shortest path while avoiding collisions. 

    Specifically, this research aimed to address 

two issues encountered throughout the navigation 

procedure. The initial step involved generating an 

ideal or nearly optimal intended trajectory that 

fulfils three criteria: unhindered navigation, 

minimizing the distance to the goal, and establishing 

the most seamless path for a hovercraft operating in 

a global environment. The path planning problem 

has been resolved with the suggested ABC-SPPSO 

technique.  
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The subsequent issue in our research pertains to 

the development of a motion controller for the 

trajectory tracking of the hovercraft. Our objective is 

to guarantee that the hovercraft adheres to the 

predetermined path with minimal slipping and errors 

in position and orientation. To accomplish this 

objective, we have proposed a neural network radial 

basis function controller that effectively reduces 

tracking errors along the X-axis and the Y-axis. 

Furthermore, the error in the orientation is nearly 

negligible. The suggested controller accurately 

determines and delivers the optimal and seamless 

magnitudes of the forces exerted by the starboard 

and portboard fans, based on the intelligent 

controller using the GWO algorithm that generated 

the optimal control actions for the dynamic 

hovercraft platform model.  

Consequently, the hovercrafts were highly 

proficient at accurately following the intended 

trajectory and reaching the target destination without 

any oscillation. In order to assess the efficacy of the 

suggested controller, a comparative analysis has 

been carried out to evaluate the maximum tracking 

errors in both the X-position and the Y-position. 

This analysis takes into account the work of other 

researchers who have employed different types of 

controllers.  

In addition, the recommended controller was 

assessed in comparison to the IQV and TSMC 

controllers in [9]. The results of the comparison 

demonstrated that the proposed controller improves 

the tracking error rate on the X-position by 22% and 

on the Y-position by 14.8% in comparison with the 

results of the IQV controller in [9]. Compared to  

the results of the TSMC controller in [9], the 

proposed controller improves the tracking error rate 

on the X-position by 50.7% and on the Y-position 

by 64.5% because the controller in [9] has 

limitations in the values of the twelve control 

parameters of the control law that were initialized by 

the trial-and-error method. Moreover, the authors in 

[9] did not use any intelligent algorithm to find the 

optimal value for these parameters to stabilize the 

hovercraft system and to reduce the error in the start 

of the hovercraft motion in the x- and the y-axes. 

Furthermore, the recommended controller was 

compared to the nonlinear cascade controller in [7], 

and the analysis showed that the suggested 

controller improves the tracking error rates for the 

X-position and the Y-position by 25.9% and 33%, 

respectively. In particular, the nonlinear controller in 

[7] has four parameters. However, these parameters’ 

values are not the optimal values and the forces 

selection of the controller has only nine cases that 

did not cover all the region of the hovercraft 

platform movement in the environments. Therefore, 

there are errors in the x-axis and the y-axis of the 

hovercraft during motion. Ultimately, the proposed 

controller was assessed in comparison to the neural 

network-based adaptive dynamic inversion 

controller in [8]. It improves the tracking error rate 

for the X-position by 51% and for the Y-position by 

42.4% because the controller in [8] has limitations 

in the values of the control parameters that were 

initialized by the trial-and-error method, without the 

utilization of an intelligent algorithm. Particularly, 

the authors relied on their experience to stabilize the 

system. 

For future endeavours, we recommend the 

practical implementation of the experimental work 

on the path finding algorithm and the proposed 

control method for the hovercraft system based on 

the development of an FPGA board. 
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